summaryrefslogtreecommitdiffstats
path: root/third_party/python/typing_extensions
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/python/typing_extensions
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/python/typing_extensions')
-rw-r--r--third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE254
-rw-r--r--third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA45
-rw-r--r--third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD6
-rw-r--r--third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL5
-rw-r--r--third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt1
-rw-r--r--third_party/python/typing_extensions/typing_extensions.py2805
6 files changed, 3116 insertions, 0 deletions
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE
new file mode 100644
index 0000000000..583f9f6e61
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/LICENSE
@@ -0,0 +1,254 @@
+A. HISTORY OF THE SOFTWARE
+==========================
+
+Python was created in the early 1990s by Guido van Rossum at Stichting
+Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
+as a successor of a language called ABC. Guido remains Python's
+principal author, although it includes many contributions from others.
+
+In 1995, Guido continued his work on Python at the Corporation for
+National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
+in Reston, Virginia where he released several versions of the
+software.
+
+In May 2000, Guido and the Python core development team moved to
+BeOpen.com to form the BeOpen PythonLabs team. In October of the same
+year, the PythonLabs team moved to Digital Creations (now Zope
+Corporation, see http://www.zope.com). In 2001, the Python Software
+Foundation (PSF, see http://www.python.org/psf/) was formed, a
+non-profit organization created specifically to own Python-related
+Intellectual Property. Zope Corporation is a sponsoring member of
+the PSF.
+
+All Python releases are Open Source (see http://www.opensource.org for
+the Open Source Definition). Historically, most, but not all, Python
+releases have also been GPL-compatible; the table below summarizes
+the various releases.
+
+ Release Derived Year Owner GPL-
+ from compatible? (1)
+
+ 0.9.0 thru 1.2 1991-1995 CWI yes
+ 1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
+ 1.6 1.5.2 2000 CNRI no
+ 2.0 1.6 2000 BeOpen.com no
+ 1.6.1 1.6 2001 CNRI yes (2)
+ 2.1 2.0+1.6.1 2001 PSF no
+ 2.0.1 2.0+1.6.1 2001 PSF yes
+ 2.1.1 2.1+2.0.1 2001 PSF yes
+ 2.1.2 2.1.1 2002 PSF yes
+ 2.1.3 2.1.2 2002 PSF yes
+ 2.2 and above 2.1.1 2001-now PSF yes
+
+Footnotes:
+
+(1) GPL-compatible doesn't mean that we're distributing Python under
+ the GPL. All Python licenses, unlike the GPL, let you distribute
+ a modified version without making your changes open source. The
+ GPL-compatible licenses make it possible to combine Python with
+ other software that is released under the GPL; the others don't.
+
+(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
+ because its license has a choice of law clause. According to
+ CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
+ is "not incompatible" with the GPL.
+
+Thanks to the many outside volunteers who have worked under Guido's
+direction to make these releases possible.
+
+
+B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON
+===============================================================
+
+PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
+--------------------------------------------
+
+1. This LICENSE AGREEMENT is between the Python Software Foundation
+("PSF"), and the Individual or Organization ("Licensee") accessing and
+otherwise using this software ("Python") in source or binary form and
+its associated documentation.
+
+2. Subject to the terms and conditions of this License Agreement, PSF hereby
+grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
+analyze, test, perform and/or display publicly, prepare derivative works,
+distribute, and otherwise use Python alone or in any derivative version,
+provided, however, that PSF's License Agreement and PSF's notice of copyright,
+i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
+2011, 2012, 2013, 2014 Python Software Foundation; All Rights Reserved" are
+retained in Python alone or in any derivative version prepared by Licensee.
+
+3. In the event Licensee prepares a derivative work that is based on
+or incorporates Python or any part thereof, and wants to make
+the derivative work available to others as provided herein, then
+Licensee hereby agrees to include in any such work a brief summary of
+the changes made to Python.
+
+4. PSF is making Python available to Licensee on an "AS IS"
+basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
+FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
+A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
+OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+6. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+7. Nothing in this License Agreement shall be deemed to create any
+relationship of agency, partnership, or joint venture between PSF and
+Licensee. This License Agreement does not grant permission to use PSF
+trademarks or trade name in a trademark sense to endorse or promote
+products or services of Licensee, or any third party.
+
+8. By copying, installing or otherwise using Python, Licensee
+agrees to be bound by the terms and conditions of this License
+Agreement.
+
+
+BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
+-------------------------------------------
+
+BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1
+
+1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
+office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
+Individual or Organization ("Licensee") accessing and otherwise using
+this software in source or binary form and its associated
+documentation ("the Software").
+
+2. Subject to the terms and conditions of this BeOpen Python License
+Agreement, BeOpen hereby grants Licensee a non-exclusive,
+royalty-free, world-wide license to reproduce, analyze, test, perform
+and/or display publicly, prepare derivative works, distribute, and
+otherwise use the Software alone or in any derivative version,
+provided, however, that the BeOpen Python License is retained in the
+Software, alone or in any derivative version prepared by Licensee.
+
+3. BeOpen is making the Software available to Licensee on an "AS IS"
+basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
+SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
+AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
+DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+5. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+6. This License Agreement shall be governed by and interpreted in all
+respects by the law of the State of California, excluding conflict of
+law provisions. Nothing in this License Agreement shall be deemed to
+create any relationship of agency, partnership, or joint venture
+between BeOpen and Licensee. This License Agreement does not grant
+permission to use BeOpen trademarks or trade names in a trademark
+sense to endorse or promote products or services of Licensee, or any
+third party. As an exception, the "BeOpen Python" logos available at
+http://www.pythonlabs.com/logos.html may be used according to the
+permissions granted on that web page.
+
+7. By copying, installing or otherwise using the software, Licensee
+agrees to be bound by the terms and conditions of this License
+Agreement.
+
+
+CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
+---------------------------------------
+
+1. This LICENSE AGREEMENT is between the Corporation for National
+Research Initiatives, having an office at 1895 Preston White Drive,
+Reston, VA 20191 ("CNRI"), and the Individual or Organization
+("Licensee") accessing and otherwise using Python 1.6.1 software in
+source or binary form and its associated documentation.
+
+2. Subject to the terms and conditions of this License Agreement, CNRI
+hereby grants Licensee a nonexclusive, royalty-free, world-wide
+license to reproduce, analyze, test, perform and/or display publicly,
+prepare derivative works, distribute, and otherwise use Python 1.6.1
+alone or in any derivative version, provided, however, that CNRI's
+License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
+1995-2001 Corporation for National Research Initiatives; All Rights
+Reserved" are retained in Python 1.6.1 alone or in any derivative
+version prepared by Licensee. Alternately, in lieu of CNRI's License
+Agreement, Licensee may substitute the following text (omitting the
+quotes): "Python 1.6.1 is made available subject to the terms and
+conditions in CNRI's License Agreement. This Agreement together with
+Python 1.6.1 may be located on the Internet using the following
+unique, persistent identifier (known as a handle): 1895.22/1013. This
+Agreement may also be obtained from a proxy server on the Internet
+using the following URL: http://hdl.handle.net/1895.22/1013".
+
+3. In the event Licensee prepares a derivative work that is based on
+or incorporates Python 1.6.1 or any part thereof, and wants to make
+the derivative work available to others as provided herein, then
+Licensee hereby agrees to include in any such work a brief summary of
+the changes made to Python 1.6.1.
+
+4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
+basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
+IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
+DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
+FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
+INFRINGE ANY THIRD PARTY RIGHTS.
+
+5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
+1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
+A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
+OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
+
+6. This License Agreement will automatically terminate upon a material
+breach of its terms and conditions.
+
+7. This License Agreement shall be governed by the federal
+intellectual property law of the United States, including without
+limitation the federal copyright law, and, to the extent such
+U.S. federal law does not apply, by the law of the Commonwealth of
+Virginia, excluding Virginia's conflict of law provisions.
+Notwithstanding the foregoing, with regard to derivative works based
+on Python 1.6.1 that incorporate non-separable material that was
+previously distributed under the GNU General Public License (GPL), the
+law of the Commonwealth of Virginia shall govern this License
+Agreement only as to issues arising under or with respect to
+Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
+License Agreement shall be deemed to create any relationship of
+agency, partnership, or joint venture between CNRI and Licensee. This
+License Agreement does not grant permission to use CNRI trademarks or
+trade name in a trademark sense to endorse or promote products or
+services of Licensee, or any third party.
+
+8. By clicking on the "ACCEPT" button where indicated, or by copying,
+installing or otherwise using Python 1.6.1, Licensee agrees to be
+bound by the terms and conditions of this License Agreement.
+
+ ACCEPT
+
+
+CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
+--------------------------------------------------
+
+Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
+The Netherlands. All rights reserved.
+
+Permission to use, copy, modify, and distribute this software and its
+documentation for any purpose and without fee is hereby granted,
+provided that the above copyright notice appear in all copies and that
+both that copyright notice and this permission notice appear in
+supporting documentation, and that the name of Stichting Mathematisch
+Centrum or CWI not be used in advertising or publicity pertaining to
+distribution of the software without specific, written prior
+permission.
+
+STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
+THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
+FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
+OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA
new file mode 100644
index 0000000000..fa314015ef
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/METADATA
@@ -0,0 +1,45 @@
+Metadata-Version: 2.1
+Name: typing-extensions
+Version: 3.10.0.0
+Summary: Backported and Experimental Type Hints for Python 3.5+
+Home-page: https://github.com/python/typing/blob/master/typing_extensions/README.rst
+Author: Guido van Rossum, Jukka Lehtosalo, Ɓukasz Langa, Michael Lee
+Author-email: levkivskyi@gmail.com
+License: PSF
+Keywords: typing function annotations type hints hinting checking checker typehints typehinting typechecking backport
+Platform: UNKNOWN
+Classifier: Development Status :: 3 - Alpha
+Classifier: Environment :: Console
+Classifier: Intended Audience :: Developers
+Classifier: License :: OSI Approved :: Python Software Foundation License
+Classifier: Operating System :: OS Independent
+Classifier: Programming Language :: Python :: 2.7
+Classifier: Programming Language :: Python :: 3.4
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Programming Language :: Python :: 3.6
+Classifier: Programming Language :: Python :: 3.7
+Classifier: Programming Language :: Python :: 3.8
+Classifier: Programming Language :: Python :: 3.9
+Classifier: Programming Language :: Python :: 3.10
+Classifier: Topic :: Software Development
+Requires-Dist: typing (>=3.7.4) ; python_version < "3.5"
+
+Typing Extensions -- Backported and Experimental Type Hints for Python
+
+The ``typing`` module was added to the standard library in Python 3.5, but
+many new features have been added to the module since then.
+This means users of Python 3.5 - 3.6 who are unable to upgrade will not be
+able to take advantage of new types added to the ``typing`` module, such as
+``typing.Protocol`` or ``typing.TypedDict``.
+
+The ``typing_extensions`` module contains backports of these changes.
+Experimental types that will eventually be added to the ``typing``
+module are also included in ``typing_extensions``, such as
+``typing.ParamSpec`` and ``typing.TypeGuard``.
+
+Users of Python versions before 3.5 should install and use
+the ``typing`` module from PyPI instead of using this one, unless specifically
+writing code that must be compatible with multiple Python versions or requires
+experimental types.
+
+
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD
new file mode 100644
index 0000000000..217df4acdd
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/RECORD
@@ -0,0 +1,6 @@
+typing_extensions.py,sha256=upcRc-ygmoZSgbJ4WZa34ZE_PVJsYrOlGM7WWbBrJuo,108429
+typing_extensions-3.10.0.0.dist-info/LICENSE,sha256=_xfOlOECAk3raHc-scx0ynbaTmWPNzUx8Kwi1oprsa0,12755
+typing_extensions-3.10.0.0.dist-info/METADATA,sha256=zjlcNCeUQUETPe37jftee4IwkGKxm8YPKQxFFOMgyqQ,2099
+typing_extensions-3.10.0.0.dist-info/WHEEL,sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA,92
+typing_extensions-3.10.0.0.dist-info/top_level.txt,sha256=hkDmk3VmrfXPOD--jS4aKTCu6kFZo-kVT1cIFfq1eU8,18
+typing_extensions-3.10.0.0.dist-info/RECORD,,
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL
new file mode 100644
index 0000000000..385faab052
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/WHEEL
@@ -0,0 +1,5 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.36.2)
+Root-Is-Purelib: true
+Tag: py3-none-any
+
diff --git a/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt
new file mode 100644
index 0000000000..5fd4f05f34
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions-3.10.0.0.dist-info/top_level.txt
@@ -0,0 +1 @@
+typing_extensions
diff --git a/third_party/python/typing_extensions/typing_extensions.py b/third_party/python/typing_extensions/typing_extensions.py
new file mode 100644
index 0000000000..82d1c2dc2c
--- /dev/null
+++ b/third_party/python/typing_extensions/typing_extensions.py
@@ -0,0 +1,2805 @@
+import abc
+import collections
+import contextlib
+import sys
+import typing
+import collections.abc as collections_abc
+import operator
+
+# These are used by Protocol implementation
+# We use internal typing helpers here, but this significantly reduces
+# code duplication. (Also this is only until Protocol is in typing.)
+from typing import Generic, Callable, TypeVar, Tuple
+
+# After PEP 560, internal typing API was substantially reworked.
+# This is especially important for Protocol class which uses internal APIs
+# quite extensivelly.
+PEP_560 = sys.version_info[:3] >= (3, 7, 0)
+
+if PEP_560:
+ GenericMeta = TypingMeta = type
+else:
+ from typing import GenericMeta, TypingMeta
+OLD_GENERICS = False
+try:
+ from typing import _type_vars, _next_in_mro, _type_check
+except ImportError:
+ OLD_GENERICS = True
+try:
+ from typing import _subs_tree # noqa
+ SUBS_TREE = True
+except ImportError:
+ SUBS_TREE = False
+try:
+ from typing import _tp_cache
+except ImportError:
+ def _tp_cache(x):
+ return x
+try:
+ from typing import _TypingEllipsis, _TypingEmpty
+except ImportError:
+ class _TypingEllipsis:
+ pass
+
+ class _TypingEmpty:
+ pass
+
+
+# The two functions below are copies of typing internal helpers.
+# They are needed by _ProtocolMeta
+
+
+def _no_slots_copy(dct):
+ dict_copy = dict(dct)
+ if '__slots__' in dict_copy:
+ for slot in dict_copy['__slots__']:
+ dict_copy.pop(slot, None)
+ return dict_copy
+
+
+def _check_generic(cls, parameters):
+ if not cls.__parameters__:
+ raise TypeError("%s is not a generic class" % repr(cls))
+ alen = len(parameters)
+ elen = len(cls.__parameters__)
+ if alen != elen:
+ raise TypeError("Too %s parameters for %s; actual %s, expected %s" %
+ ("many" if alen > elen else "few", repr(cls), alen, elen))
+
+
+if hasattr(typing, '_generic_new'):
+ _generic_new = typing._generic_new
+else:
+ # Note: The '_generic_new(...)' function is used as a part of the
+ # process of creating a generic type and was added to the typing module
+ # as of Python 3.5.3.
+ #
+ # We've defined '_generic_new(...)' below to exactly match the behavior
+ # implemented in older versions of 'typing' bundled with Python 3.5.0 to
+ # 3.5.2. This helps eliminate redundancy when defining collection types
+ # like 'Deque' later.
+ #
+ # See https://github.com/python/typing/pull/308 for more details -- in
+ # particular, compare and contrast the definition of types like
+ # 'typing.List' before and after the merge.
+
+ def _generic_new(base_cls, cls, *args, **kwargs):
+ return base_cls.__new__(cls, *args, **kwargs)
+
+# See https://github.com/python/typing/pull/439
+if hasattr(typing, '_geqv'):
+ from typing import _geqv
+ _geqv_defined = True
+else:
+ _geqv = None
+ _geqv_defined = False
+
+if sys.version_info[:2] >= (3, 6):
+ import _collections_abc
+ _check_methods_in_mro = _collections_abc._check_methods
+else:
+ def _check_methods_in_mro(C, *methods):
+ mro = C.__mro__
+ for method in methods:
+ for B in mro:
+ if method in B.__dict__:
+ if B.__dict__[method] is None:
+ return NotImplemented
+ break
+ else:
+ return NotImplemented
+ return True
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+ # Super-special typing primitives.
+ 'ClassVar',
+ 'Concatenate',
+ 'Final',
+ 'ParamSpec',
+ 'Type',
+
+ # ABCs (from collections.abc).
+ # The following are added depending on presence
+ # of their non-generic counterparts in stdlib:
+ # 'Awaitable',
+ # 'AsyncIterator',
+ # 'AsyncIterable',
+ # 'Coroutine',
+ # 'AsyncGenerator',
+ # 'AsyncContextManager',
+ # 'ChainMap',
+
+ # Concrete collection types.
+ 'ContextManager',
+ 'Counter',
+ 'Deque',
+ 'DefaultDict',
+ 'OrderedDict'
+ 'TypedDict',
+
+ # Structural checks, a.k.a. protocols.
+ 'SupportsIndex',
+
+ # One-off things.
+ 'final',
+ 'IntVar',
+ 'Literal',
+ 'NewType',
+ 'overload',
+ 'Text',
+ 'TypeAlias',
+ 'TypeGuard',
+ 'TYPE_CHECKING',
+]
+
+# Annotated relies on substitution trees of pep 560. It will not work for
+# versions of typing older than 3.5.3
+HAVE_ANNOTATED = PEP_560 or SUBS_TREE
+
+if PEP_560:
+ __all__.extend(["get_args", "get_origin", "get_type_hints"])
+
+if HAVE_ANNOTATED:
+ __all__.append("Annotated")
+
+# Protocols are hard to backport to the original version of typing 3.5.0
+HAVE_PROTOCOLS = sys.version_info[:3] != (3, 5, 0)
+
+if HAVE_PROTOCOLS:
+ __all__.extend(['Protocol', 'runtime', 'runtime_checkable'])
+
+
+# TODO
+if hasattr(typing, 'NoReturn'):
+ NoReturn = typing.NoReturn
+elif hasattr(typing, '_FinalTypingBase'):
+ class _NoReturn(typing._FinalTypingBase, _root=True):
+ """Special type indicating functions that never return.
+ Example::
+
+ from typing import NoReturn
+
+ def stop() -> NoReturn:
+ raise Exception('no way')
+
+ This type is invalid in other positions, e.g., ``List[NoReturn]``
+ will fail in static type checkers.
+ """
+ __slots__ = ()
+
+ def __instancecheck__(self, obj):
+ raise TypeError("NoReturn cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("NoReturn cannot be used with issubclass().")
+
+ NoReturn = _NoReturn(_root=True)
+else:
+ class _NoReturnMeta(typing.TypingMeta):
+ """Metaclass for NoReturn"""
+ def __new__(cls, name, bases, namespace, _root=False):
+ return super().__new__(cls, name, bases, namespace, _root=_root)
+
+ def __instancecheck__(self, obj):
+ raise TypeError("NoReturn cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("NoReturn cannot be used with issubclass().")
+
+ class NoReturn(typing.Final, metaclass=_NoReturnMeta, _root=True):
+ """Special type indicating functions that never return.
+ Example::
+
+ from typing import NoReturn
+
+ def stop() -> NoReturn:
+ raise Exception('no way')
+
+ This type is invalid in other positions, e.g., ``List[NoReturn]``
+ will fail in static type checkers.
+ """
+ __slots__ = ()
+
+
+# Some unconstrained type variables. These are used by the container types.
+# (These are not for export.)
+T = typing.TypeVar('T') # Any type.
+KT = typing.TypeVar('KT') # Key type.
+VT = typing.TypeVar('VT') # Value type.
+T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers.
+V_co = typing.TypeVar('V_co', covariant=True) # Any type covariant containers.
+VT_co = typing.TypeVar('VT_co', covariant=True) # Value type covariant containers.
+T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant.
+
+
+if hasattr(typing, 'ClassVar'):
+ ClassVar = typing.ClassVar
+elif hasattr(typing, '_FinalTypingBase'):
+ class _ClassVar(typing._FinalTypingBase, _root=True):
+ """Special type construct to mark class variables.
+
+ An annotation wrapped in ClassVar indicates that a given
+ attribute is intended to be used as a class variable and
+ should not be set on instances of that class. Usage::
+
+ class Starship:
+ stats: ClassVar[Dict[str, int]] = {} # class variable
+ damage: int = 10 # instance variable
+
+ ClassVar accepts only types and cannot be further subscribed.
+
+ Note that ClassVar is not a class itself, and should not
+ be used with isinstance() or issubclass().
+ """
+
+ __slots__ = ('__type__',)
+
+ def __init__(self, tp=None, **kwds):
+ self.__type__ = tp
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is None:
+ return cls(typing._type_check(item,
+ '{} accepts only single type.'.format(cls.__name__[1:])),
+ _root=True)
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(new_tp, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not isinstance(other, _ClassVar):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ ClassVar = _ClassVar(_root=True)
+else:
+ class _ClassVarMeta(typing.TypingMeta):
+ """Metaclass for ClassVar"""
+
+ def __new__(cls, name, bases, namespace, tp=None, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ if tp is not None:
+ self.__type__ = tp
+ return self
+
+ def __instancecheck__(self, obj):
+ raise TypeError("ClassVar cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("ClassVar cannot be used with issubclass().")
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is not None:
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ param = typing._type_check(
+ item,
+ '{} accepts only single type.'.format(cls.__name__[1:]))
+ return cls(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=param, _root=True)
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=self.__type__,
+ _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not isinstance(other, ClassVar):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ class ClassVar(typing.Final, metaclass=_ClassVarMeta, _root=True):
+ """Special type construct to mark class variables.
+
+ An annotation wrapped in ClassVar indicates that a given
+ attribute is intended to be used as a class variable and
+ should not be set on instances of that class. Usage::
+
+ class Starship:
+ stats: ClassVar[Dict[str, int]] = {} # class variable
+ damage: int = 10 # instance variable
+
+ ClassVar accepts only types and cannot be further subscribed.
+
+ Note that ClassVar is not a class itself, and should not
+ be used with isinstance() or issubclass().
+ """
+
+ __type__ = None
+
+# On older versions of typing there is an internal class named "Final".
+if hasattr(typing, 'Final') and sys.version_info[:2] >= (3, 7):
+ Final = typing.Final
+elif sys.version_info[:2] >= (3, 7):
+ class _FinalForm(typing._SpecialForm, _root=True):
+
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ def __getitem__(self, parameters):
+ item = typing._type_check(parameters,
+ '{} accepts only single type'.format(self._name))
+ return _GenericAlias(self, (item,))
+
+ Final = _FinalForm('Final',
+ doc="""A special typing construct to indicate that a name
+ cannot be re-assigned or overridden in a subclass.
+ For example:
+
+ MAX_SIZE: Final = 9000
+ MAX_SIZE += 1 # Error reported by type checker
+
+ class Connection:
+ TIMEOUT: Final[int] = 10
+ class FastConnector(Connection):
+ TIMEOUT = 1 # Error reported by type checker
+
+ There is no runtime checking of these properties.""")
+elif hasattr(typing, '_FinalTypingBase'):
+ class _Final(typing._FinalTypingBase, _root=True):
+ """A special typing construct to indicate that a name
+ cannot be re-assigned or overridden in a subclass.
+ For example:
+
+ MAX_SIZE: Final = 9000
+ MAX_SIZE += 1 # Error reported by type checker
+
+ class Connection:
+ TIMEOUT: Final[int] = 10
+ class FastConnector(Connection):
+ TIMEOUT = 1 # Error reported by type checker
+
+ There is no runtime checking of these properties.
+ """
+
+ __slots__ = ('__type__',)
+
+ def __init__(self, tp=None, **kwds):
+ self.__type__ = tp
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is None:
+ return cls(typing._type_check(item,
+ '{} accepts only single type.'.format(cls.__name__[1:])),
+ _root=True)
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(new_tp, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not isinstance(other, _Final):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ Final = _Final(_root=True)
+else:
+ class _FinalMeta(typing.TypingMeta):
+ """Metaclass for Final"""
+
+ def __new__(cls, name, bases, namespace, tp=None, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ if tp is not None:
+ self.__type__ = tp
+ return self
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Final cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("Final cannot be used with issubclass().")
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is not None:
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ param = typing._type_check(
+ item,
+ '{} accepts only single type.'.format(cls.__name__[1:]))
+ return cls(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=param, _root=True)
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=self.__type__,
+ _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not isinstance(other, Final):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ class Final(typing.Final, metaclass=_FinalMeta, _root=True):
+ """A special typing construct to indicate that a name
+ cannot be re-assigned or overridden in a subclass.
+ For example:
+
+ MAX_SIZE: Final = 9000
+ MAX_SIZE += 1 # Error reported by type checker
+
+ class Connection:
+ TIMEOUT: Final[int] = 10
+ class FastConnector(Connection):
+ TIMEOUT = 1 # Error reported by type checker
+
+ There is no runtime checking of these properties.
+ """
+
+ __type__ = None
+
+
+if hasattr(typing, 'final'):
+ final = typing.final
+else:
+ def final(f):
+ """This decorator can be used to indicate to type checkers that
+ the decorated method cannot be overridden, and decorated class
+ cannot be subclassed. For example:
+
+ class Base:
+ @final
+ def done(self) -> None:
+ ...
+ class Sub(Base):
+ def done(self) -> None: # Error reported by type checker
+ ...
+ @final
+ class Leaf:
+ ...
+ class Other(Leaf): # Error reported by type checker
+ ...
+
+ There is no runtime checking of these properties.
+ """
+ return f
+
+
+def IntVar(name):
+ return TypeVar(name)
+
+
+if hasattr(typing, 'Literal'):
+ Literal = typing.Literal
+elif sys.version_info[:2] >= (3, 7):
+ class _LiteralForm(typing._SpecialForm, _root=True):
+
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ def __getitem__(self, parameters):
+ return _GenericAlias(self, parameters)
+
+ Literal = _LiteralForm('Literal',
+ doc="""A type that can be used to indicate to type checkers
+ that the corresponding value has a value literally equivalent
+ to the provided parameter. For example:
+
+ var: Literal[4] = 4
+
+ The type checker understands that 'var' is literally equal to
+ the value 4 and no other value.
+
+ Literal[...] cannot be subclassed. There is no runtime
+ checking verifying that the parameter is actually a value
+ instead of a type.""")
+elif hasattr(typing, '_FinalTypingBase'):
+ class _Literal(typing._FinalTypingBase, _root=True):
+ """A type that can be used to indicate to type checkers that the
+ corresponding value has a value literally equivalent to the
+ provided parameter. For example:
+
+ var: Literal[4] = 4
+
+ The type checker understands that 'var' is literally equal to the
+ value 4 and no other value.
+
+ Literal[...] cannot be subclassed. There is no runtime checking
+ verifying that the parameter is actually a value instead of a type.
+ """
+
+ __slots__ = ('__values__',)
+
+ def __init__(self, values=None, **kwds):
+ self.__values__ = values
+
+ def __getitem__(self, values):
+ cls = type(self)
+ if self.__values__ is None:
+ if not isinstance(values, tuple):
+ values = (values,)
+ return cls(values, _root=True)
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ def _eval_type(self, globalns, localns):
+ return self
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__values__ is not None:
+ r += '[{}]'.format(', '.join(map(typing._type_repr, self.__values__)))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__values__))
+
+ def __eq__(self, other):
+ if not isinstance(other, _Literal):
+ return NotImplemented
+ if self.__values__ is not None:
+ return self.__values__ == other.__values__
+ return self is other
+
+ Literal = _Literal(_root=True)
+else:
+ class _LiteralMeta(typing.TypingMeta):
+ """Metaclass for Literal"""
+
+ def __new__(cls, name, bases, namespace, values=None, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ if values is not None:
+ self.__values__ = values
+ return self
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Literal cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("Literal cannot be used with issubclass().")
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__values__ is not None:
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ if not isinstance(item, tuple):
+ item = (item,)
+ return cls(self.__name__, self.__bases__,
+ dict(self.__dict__), values=item, _root=True)
+
+ def _eval_type(self, globalns, localns):
+ return self
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__values__ is not None:
+ r += '[{}]'.format(', '.join(map(typing._type_repr, self.__values__)))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__values__))
+
+ def __eq__(self, other):
+ if not isinstance(other, Literal):
+ return NotImplemented
+ if self.__values__ is not None:
+ return self.__values__ == other.__values__
+ return self is other
+
+ class Literal(typing.Final, metaclass=_LiteralMeta, _root=True):
+ """A type that can be used to indicate to type checkers that the
+ corresponding value has a value literally equivalent to the
+ provided parameter. For example:
+
+ var: Literal[4] = 4
+
+ The type checker understands that 'var' is literally equal to the
+ value 4 and no other value.
+
+ Literal[...] cannot be subclassed. There is no runtime checking
+ verifying that the parameter is actually a value instead of a type.
+ """
+
+ __values__ = None
+
+
+def _overload_dummy(*args, **kwds):
+ """Helper for @overload to raise when called."""
+ raise NotImplementedError(
+ "You should not call an overloaded function. "
+ "A series of @overload-decorated functions "
+ "outside a stub module should always be followed "
+ "by an implementation that is not @overload-ed.")
+
+
+def overload(func):
+ """Decorator for overloaded functions/methods.
+
+ In a stub file, place two or more stub definitions for the same
+ function in a row, each decorated with @overload. For example:
+
+ @overload
+ def utf8(value: None) -> None: ...
+ @overload
+ def utf8(value: bytes) -> bytes: ...
+ @overload
+ def utf8(value: str) -> bytes: ...
+
+ In a non-stub file (i.e. a regular .py file), do the same but
+ follow it with an implementation. The implementation should *not*
+ be decorated with @overload. For example:
+
+ @overload
+ def utf8(value: None) -> None: ...
+ @overload
+ def utf8(value: bytes) -> bytes: ...
+ @overload
+ def utf8(value: str) -> bytes: ...
+ def utf8(value):
+ # implementation goes here
+ """
+ return _overload_dummy
+
+
+# This is not a real generic class. Don't use outside annotations.
+if hasattr(typing, 'Type'):
+ Type = typing.Type
+else:
+ # Internal type variable used for Type[].
+ CT_co = typing.TypeVar('CT_co', covariant=True, bound=type)
+
+ class Type(typing.Generic[CT_co], extra=type):
+ """A special construct usable to annotate class objects.
+
+ For example, suppose we have the following classes::
+
+ class User: ... # Abstract base for User classes
+ class BasicUser(User): ...
+ class ProUser(User): ...
+ class TeamUser(User): ...
+
+ And a function that takes a class argument that's a subclass of
+ User and returns an instance of the corresponding class::
+
+ U = TypeVar('U', bound=User)
+ def new_user(user_class: Type[U]) -> U:
+ user = user_class()
+ # (Here we could write the user object to a database)
+ return user
+ joe = new_user(BasicUser)
+
+ At this point the type checker knows that joe has type BasicUser.
+ """
+
+ __slots__ = ()
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+def _define_guard(type_name):
+ """
+ Returns True if the given type isn't defined in typing but
+ is defined in collections_abc.
+
+ Adds the type to __all__ if the collection is found in either
+ typing or collection_abc.
+ """
+ if hasattr(typing, type_name):
+ __all__.append(type_name)
+ globals()[type_name] = getattr(typing, type_name)
+ return False
+ elif hasattr(collections_abc, type_name):
+ __all__.append(type_name)
+ return True
+ else:
+ return False
+
+
+class _ExtensionsGenericMeta(GenericMeta):
+ def __subclasscheck__(self, subclass):
+ """This mimics a more modern GenericMeta.__subclasscheck__() logic
+ (that does not have problems with recursion) to work around interactions
+ between collections, typing, and typing_extensions on older
+ versions of Python, see https://github.com/python/typing/issues/501.
+ """
+ if sys.version_info[:3] >= (3, 5, 3) or sys.version_info[:3] < (3, 5, 0):
+ if self.__origin__ is not None:
+ if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']:
+ raise TypeError("Parameterized generics cannot be used with class "
+ "or instance checks")
+ return False
+ if not self.__extra__:
+ return super().__subclasscheck__(subclass)
+ res = self.__extra__.__subclasshook__(subclass)
+ if res is not NotImplemented:
+ return res
+ if self.__extra__ in subclass.__mro__:
+ return True
+ for scls in self.__extra__.__subclasses__():
+ if isinstance(scls, GenericMeta):
+ continue
+ if issubclass(subclass, scls):
+ return True
+ return False
+
+
+if _define_guard('Awaitable'):
+ class Awaitable(typing.Generic[T_co], metaclass=_ExtensionsGenericMeta,
+ extra=collections_abc.Awaitable):
+ __slots__ = ()
+
+
+if _define_guard('Coroutine'):
+ class Coroutine(Awaitable[V_co], typing.Generic[T_co, T_contra, V_co],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections_abc.Coroutine):
+ __slots__ = ()
+
+
+if _define_guard('AsyncIterable'):
+ class AsyncIterable(typing.Generic[T_co],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections_abc.AsyncIterable):
+ __slots__ = ()
+
+
+if _define_guard('AsyncIterator'):
+ class AsyncIterator(AsyncIterable[T_co],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections_abc.AsyncIterator):
+ __slots__ = ()
+
+
+if hasattr(typing, 'Deque'):
+ Deque = typing.Deque
+elif _geqv_defined:
+ class Deque(collections.deque, typing.MutableSequence[T],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.deque):
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Deque):
+ return collections.deque(*args, **kwds)
+ return _generic_new(collections.deque, cls, *args, **kwds)
+else:
+ class Deque(collections.deque, typing.MutableSequence[T],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.deque):
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if cls._gorg is Deque:
+ return collections.deque(*args, **kwds)
+ return _generic_new(collections.deque, cls, *args, **kwds)
+
+
+if hasattr(typing, 'ContextManager'):
+ ContextManager = typing.ContextManager
+elif hasattr(contextlib, 'AbstractContextManager'):
+ class ContextManager(typing.Generic[T_co],
+ metaclass=_ExtensionsGenericMeta,
+ extra=contextlib.AbstractContextManager):
+ __slots__ = ()
+else:
+ class ContextManager(typing.Generic[T_co]):
+ __slots__ = ()
+
+ def __enter__(self):
+ return self
+
+ @abc.abstractmethod
+ def __exit__(self, exc_type, exc_value, traceback):
+ return None
+
+ @classmethod
+ def __subclasshook__(cls, C):
+ if cls is ContextManager:
+ # In Python 3.6+, it is possible to set a method to None to
+ # explicitly indicate that the class does not implement an ABC
+ # (https://bugs.python.org/issue25958), but we do not support
+ # that pattern here because this fallback class is only used
+ # in Python 3.5 and earlier.
+ if (any("__enter__" in B.__dict__ for B in C.__mro__) and
+ any("__exit__" in B.__dict__ for B in C.__mro__)):
+ return True
+ return NotImplemented
+
+
+if hasattr(typing, 'AsyncContextManager'):
+ AsyncContextManager = typing.AsyncContextManager
+ __all__.append('AsyncContextManager')
+elif hasattr(contextlib, 'AbstractAsyncContextManager'):
+ class AsyncContextManager(typing.Generic[T_co],
+ metaclass=_ExtensionsGenericMeta,
+ extra=contextlib.AbstractAsyncContextManager):
+ __slots__ = ()
+
+ __all__.append('AsyncContextManager')
+elif sys.version_info[:2] >= (3, 5):
+ exec("""
+class AsyncContextManager(typing.Generic[T_co]):
+ __slots__ = ()
+
+ async def __aenter__(self):
+ return self
+
+ @abc.abstractmethod
+ async def __aexit__(self, exc_type, exc_value, traceback):
+ return None
+
+ @classmethod
+ def __subclasshook__(cls, C):
+ if cls is AsyncContextManager:
+ return _check_methods_in_mro(C, "__aenter__", "__aexit__")
+ return NotImplemented
+
+__all__.append('AsyncContextManager')
+""")
+
+
+if hasattr(typing, 'DefaultDict'):
+ DefaultDict = typing.DefaultDict
+elif _geqv_defined:
+ class DefaultDict(collections.defaultdict, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.defaultdict):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, DefaultDict):
+ return collections.defaultdict(*args, **kwds)
+ return _generic_new(collections.defaultdict, cls, *args, **kwds)
+else:
+ class DefaultDict(collections.defaultdict, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.defaultdict):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if cls._gorg is DefaultDict:
+ return collections.defaultdict(*args, **kwds)
+ return _generic_new(collections.defaultdict, cls, *args, **kwds)
+
+
+if hasattr(typing, 'OrderedDict'):
+ OrderedDict = typing.OrderedDict
+elif (3, 7, 0) <= sys.version_info[:3] < (3, 7, 2):
+ OrderedDict = typing._alias(collections.OrderedDict, (KT, VT))
+elif _geqv_defined:
+ class OrderedDict(collections.OrderedDict, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.OrderedDict):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, OrderedDict):
+ return collections.OrderedDict(*args, **kwds)
+ return _generic_new(collections.OrderedDict, cls, *args, **kwds)
+else:
+ class OrderedDict(collections.OrderedDict, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.OrderedDict):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if cls._gorg is OrderedDict:
+ return collections.OrderedDict(*args, **kwds)
+ return _generic_new(collections.OrderedDict, cls, *args, **kwds)
+
+
+if hasattr(typing, 'Counter'):
+ Counter = typing.Counter
+elif (3, 5, 0) <= sys.version_info[:3] <= (3, 5, 1):
+ assert _geqv_defined
+ _TInt = typing.TypeVar('_TInt')
+
+ class _CounterMeta(typing.GenericMeta):
+ """Metaclass for Counter"""
+ def __getitem__(self, item):
+ return super().__getitem__((item, int))
+
+ class Counter(collections.Counter,
+ typing.Dict[T, int],
+ metaclass=_CounterMeta,
+ extra=collections.Counter):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Counter):
+ return collections.Counter(*args, **kwds)
+ return _generic_new(collections.Counter, cls, *args, **kwds)
+
+elif _geqv_defined:
+ class Counter(collections.Counter,
+ typing.Dict[T, int],
+ metaclass=_ExtensionsGenericMeta, extra=collections.Counter):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Counter):
+ return collections.Counter(*args, **kwds)
+ return _generic_new(collections.Counter, cls, *args, **kwds)
+
+else:
+ class Counter(collections.Counter,
+ typing.Dict[T, int],
+ metaclass=_ExtensionsGenericMeta, extra=collections.Counter):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if cls._gorg is Counter:
+ return collections.Counter(*args, **kwds)
+ return _generic_new(collections.Counter, cls, *args, **kwds)
+
+
+if hasattr(typing, 'ChainMap'):
+ ChainMap = typing.ChainMap
+ __all__.append('ChainMap')
+elif hasattr(collections, 'ChainMap'):
+ # ChainMap only exists in 3.3+
+ if _geqv_defined:
+ class ChainMap(collections.ChainMap, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.ChainMap):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, ChainMap):
+ return collections.ChainMap(*args, **kwds)
+ return _generic_new(collections.ChainMap, cls, *args, **kwds)
+ else:
+ class ChainMap(collections.ChainMap, typing.MutableMapping[KT, VT],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections.ChainMap):
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwds):
+ if cls._gorg is ChainMap:
+ return collections.ChainMap(*args, **kwds)
+ return _generic_new(collections.ChainMap, cls, *args, **kwds)
+
+ __all__.append('ChainMap')
+
+
+if _define_guard('AsyncGenerator'):
+ class AsyncGenerator(AsyncIterator[T_co], typing.Generic[T_co, T_contra],
+ metaclass=_ExtensionsGenericMeta,
+ extra=collections_abc.AsyncGenerator):
+ __slots__ = ()
+
+
+if hasattr(typing, 'NewType'):
+ NewType = typing.NewType
+else:
+ def NewType(name, tp):
+ """NewType creates simple unique types with almost zero
+ runtime overhead. NewType(name, tp) is considered a subtype of tp
+ by static type checkers. At runtime, NewType(name, tp) returns
+ a dummy function that simply returns its argument. Usage::
+
+ UserId = NewType('UserId', int)
+
+ def name_by_id(user_id: UserId) -> str:
+ ...
+
+ UserId('user') # Fails type check
+
+ name_by_id(42) # Fails type check
+ name_by_id(UserId(42)) # OK
+
+ num = UserId(5) + 1 # type: int
+ """
+
+ def new_type(x):
+ return x
+
+ new_type.__name__ = name
+ new_type.__supertype__ = tp
+ return new_type
+
+
+if hasattr(typing, 'Text'):
+ Text = typing.Text
+else:
+ Text = str
+
+
+if hasattr(typing, 'TYPE_CHECKING'):
+ TYPE_CHECKING = typing.TYPE_CHECKING
+else:
+ # Constant that's True when type checking, but False here.
+ TYPE_CHECKING = False
+
+
+def _gorg(cls):
+ """This function exists for compatibility with old typing versions."""
+ assert isinstance(cls, GenericMeta)
+ if hasattr(cls, '_gorg'):
+ return cls._gorg
+ while cls.__origin__ is not None:
+ cls = cls.__origin__
+ return cls
+
+
+if OLD_GENERICS:
+ def _next_in_mro(cls): # noqa
+ """This function exists for compatibility with old typing versions."""
+ next_in_mro = object
+ for i, c in enumerate(cls.__mro__[:-1]):
+ if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+ next_in_mro = cls.__mro__[i + 1]
+ return next_in_mro
+
+
+_PROTO_WHITELIST = ['Callable', 'Awaitable',
+ 'Iterable', 'Iterator', 'AsyncIterable', 'AsyncIterator',
+ 'Hashable', 'Sized', 'Container', 'Collection', 'Reversible',
+ 'ContextManager', 'AsyncContextManager']
+
+
+def _get_protocol_attrs(cls):
+ attrs = set()
+ for base in cls.__mro__[:-1]: # without object
+ if base.__name__ in ('Protocol', 'Generic'):
+ continue
+ annotations = getattr(base, '__annotations__', {})
+ for attr in list(base.__dict__.keys()) + list(annotations.keys()):
+ if (not attr.startswith('_abc_') and attr not in (
+ '__abstractmethods__', '__annotations__', '__weakref__',
+ '_is_protocol', '_is_runtime_protocol', '__dict__',
+ '__args__', '__slots__',
+ '__next_in_mro__', '__parameters__', '__origin__',
+ '__orig_bases__', '__extra__', '__tree_hash__',
+ '__doc__', '__subclasshook__', '__init__', '__new__',
+ '__module__', '_MutableMapping__marker', '_gorg')):
+ attrs.add(attr)
+ return attrs
+
+
+def _is_callable_members_only(cls):
+ return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls))
+
+
+if hasattr(typing, 'Protocol'):
+ Protocol = typing.Protocol
+elif HAVE_PROTOCOLS and not PEP_560:
+
+ def _no_init(self, *args, **kwargs):
+ if type(self)._is_protocol:
+ raise TypeError('Protocols cannot be instantiated')
+
+ class _ProtocolMeta(GenericMeta):
+ """Internal metaclass for Protocol.
+
+ This exists so Protocol classes can be generic without deriving
+ from Generic.
+ """
+ if not OLD_GENERICS:
+ def __new__(cls, name, bases, namespace,
+ tvars=None, args=None, origin=None, extra=None, orig_bases=None):
+ # This is just a version copied from GenericMeta.__new__ that
+ # includes "Protocol" special treatment. (Comments removed for brevity.)
+ assert extra is None # Protocols should not have extra
+ if tvars is not None:
+ assert origin is not None
+ assert all(isinstance(t, TypeVar) for t in tvars), tvars
+ else:
+ tvars = _type_vars(bases)
+ gvars = None
+ for base in bases:
+ if base is Generic:
+ raise TypeError("Cannot inherit from plain Generic")
+ if (isinstance(base, GenericMeta) and
+ base.__origin__ in (Generic, Protocol)):
+ if gvars is not None:
+ raise TypeError(
+ "Cannot inherit from Generic[...] or"
+ " Protocol[...] multiple times.")
+ gvars = base.__parameters__
+ if gvars is None:
+ gvars = tvars
+ else:
+ tvarset = set(tvars)
+ gvarset = set(gvars)
+ if not tvarset <= gvarset:
+ raise TypeError(
+ "Some type variables (%s) "
+ "are not listed in %s[%s]" %
+ (", ".join(str(t) for t in tvars if t not in gvarset),
+ "Generic" if any(b.__origin__ is Generic
+ for b in bases) else "Protocol",
+ ", ".join(str(g) for g in gvars)))
+ tvars = gvars
+
+ initial_bases = bases
+ if (extra is not None and type(extra) is abc.ABCMeta and
+ extra not in bases):
+ bases = (extra,) + bases
+ bases = tuple(_gorg(b) if isinstance(b, GenericMeta) else b
+ for b in bases)
+ if any(isinstance(b, GenericMeta) and b is not Generic for b in bases):
+ bases = tuple(b for b in bases if b is not Generic)
+ namespace.update({'__origin__': origin, '__extra__': extra})
+ self = super(GenericMeta, cls).__new__(cls, name, bases, namespace,
+ _root=True)
+ super(GenericMeta, self).__setattr__('_gorg',
+ self if not origin else
+ _gorg(origin))
+ self.__parameters__ = tvars
+ self.__args__ = tuple(... if a is _TypingEllipsis else
+ () if a is _TypingEmpty else
+ a for a in args) if args else None
+ self.__next_in_mro__ = _next_in_mro(self)
+ if orig_bases is None:
+ self.__orig_bases__ = initial_bases
+ elif origin is not None:
+ self._abc_registry = origin._abc_registry
+ self._abc_cache = origin._abc_cache
+ if hasattr(self, '_subs_tree'):
+ self.__tree_hash__ = (hash(self._subs_tree()) if origin else
+ super(GenericMeta, self).__hash__())
+ return self
+
+ def __init__(cls, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ if not cls.__dict__.get('_is_protocol', None):
+ cls._is_protocol = any(b is Protocol or
+ isinstance(b, _ProtocolMeta) and
+ b.__origin__ is Protocol
+ for b in cls.__bases__)
+ if cls._is_protocol:
+ for base in cls.__mro__[1:]:
+ if not (base in (object, Generic) or
+ base.__module__ == 'collections.abc' and
+ base.__name__ in _PROTO_WHITELIST or
+ isinstance(base, TypingMeta) and base._is_protocol or
+ isinstance(base, GenericMeta) and
+ base.__origin__ is Generic):
+ raise TypeError('Protocols can only inherit from other'
+ ' protocols, got %r' % base)
+
+ cls.__init__ = _no_init
+
+ def _proto_hook(other):
+ if not cls.__dict__.get('_is_protocol', None):
+ return NotImplemented
+ if not isinstance(other, type):
+ # Same error as for issubclass(1, int)
+ raise TypeError('issubclass() arg 1 must be a class')
+ for attr in _get_protocol_attrs(cls):
+ for base in other.__mro__:
+ if attr in base.__dict__:
+ if base.__dict__[attr] is None:
+ return NotImplemented
+ break
+ annotations = getattr(base, '__annotations__', {})
+ if (isinstance(annotations, typing.Mapping) and
+ attr in annotations and
+ isinstance(other, _ProtocolMeta) and
+ other._is_protocol):
+ break
+ else:
+ return NotImplemented
+ return True
+ if '__subclasshook__' not in cls.__dict__:
+ cls.__subclasshook__ = _proto_hook
+
+ def __instancecheck__(self, instance):
+ # We need this method for situations where attributes are
+ # assigned in __init__.
+ if ((not getattr(self, '_is_protocol', False) or
+ _is_callable_members_only(self)) and
+ issubclass(instance.__class__, self)):
+ return True
+ if self._is_protocol:
+ if all(hasattr(instance, attr) and
+ (not callable(getattr(self, attr, None)) or
+ getattr(instance, attr) is not None)
+ for attr in _get_protocol_attrs(self)):
+ return True
+ return super(GenericMeta, self).__instancecheck__(instance)
+
+ def __subclasscheck__(self, cls):
+ if self.__origin__ is not None:
+ if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']:
+ raise TypeError("Parameterized generics cannot be used with class "
+ "or instance checks")
+ return False
+ if (self.__dict__.get('_is_protocol', None) and
+ not self.__dict__.get('_is_runtime_protocol', None)):
+ if sys._getframe(1).f_globals['__name__'] in ['abc',
+ 'functools',
+ 'typing']:
+ return False
+ raise TypeError("Instance and class checks can only be used with"
+ " @runtime protocols")
+ if (self.__dict__.get('_is_runtime_protocol', None) and
+ not _is_callable_members_only(self)):
+ if sys._getframe(1).f_globals['__name__'] in ['abc',
+ 'functools',
+ 'typing']:
+ return super(GenericMeta, self).__subclasscheck__(cls)
+ raise TypeError("Protocols with non-method members"
+ " don't support issubclass()")
+ return super(GenericMeta, self).__subclasscheck__(cls)
+
+ if not OLD_GENERICS:
+ @_tp_cache
+ def __getitem__(self, params):
+ # We also need to copy this from GenericMeta.__getitem__ to get
+ # special treatment of "Protocol". (Comments removed for brevity.)
+ if not isinstance(params, tuple):
+ params = (params,)
+ if not params and _gorg(self) is not Tuple:
+ raise TypeError(
+ "Parameter list to %s[...] cannot be empty" % self.__qualname__)
+ msg = "Parameters to generic types must be types."
+ params = tuple(_type_check(p, msg) for p in params)
+ if self in (Generic, Protocol):
+ if not all(isinstance(p, TypeVar) for p in params):
+ raise TypeError(
+ "Parameters to %r[...] must all be type variables" % self)
+ if len(set(params)) != len(params):
+ raise TypeError(
+ "Parameters to %r[...] must all be unique" % self)
+ tvars = params
+ args = params
+ elif self in (Tuple, Callable):
+ tvars = _type_vars(params)
+ args = params
+ elif self.__origin__ in (Generic, Protocol):
+ raise TypeError("Cannot subscript already-subscripted %s" %
+ repr(self))
+ else:
+ _check_generic(self, params)
+ tvars = _type_vars(params)
+ args = params
+
+ prepend = (self,) if self.__origin__ is None else ()
+ return self.__class__(self.__name__,
+ prepend + self.__bases__,
+ _no_slots_copy(self.__dict__),
+ tvars=tvars,
+ args=args,
+ origin=self,
+ extra=self.__extra__,
+ orig_bases=self.__orig_bases__)
+
+ class Protocol(metaclass=_ProtocolMeta):
+ """Base class for protocol classes. Protocol classes are defined as::
+
+ class Proto(Protocol):
+ def meth(self) -> int:
+ ...
+
+ Such classes are primarily used with static type checkers that recognize
+ structural subtyping (static duck-typing), for example::
+
+ class C:
+ def meth(self) -> int:
+ return 0
+
+ def func(x: Proto) -> int:
+ return x.meth()
+
+ func(C()) # Passes static type check
+
+ See PEP 544 for details. Protocol classes decorated with
+ @typing_extensions.runtime act as simple-minded runtime protocol that checks
+ only the presence of given attributes, ignoring their type signatures.
+
+ Protocol classes can be generic, they are defined as::
+
+ class GenProto({bases}):
+ def meth(self) -> T:
+ ...
+ """
+ __slots__ = ()
+ _is_protocol = True
+
+ def __new__(cls, *args, **kwds):
+ if _gorg(cls) is Protocol:
+ raise TypeError("Type Protocol cannot be instantiated; "
+ "it can be used only as a base class")
+ if OLD_GENERICS:
+ return _generic_new(_next_in_mro(cls), cls, *args, **kwds)
+ return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)
+ if Protocol.__doc__ is not None:
+ Protocol.__doc__ = Protocol.__doc__.format(bases="Protocol, Generic[T]" if
+ OLD_GENERICS else "Protocol[T]")
+
+
+elif PEP_560:
+ from typing import _type_check, _GenericAlias, _collect_type_vars # noqa
+
+ def _no_init(self, *args, **kwargs):
+ if type(self)._is_protocol:
+ raise TypeError('Protocols cannot be instantiated')
+
+ class _ProtocolMeta(abc.ABCMeta):
+ # This metaclass is a bit unfortunate and exists only because of the lack
+ # of __instancehook__.
+ def __instancecheck__(cls, instance):
+ # We need this method for situations where attributes are
+ # assigned in __init__.
+ if ((not getattr(cls, '_is_protocol', False) or
+ _is_callable_members_only(cls)) and
+ issubclass(instance.__class__, cls)):
+ return True
+ if cls._is_protocol:
+ if all(hasattr(instance, attr) and
+ (not callable(getattr(cls, attr, None)) or
+ getattr(instance, attr) is not None)
+ for attr in _get_protocol_attrs(cls)):
+ return True
+ return super().__instancecheck__(instance)
+
+ class Protocol(metaclass=_ProtocolMeta):
+ # There is quite a lot of overlapping code with typing.Generic.
+ # Unfortunately it is hard to avoid this while these live in two different
+ # modules. The duplicated code will be removed when Protocol is moved to typing.
+ """Base class for protocol classes. Protocol classes are defined as::
+
+ class Proto(Protocol):
+ def meth(self) -> int:
+ ...
+
+ Such classes are primarily used with static type checkers that recognize
+ structural subtyping (static duck-typing), for example::
+
+ class C:
+ def meth(self) -> int:
+ return 0
+
+ def func(x: Proto) -> int:
+ return x.meth()
+
+ func(C()) # Passes static type check
+
+ See PEP 544 for details. Protocol classes decorated with
+ @typing_extensions.runtime act as simple-minded runtime protocol that checks
+ only the presence of given attributes, ignoring their type signatures.
+
+ Protocol classes can be generic, they are defined as::
+
+ class GenProto(Protocol[T]):
+ def meth(self) -> T:
+ ...
+ """
+ __slots__ = ()
+ _is_protocol = True
+
+ def __new__(cls, *args, **kwds):
+ if cls is Protocol:
+ raise TypeError("Type Protocol cannot be instantiated; "
+ "it can only be used as a base class")
+ return super().__new__(cls)
+
+ @_tp_cache
+ def __class_getitem__(cls, params):
+ if not isinstance(params, tuple):
+ params = (params,)
+ if not params and cls is not Tuple:
+ raise TypeError(
+ "Parameter list to {}[...] cannot be empty".format(cls.__qualname__))
+ msg = "Parameters to generic types must be types."
+ params = tuple(_type_check(p, msg) for p in params)
+ if cls is Protocol:
+ # Generic can only be subscripted with unique type variables.
+ if not all(isinstance(p, TypeVar) for p in params):
+ i = 0
+ while isinstance(params[i], TypeVar):
+ i += 1
+ raise TypeError(
+ "Parameters to Protocol[...] must all be type variables."
+ " Parameter {} is {}".format(i + 1, params[i]))
+ if len(set(params)) != len(params):
+ raise TypeError(
+ "Parameters to Protocol[...] must all be unique")
+ else:
+ # Subscripting a regular Generic subclass.
+ _check_generic(cls, params)
+ return _GenericAlias(cls, params)
+
+ def __init_subclass__(cls, *args, **kwargs):
+ tvars = []
+ if '__orig_bases__' in cls.__dict__:
+ error = Generic in cls.__orig_bases__
+ else:
+ error = Generic in cls.__bases__
+ if error:
+ raise TypeError("Cannot inherit from plain Generic")
+ if '__orig_bases__' in cls.__dict__:
+ tvars = _collect_type_vars(cls.__orig_bases__)
+ # Look for Generic[T1, ..., Tn] or Protocol[T1, ..., Tn].
+ # If found, tvars must be a subset of it.
+ # If not found, tvars is it.
+ # Also check for and reject plain Generic,
+ # and reject multiple Generic[...] and/or Protocol[...].
+ gvars = None
+ for base in cls.__orig_bases__:
+ if (isinstance(base, _GenericAlias) and
+ base.__origin__ in (Generic, Protocol)):
+ # for error messages
+ the_base = 'Generic' if base.__origin__ is Generic else 'Protocol'
+ if gvars is not None:
+ raise TypeError(
+ "Cannot inherit from Generic[...]"
+ " and/or Protocol[...] multiple types.")
+ gvars = base.__parameters__
+ if gvars is None:
+ gvars = tvars
+ else:
+ tvarset = set(tvars)
+ gvarset = set(gvars)
+ if not tvarset <= gvarset:
+ s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
+ s_args = ', '.join(str(g) for g in gvars)
+ raise TypeError("Some type variables ({}) are"
+ " not listed in {}[{}]".format(s_vars,
+ the_base, s_args))
+ tvars = gvars
+ cls.__parameters__ = tuple(tvars)
+
+ # Determine if this is a protocol or a concrete subclass.
+ if not cls.__dict__.get('_is_protocol', None):
+ cls._is_protocol = any(b is Protocol for b in cls.__bases__)
+
+ # Set (or override) the protocol subclass hook.
+ def _proto_hook(other):
+ if not cls.__dict__.get('_is_protocol', None):
+ return NotImplemented
+ if not getattr(cls, '_is_runtime_protocol', False):
+ if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']:
+ return NotImplemented
+ raise TypeError("Instance and class checks can only be used with"
+ " @runtime protocols")
+ if not _is_callable_members_only(cls):
+ if sys._getframe(2).f_globals['__name__'] in ['abc', 'functools']:
+ return NotImplemented
+ raise TypeError("Protocols with non-method members"
+ " don't support issubclass()")
+ if not isinstance(other, type):
+ # Same error as for issubclass(1, int)
+ raise TypeError('issubclass() arg 1 must be a class')
+ for attr in _get_protocol_attrs(cls):
+ for base in other.__mro__:
+ if attr in base.__dict__:
+ if base.__dict__[attr] is None:
+ return NotImplemented
+ break
+ annotations = getattr(base, '__annotations__', {})
+ if (isinstance(annotations, typing.Mapping) and
+ attr in annotations and
+ isinstance(other, _ProtocolMeta) and
+ other._is_protocol):
+ break
+ else:
+ return NotImplemented
+ return True
+ if '__subclasshook__' not in cls.__dict__:
+ cls.__subclasshook__ = _proto_hook
+
+ # We have nothing more to do for non-protocols.
+ if not cls._is_protocol:
+ return
+
+ # Check consistency of bases.
+ for base in cls.__bases__:
+ if not (base in (object, Generic) or
+ base.__module__ == 'collections.abc' and
+ base.__name__ in _PROTO_WHITELIST or
+ isinstance(base, _ProtocolMeta) and base._is_protocol):
+ raise TypeError('Protocols can only inherit from other'
+ ' protocols, got %r' % base)
+ cls.__init__ = _no_init
+
+
+if hasattr(typing, 'runtime_checkable'):
+ runtime_checkable = typing.runtime_checkable
+elif HAVE_PROTOCOLS:
+ def runtime_checkable(cls):
+ """Mark a protocol class as a runtime protocol, so that it
+ can be used with isinstance() and issubclass(). Raise TypeError
+ if applied to a non-protocol class.
+
+ This allows a simple-minded structural check very similar to the
+ one-offs in collections.abc such as Hashable.
+ """
+ if not isinstance(cls, _ProtocolMeta) or not cls._is_protocol:
+ raise TypeError('@runtime_checkable can be only applied to protocol classes,'
+ ' got %r' % cls)
+ cls._is_runtime_protocol = True
+ return cls
+
+
+if HAVE_PROTOCOLS:
+ # Exists for backwards compatibility.
+ runtime = runtime_checkable
+
+
+if hasattr(typing, 'SupportsIndex'):
+ SupportsIndex = typing.SupportsIndex
+elif HAVE_PROTOCOLS:
+ @runtime_checkable
+ class SupportsIndex(Protocol):
+ __slots__ = ()
+
+ @abc.abstractmethod
+ def __index__(self) -> int:
+ pass
+
+
+if sys.version_info >= (3, 9, 2):
+ # The standard library TypedDict in Python 3.8 does not store runtime information
+ # about which (if any) keys are optional. See https://bugs.python.org/issue38834
+ # The standard library TypedDict in Python 3.9.0/1 does not honour the "total"
+ # keyword with old-style TypedDict(). See https://bugs.python.org/issue42059
+ TypedDict = typing.TypedDict
+else:
+ def _check_fails(cls, other):
+ try:
+ if sys._getframe(1).f_globals['__name__'] not in ['abc',
+ 'functools',
+ 'typing']:
+ # Typed dicts are only for static structural subtyping.
+ raise TypeError('TypedDict does not support instance and class checks')
+ except (AttributeError, ValueError):
+ pass
+ return False
+
+ def _dict_new(*args, **kwargs):
+ if not args:
+ raise TypeError('TypedDict.__new__(): not enough arguments')
+ _, args = args[0], args[1:] # allow the "cls" keyword be passed
+ return dict(*args, **kwargs)
+
+ _dict_new.__text_signature__ = '($cls, _typename, _fields=None, /, **kwargs)'
+
+ def _typeddict_new(*args, total=True, **kwargs):
+ if not args:
+ raise TypeError('TypedDict.__new__(): not enough arguments')
+ _, args = args[0], args[1:] # allow the "cls" keyword be passed
+ if args:
+ typename, args = args[0], args[1:] # allow the "_typename" keyword be passed
+ elif '_typename' in kwargs:
+ typename = kwargs.pop('_typename')
+ import warnings
+ warnings.warn("Passing '_typename' as keyword argument is deprecated",
+ DeprecationWarning, stacklevel=2)
+ else:
+ raise TypeError("TypedDict.__new__() missing 1 required positional "
+ "argument: '_typename'")
+ if args:
+ try:
+ fields, = args # allow the "_fields" keyword be passed
+ except ValueError:
+ raise TypeError('TypedDict.__new__() takes from 2 to 3 '
+ 'positional arguments but {} '
+ 'were given'.format(len(args) + 2))
+ elif '_fields' in kwargs and len(kwargs) == 1:
+ fields = kwargs.pop('_fields')
+ import warnings
+ warnings.warn("Passing '_fields' as keyword argument is deprecated",
+ DeprecationWarning, stacklevel=2)
+ else:
+ fields = None
+
+ if fields is None:
+ fields = kwargs
+ elif kwargs:
+ raise TypeError("TypedDict takes either a dict or keyword arguments,"
+ " but not both")
+
+ ns = {'__annotations__': dict(fields)}
+ try:
+ # Setting correct module is necessary to make typed dict classes pickleable.
+ ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
+ except (AttributeError, ValueError):
+ pass
+
+ return _TypedDictMeta(typename, (), ns, total=total)
+
+ _typeddict_new.__text_signature__ = ('($cls, _typename, _fields=None,'
+ ' /, *, total=True, **kwargs)')
+
+ class _TypedDictMeta(type):
+ def __init__(cls, name, bases, ns, total=True):
+ # In Python 3.4 and 3.5 the __init__ method also needs to support the keyword arguments.
+ # See https://www.python.org/dev/peps/pep-0487/#implementation-details
+ super(_TypedDictMeta, cls).__init__(name, bases, ns)
+
+ def __new__(cls, name, bases, ns, total=True):
+ # Create new typed dict class object.
+ # This method is called directly when TypedDict is subclassed,
+ # or via _typeddict_new when TypedDict is instantiated. This way
+ # TypedDict supports all three syntaxes described in its docstring.
+ # Subclasses and instances of TypedDict return actual dictionaries
+ # via _dict_new.
+ ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new
+ tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)
+
+ annotations = {}
+ own_annotations = ns.get('__annotations__', {})
+ own_annotation_keys = set(own_annotations.keys())
+ msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
+ own_annotations = {
+ n: typing._type_check(tp, msg) for n, tp in own_annotations.items()
+ }
+ required_keys = set()
+ optional_keys = set()
+
+ for base in bases:
+ annotations.update(base.__dict__.get('__annotations__', {}))
+ required_keys.update(base.__dict__.get('__required_keys__', ()))
+ optional_keys.update(base.__dict__.get('__optional_keys__', ()))
+
+ annotations.update(own_annotations)
+ if total:
+ required_keys.update(own_annotation_keys)
+ else:
+ optional_keys.update(own_annotation_keys)
+
+ tp_dict.__annotations__ = annotations
+ tp_dict.__required_keys__ = frozenset(required_keys)
+ tp_dict.__optional_keys__ = frozenset(optional_keys)
+ if not hasattr(tp_dict, '__total__'):
+ tp_dict.__total__ = total
+ return tp_dict
+
+ __instancecheck__ = __subclasscheck__ = _check_fails
+
+ TypedDict = _TypedDictMeta('TypedDict', (dict,), {})
+ TypedDict.__module__ = __name__
+ TypedDict.__doc__ = \
+ """A simple typed name space. At runtime it is equivalent to a plain dict.
+
+ TypedDict creates a dictionary type that expects all of its
+ instances to have a certain set of keys, with each key
+ associated with a value of a consistent type. This expectation
+ is not checked at runtime but is only enforced by type checkers.
+ Usage::
+
+ class Point2D(TypedDict):
+ x: int
+ y: int
+ label: str
+
+ a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
+ b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
+
+ assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
+
+ The type info can be accessed via the Point2D.__annotations__ dict, and
+ the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
+ TypedDict supports two additional equivalent forms::
+
+ Point2D = TypedDict('Point2D', x=int, y=int, label=str)
+ Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
+
+ The class syntax is only supported in Python 3.6+, while two other
+ syntax forms work for Python 2.7 and 3.2+
+ """
+
+
+# Python 3.9+ has PEP 593 (Annotated and modified get_type_hints)
+if hasattr(typing, 'Annotated'):
+ Annotated = typing.Annotated
+ get_type_hints = typing.get_type_hints
+ # Not exported and not a public API, but needed for get_origin() and get_args()
+ # to work.
+ _AnnotatedAlias = typing._AnnotatedAlias
+elif PEP_560:
+ class _AnnotatedAlias(typing._GenericAlias, _root=True):
+ """Runtime representation of an annotated type.
+
+ At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
+ with extra annotations. The alias behaves like a normal typing alias,
+ instantiating is the same as instantiating the underlying type, binding
+ it to types is also the same.
+ """
+ def __init__(self, origin, metadata):
+ if isinstance(origin, _AnnotatedAlias):
+ metadata = origin.__metadata__ + metadata
+ origin = origin.__origin__
+ super().__init__(origin, origin)
+ self.__metadata__ = metadata
+
+ def copy_with(self, params):
+ assert len(params) == 1
+ new_type = params[0]
+ return _AnnotatedAlias(new_type, self.__metadata__)
+
+ def __repr__(self):
+ return "typing_extensions.Annotated[{}, {}]".format(
+ typing._type_repr(self.__origin__),
+ ", ".join(repr(a) for a in self.__metadata__)
+ )
+
+ def __reduce__(self):
+ return operator.getitem, (
+ Annotated, (self.__origin__,) + self.__metadata__
+ )
+
+ def __eq__(self, other):
+ if not isinstance(other, _AnnotatedAlias):
+ return NotImplemented
+ if self.__origin__ != other.__origin__:
+ return False
+ return self.__metadata__ == other.__metadata__
+
+ def __hash__(self):
+ return hash((self.__origin__, self.__metadata__))
+
+ class Annotated:
+ """Add context specific metadata to a type.
+
+ Example: Annotated[int, runtime_check.Unsigned] indicates to the
+ hypothetical runtime_check module that this type is an unsigned int.
+ Every other consumer of this type can ignore this metadata and treat
+ this type as int.
+
+ The first argument to Annotated must be a valid type (and will be in
+ the __origin__ field), the remaining arguments are kept as a tuple in
+ the __extra__ field.
+
+ Details:
+
+ - It's an error to call `Annotated` with less than two arguments.
+ - Nested Annotated are flattened::
+
+ Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
+
+ - Instantiating an annotated type is equivalent to instantiating the
+ underlying type::
+
+ Annotated[C, Ann1](5) == C(5)
+
+ - Annotated can be used as a generic type alias::
+
+ Optimized = Annotated[T, runtime.Optimize()]
+ Optimized[int] == Annotated[int, runtime.Optimize()]
+
+ OptimizedList = Annotated[List[T], runtime.Optimize()]
+ OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
+ """
+
+ __slots__ = ()
+
+ def __new__(cls, *args, **kwargs):
+ raise TypeError("Type Annotated cannot be instantiated.")
+
+ @_tp_cache
+ def __class_getitem__(cls, params):
+ if not isinstance(params, tuple) or len(params) < 2:
+ raise TypeError("Annotated[...] should be used "
+ "with at least two arguments (a type and an "
+ "annotation).")
+ msg = "Annotated[t, ...]: t must be a type."
+ origin = typing._type_check(params[0], msg)
+ metadata = tuple(params[1:])
+ return _AnnotatedAlias(origin, metadata)
+
+ def __init_subclass__(cls, *args, **kwargs):
+ raise TypeError(
+ "Cannot subclass {}.Annotated".format(cls.__module__)
+ )
+
+ def _strip_annotations(t):
+ """Strips the annotations from a given type.
+ """
+ if isinstance(t, _AnnotatedAlias):
+ return _strip_annotations(t.__origin__)
+ if isinstance(t, typing._GenericAlias):
+ stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
+ if stripped_args == t.__args__:
+ return t
+ res = t.copy_with(stripped_args)
+ res._special = t._special
+ return res
+ return t
+
+ def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
+ """Return type hints for an object.
+
+ This is often the same as obj.__annotations__, but it handles
+ forward references encoded as string literals, adds Optional[t] if a
+ default value equal to None is set and recursively replaces all
+ 'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
+
+ The argument may be a module, class, method, or function. The annotations
+ are returned as a dictionary. For classes, annotations include also
+ inherited members.
+
+ TypeError is raised if the argument is not of a type that can contain
+ annotations, and an empty dictionary is returned if no annotations are
+ present.
+
+ BEWARE -- the behavior of globalns and localns is counterintuitive
+ (unless you are familiar with how eval() and exec() work). The
+ search order is locals first, then globals.
+
+ - If no dict arguments are passed, an attempt is made to use the
+ globals from obj (or the respective module's globals for classes),
+ and these are also used as the locals. If the object does not appear
+ to have globals, an empty dictionary is used.
+
+ - If one dict argument is passed, it is used for both globals and
+ locals.
+
+ - If two dict arguments are passed, they specify globals and
+ locals, respectively.
+ """
+ hint = typing.get_type_hints(obj, globalns=globalns, localns=localns)
+ if include_extras:
+ return hint
+ return {k: _strip_annotations(t) for k, t in hint.items()}
+
+elif HAVE_ANNOTATED:
+
+ def _is_dunder(name):
+ """Returns True if name is a __dunder_variable_name__."""
+ return len(name) > 4 and name.startswith('__') and name.endswith('__')
+
+ # Prior to Python 3.7 types did not have `copy_with`. A lot of the equality
+ # checks, argument expansion etc. are done on the _subs_tre. As a result we
+ # can't provide a get_type_hints function that strips out annotations.
+
+ class AnnotatedMeta(typing.GenericMeta):
+ """Metaclass for Annotated"""
+
+ def __new__(cls, name, bases, namespace, **kwargs):
+ if any(b is not object for b in bases):
+ raise TypeError("Cannot subclass " + str(Annotated))
+ return super().__new__(cls, name, bases, namespace, **kwargs)
+
+ @property
+ def __metadata__(self):
+ return self._subs_tree()[2]
+
+ def _tree_repr(self, tree):
+ cls, origin, metadata = tree
+ if not isinstance(origin, tuple):
+ tp_repr = typing._type_repr(origin)
+ else:
+ tp_repr = origin[0]._tree_repr(origin)
+ metadata_reprs = ", ".join(repr(arg) for arg in metadata)
+ return '%s[%s, %s]' % (cls, tp_repr, metadata_reprs)
+
+ def _subs_tree(self, tvars=None, args=None): # noqa
+ if self is Annotated:
+ return Annotated
+ res = super()._subs_tree(tvars=tvars, args=args)
+ # Flatten nested Annotated
+ if isinstance(res[1], tuple) and res[1][0] is Annotated:
+ sub_tp = res[1][1]
+ sub_annot = res[1][2]
+ return (Annotated, sub_tp, sub_annot + res[2])
+ return res
+
+ def _get_cons(self):
+ """Return the class used to create instance of this type."""
+ if self.__origin__ is None:
+ raise TypeError("Cannot get the underlying type of a "
+ "non-specialized Annotated type.")
+ tree = self._subs_tree()
+ while isinstance(tree, tuple) and tree[0] is Annotated:
+ tree = tree[1]
+ if isinstance(tree, tuple):
+ return tree[0]
+ else:
+ return tree
+
+ @_tp_cache
+ def __getitem__(self, params):
+ if not isinstance(params, tuple):
+ params = (params,)
+ if self.__origin__ is not None: # specializing an instantiated type
+ return super().__getitem__(params)
+ elif not isinstance(params, tuple) or len(params) < 2:
+ raise TypeError("Annotated[...] should be instantiated "
+ "with at least two arguments (a type and an "
+ "annotation).")
+ else:
+ msg = "Annotated[t, ...]: t must be a type."
+ tp = typing._type_check(params[0], msg)
+ metadata = tuple(params[1:])
+ return self.__class__(
+ self.__name__,
+ self.__bases__,
+ _no_slots_copy(self.__dict__),
+ tvars=_type_vars((tp,)),
+ # Metadata is a tuple so it won't be touched by _replace_args et al.
+ args=(tp, metadata),
+ origin=self,
+ )
+
+ def __call__(self, *args, **kwargs):
+ cons = self._get_cons()
+ result = cons(*args, **kwargs)
+ try:
+ result.__orig_class__ = self
+ except AttributeError:
+ pass
+ return result
+
+ def __getattr__(self, attr):
+ # For simplicity we just don't relay all dunder names
+ if self.__origin__ is not None and not _is_dunder(attr):
+ return getattr(self._get_cons(), attr)
+ raise AttributeError(attr)
+
+ def __setattr__(self, attr, value):
+ if _is_dunder(attr) or attr.startswith('_abc_'):
+ super().__setattr__(attr, value)
+ elif self.__origin__ is None:
+ raise AttributeError(attr)
+ else:
+ setattr(self._get_cons(), attr, value)
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Annotated cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("Annotated cannot be used with issubclass().")
+
+ class Annotated(metaclass=AnnotatedMeta):
+ """Add context specific metadata to a type.
+
+ Example: Annotated[int, runtime_check.Unsigned] indicates to the
+ hypothetical runtime_check module that this type is an unsigned int.
+ Every other consumer of this type can ignore this metadata and treat
+ this type as int.
+
+ The first argument to Annotated must be a valid type, the remaining
+ arguments are kept as a tuple in the __metadata__ field.
+
+ Details:
+
+ - It's an error to call `Annotated` with less than two arguments.
+ - Nested Annotated are flattened::
+
+ Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
+
+ - Instantiating an annotated type is equivalent to instantiating the
+ underlying type::
+
+ Annotated[C, Ann1](5) == C(5)
+
+ - Annotated can be used as a generic type alias::
+
+ Optimized = Annotated[T, runtime.Optimize()]
+ Optimized[int] == Annotated[int, runtime.Optimize()]
+
+ OptimizedList = Annotated[List[T], runtime.Optimize()]
+ OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
+ """
+
+# Python 3.8 has get_origin() and get_args() but those implementations aren't
+# Annotated-aware, so we can't use those, only Python 3.9 versions will do.
+# Similarly, Python 3.9's implementation doesn't support ParamSpecArgs and
+# ParamSpecKwargs.
+if sys.version_info[:2] >= (3, 10):
+ get_origin = typing.get_origin
+ get_args = typing.get_args
+elif PEP_560:
+ from typing import _GenericAlias
+ try:
+ # 3.9+
+ from typing import _BaseGenericAlias
+ except ImportError:
+ _BaseGenericAlias = _GenericAlias
+ try:
+ # 3.9+
+ from typing import GenericAlias
+ except ImportError:
+ GenericAlias = _GenericAlias
+
+ def get_origin(tp):
+ """Get the unsubscripted version of a type.
+
+ This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
+ and Annotated. Return None for unsupported types. Examples::
+
+ get_origin(Literal[42]) is Literal
+ get_origin(int) is None
+ get_origin(ClassVar[int]) is ClassVar
+ get_origin(Generic) is Generic
+ get_origin(Generic[T]) is Generic
+ get_origin(Union[T, int]) is Union
+ get_origin(List[Tuple[T, T]][int]) == list
+ get_origin(P.args) is P
+ """
+ if isinstance(tp, _AnnotatedAlias):
+ return Annotated
+ if isinstance(tp, (_GenericAlias, GenericAlias, _BaseGenericAlias,
+ ParamSpecArgs, ParamSpecKwargs)):
+ return tp.__origin__
+ if tp is Generic:
+ return Generic
+ return None
+
+ def get_args(tp):
+ """Get type arguments with all substitutions performed.
+
+ For unions, basic simplifications used by Union constructor are performed.
+ Examples::
+ get_args(Dict[str, int]) == (str, int)
+ get_args(int) == ()
+ get_args(Union[int, Union[T, int], str][int]) == (int, str)
+ get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
+ get_args(Callable[[], T][int]) == ([], int)
+ """
+ if isinstance(tp, _AnnotatedAlias):
+ return (tp.__origin__,) + tp.__metadata__
+ if isinstance(tp, (_GenericAlias, GenericAlias)):
+ if getattr(tp, "_special", False):
+ return ()
+ res = tp.__args__
+ if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis:
+ res = (list(res[:-1]), res[-1])
+ return res
+ return ()
+
+
+if hasattr(typing, 'TypeAlias'):
+ TypeAlias = typing.TypeAlias
+elif sys.version_info[:2] >= (3, 9):
+ class _TypeAliasForm(typing._SpecialForm, _root=True):
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ @_TypeAliasForm
+ def TypeAlias(self, parameters):
+ """Special marker indicating that an assignment should
+ be recognized as a proper type alias definition by type
+ checkers.
+
+ For example::
+
+ Predicate: TypeAlias = Callable[..., bool]
+
+ It's invalid when used anywhere except as in the example above.
+ """
+ raise TypeError("{} is not subscriptable".format(self))
+
+elif sys.version_info[:2] >= (3, 7):
+ class _TypeAliasForm(typing._SpecialForm, _root=True):
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ TypeAlias = _TypeAliasForm('TypeAlias',
+ doc="""Special marker indicating that an assignment should
+ be recognized as a proper type alias definition by type
+ checkers.
+
+ For example::
+
+ Predicate: TypeAlias = Callable[..., bool]
+
+ It's invalid when used anywhere except as in the example
+ above.""")
+
+elif hasattr(typing, '_FinalTypingBase'):
+ class _TypeAliasMeta(typing.TypingMeta):
+ """Metaclass for TypeAlias"""
+
+ def __repr__(self):
+ return 'typing_extensions.TypeAlias'
+
+ class _TypeAliasBase(typing._FinalTypingBase, metaclass=_TypeAliasMeta, _root=True):
+ """Special marker indicating that an assignment should
+ be recognized as a proper type alias definition by type
+ checkers.
+
+ For example::
+
+ Predicate: TypeAlias = Callable[..., bool]
+
+ It's invalid when used anywhere except as in the example above.
+ """
+ __slots__ = ()
+
+ def __instancecheck__(self, obj):
+ raise TypeError("TypeAlias cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("TypeAlias cannot be used with issubclass().")
+
+ def __repr__(self):
+ return 'typing_extensions.TypeAlias'
+
+ TypeAlias = _TypeAliasBase(_root=True)
+else:
+ class _TypeAliasMeta(typing.TypingMeta):
+ """Metaclass for TypeAlias"""
+
+ def __instancecheck__(self, obj):
+ raise TypeError("TypeAlias cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("TypeAlias cannot be used with issubclass().")
+
+ def __call__(self, *args, **kwargs):
+ raise TypeError("Cannot instantiate TypeAlias")
+
+ class TypeAlias(metaclass=_TypeAliasMeta, _root=True):
+ """Special marker indicating that an assignment should
+ be recognized as a proper type alias definition by type
+ checkers.
+
+ For example::
+
+ Predicate: TypeAlias = Callable[..., bool]
+
+ It's invalid when used anywhere except as in the example above.
+ """
+ __slots__ = ()
+
+
+# Python 3.10+ has PEP 612
+if hasattr(typing, 'ParamSpecArgs'):
+ ParamSpecArgs = typing.ParamSpecArgs
+ ParamSpecKwargs = typing.ParamSpecKwargs
+else:
+ class _Immutable:
+ """Mixin to indicate that object should not be copied."""
+ __slots__ = ()
+
+ def __copy__(self):
+ return self
+
+ def __deepcopy__(self, memo):
+ return self
+
+ class ParamSpecArgs(_Immutable):
+ """The args for a ParamSpec object.
+
+ Given a ParamSpec object P, P.args is an instance of ParamSpecArgs.
+
+ ParamSpecArgs objects have a reference back to their ParamSpec:
+
+ P.args.__origin__ is P
+
+ This type is meant for runtime introspection and has no special meaning to
+ static type checkers.
+ """
+ def __init__(self, origin):
+ self.__origin__ = origin
+
+ def __repr__(self):
+ return "{}.args".format(self.__origin__.__name__)
+
+ class ParamSpecKwargs(_Immutable):
+ """The kwargs for a ParamSpec object.
+
+ Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs.
+
+ ParamSpecKwargs objects have a reference back to their ParamSpec:
+
+ P.kwargs.__origin__ is P
+
+ This type is meant for runtime introspection and has no special meaning to
+ static type checkers.
+ """
+ def __init__(self, origin):
+ self.__origin__ = origin
+
+ def __repr__(self):
+ return "{}.kwargs".format(self.__origin__.__name__)
+
+if hasattr(typing, 'ParamSpec'):
+ ParamSpec = typing.ParamSpec
+else:
+
+ # Inherits from list as a workaround for Callable checks in Python < 3.9.2.
+ class ParamSpec(list):
+ """Parameter specification variable.
+
+ Usage::
+
+ P = ParamSpec('P')
+
+ Parameter specification variables exist primarily for the benefit of static
+ type checkers. They are used to forward the parameter types of one
+ callable to another callable, a pattern commonly found in higher order
+ functions and decorators. They are only valid when used in ``Concatenate``,
+ or s the first argument to ``Callable``. In Python 3.10 and higher,
+ they are also supported in user-defined Generics at runtime.
+ See class Generic for more information on generic types. An
+ example for annotating a decorator::
+
+ T = TypeVar('T')
+ P = ParamSpec('P')
+
+ def add_logging(f: Callable[P, T]) -> Callable[P, T]:
+ '''A type-safe decorator to add logging to a function.'''
+ def inner(*args: P.args, **kwargs: P.kwargs) -> T:
+ logging.info(f'{f.__name__} was called')
+ return f(*args, **kwargs)
+ return inner
+
+ @add_logging
+ def add_two(x: float, y: float) -> float:
+ '''Add two numbers together.'''
+ return x + y
+
+ Parameter specification variables defined with covariant=True or
+ contravariant=True can be used to declare covariant or contravariant
+ generic types. These keyword arguments are valid, but their actual semantics
+ are yet to be decided. See PEP 612 for details.
+
+ Parameter specification variables can be introspected. e.g.:
+
+ P.__name__ == 'T'
+ P.__bound__ == None
+ P.__covariant__ == False
+ P.__contravariant__ == False
+
+ Note that only parameter specification variables defined in global scope can
+ be pickled.
+ """
+
+ @property
+ def args(self):
+ return ParamSpecArgs(self)
+
+ @property
+ def kwargs(self):
+ return ParamSpecKwargs(self)
+
+ def __init__(self, name, *, bound=None, covariant=False, contravariant=False):
+ super().__init__([self])
+ self.__name__ = name
+ self.__covariant__ = bool(covariant)
+ self.__contravariant__ = bool(contravariant)
+ if bound:
+ self.__bound__ = typing._type_check(bound, 'Bound must be a type.')
+ else:
+ self.__bound__ = None
+
+ # for pickling:
+ try:
+ def_mod = sys._getframe(1).f_globals.get('__name__', '__main__')
+ except (AttributeError, ValueError):
+ def_mod = None
+ if def_mod != 'typing_extensions':
+ self.__module__ = def_mod
+
+ def __repr__(self):
+ if self.__covariant__:
+ prefix = '+'
+ elif self.__contravariant__:
+ prefix = '-'
+ else:
+ prefix = '~'
+ return prefix + self.__name__
+
+ def __hash__(self):
+ return object.__hash__(self)
+
+ def __eq__(self, other):
+ return self is other
+
+ def __reduce__(self):
+ return self.__name__
+
+ # Hack to get typing._type_check to pass.
+ def __call__(self, *args, **kwargs):
+ pass
+
+ # Note: Can't fake ParamSpec as a TypeVar to get it to work
+ # with Generics. ParamSpec isn't an instance of TypeVar in 3.10.
+ # So encouraging code like isinstance(ParamSpec('P'), TypeVar))
+ # will lead to breakage in 3.10.
+ # This also means no accurate __parameters__ for GenericAliases.
+
+# Inherits from list as a workaround for Callable checks in Python < 3.9.2.
+class _ConcatenateGenericAlias(list):
+ def __init__(self, origin, args):
+ super().__init__(args)
+ self.__origin__ = origin
+ self.__args__ = args
+
+ def __repr__(self):
+ _type_repr = typing._type_repr
+ return '{origin}[{args}]' \
+ .format(origin=_type_repr(self.__origin__),
+ args=', '.join(_type_repr(arg) for arg in self.__args__))
+
+ def __hash__(self):
+ return hash((self.__origin__, self.__args__))
+
+@_tp_cache
+def _concatenate_getitem(self, parameters):
+ if parameters == ():
+ raise TypeError("Cannot take a Concatenate of no types.")
+ if not isinstance(parameters, tuple):
+ parameters = (parameters,)
+ if not isinstance(parameters[-1], ParamSpec):
+ raise TypeError("The last parameter to Concatenate should be a "
+ "ParamSpec variable.")
+ msg = "Concatenate[arg, ...]: each arg must be a type."
+ parameters = tuple(typing._type_check(p, msg) for p in parameters)
+ return _ConcatenateGenericAlias(self, parameters)
+
+
+if hasattr(typing, 'Concatenate'):
+ Concatenate = typing.Concatenate
+ _ConcatenateGenericAlias = typing._ConcatenateGenericAlias # noqa
+elif sys.version_info[:2] >= (3, 9):
+ @_TypeAliasForm
+ def Concatenate(self, parameters):
+ """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
+ higher order function which adds, removes or transforms parameters of a
+ callable.
+
+ For example::
+
+ Callable[Concatenate[int, P], int]
+
+ See PEP 612 for detailed information.
+ """
+ return _concatenate_getitem(self, parameters)
+
+elif sys.version_info[:2] >= (3, 7):
+ class _ConcatenateForm(typing._SpecialForm, _root=True):
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ def __getitem__(self, parameters):
+ return _concatenate_getitem(self, parameters)
+
+ Concatenate = _ConcatenateForm('Concatenate',
+ doc="""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
+ higher order function which adds, removes or transforms parameters of a
+ callable.
+
+ For example::
+
+ Callable[Concatenate[int, P], int]
+
+ See PEP 612 for detailed information.
+ """)
+
+elif hasattr(typing, '_FinalTypingBase'):
+ class _ConcatenateAliasMeta(typing.TypingMeta):
+ """Metaclass for Concatenate."""
+
+ def __repr__(self):
+ return 'typing_extensions.Concatenate'
+
+ class _ConcatenateAliasBase(typing._FinalTypingBase,
+ metaclass=_ConcatenateAliasMeta,
+ _root=True):
+ """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
+ higher order function which adds, removes or transforms parameters of a
+ callable.
+
+ For example::
+
+ Callable[Concatenate[int, P], int]
+
+ See PEP 612 for detailed information.
+ """
+ __slots__ = ()
+
+ def __instancecheck__(self, obj):
+ raise TypeError("Concatenate cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("Concatenate cannot be used with issubclass().")
+
+ def __repr__(self):
+ return 'typing_extensions.Concatenate'
+
+ def __getitem__(self, parameters):
+ return _concatenate_getitem(self, parameters)
+
+ Concatenate = _ConcatenateAliasBase(_root=True)
+# For 3.5.0 - 3.5.2
+else:
+ class _ConcatenateAliasMeta(typing.TypingMeta):
+ """Metaclass for Concatenate."""
+
+ def __instancecheck__(self, obj):
+ raise TypeError("TypeAlias cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("TypeAlias cannot be used with issubclass().")
+
+ def __call__(self, *args, **kwargs):
+ raise TypeError("Cannot instantiate TypeAlias")
+
+ def __getitem__(self, parameters):
+ return _concatenate_getitem(self, parameters)
+
+ class Concatenate(metaclass=_ConcatenateAliasMeta, _root=True):
+ """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
+ higher order function which adds, removes or transforms parameters of a
+ callable.
+
+ For example::
+
+ Callable[Concatenate[int, P], int]
+
+ See PEP 612 for detailed information.
+ """
+ __slots__ = ()
+
+if hasattr(typing, 'TypeGuard'):
+ TypeGuard = typing.TypeGuard
+elif sys.version_info[:2] >= (3, 9):
+ class _TypeGuardForm(typing._SpecialForm, _root=True):
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ @_TypeGuardForm
+ def TypeGuard(self, parameters):
+ """Special typing form used to annotate the return type of a user-defined
+ type guard function. ``TypeGuard`` only accepts a single type argument.
+ At runtime, functions marked this way should return a boolean.
+
+ ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
+ type checkers to determine a more precise type of an expression within a
+ program's code flow. Usually type narrowing is done by analyzing
+ conditional code flow and applying the narrowing to a block of code. The
+ conditional expression here is sometimes referred to as a "type guard".
+
+ Sometimes it would be convenient to use a user-defined boolean function
+ as a type guard. Such a function should use ``TypeGuard[...]`` as its
+ return type to alert static type checkers to this intention.
+
+ Using ``-> TypeGuard`` tells the static type checker that for a given
+ function:
+
+ 1. The return value is a boolean.
+ 2. If the return value is ``True``, the type of its argument
+ is the type inside ``TypeGuard``.
+
+ For example::
+
+ def is_str(val: Union[str, float]):
+ # "isinstance" type guard
+ if isinstance(val, str):
+ # Type of ``val`` is narrowed to ``str``
+ ...
+ else:
+ # Else, type of ``val`` is narrowed to ``float``.
+ ...
+
+ Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
+ form of ``TypeA`` (it can even be a wider form) and this may lead to
+ type-unsafe results. The main reason is to allow for things like
+ narrowing ``List[object]`` to ``List[str]`` even though the latter is not
+ a subtype of the former, since ``List`` is invariant. The responsibility of
+ writing type-safe type guards is left to the user.
+
+ ``TypeGuard`` also works with type variables. For more information, see
+ PEP 647 (User-Defined Type Guards).
+ """
+ item = typing._type_check(parameters, '{} accepts only single type.'.format(self))
+ return _GenericAlias(self, (item,))
+
+elif sys.version_info[:2] >= (3, 7):
+ class _TypeGuardForm(typing._SpecialForm, _root=True):
+
+ def __repr__(self):
+ return 'typing_extensions.' + self._name
+
+ def __getitem__(self, parameters):
+ item = typing._type_check(parameters,
+ '{} accepts only a single type'.format(self._name))
+ return _GenericAlias(self, (item,))
+
+ TypeGuard = _TypeGuardForm(
+ 'TypeGuard',
+ doc="""Special typing form used to annotate the return type of a user-defined
+ type guard function. ``TypeGuard`` only accepts a single type argument.
+ At runtime, functions marked this way should return a boolean.
+
+ ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
+ type checkers to determine a more precise type of an expression within a
+ program's code flow. Usually type narrowing is done by analyzing
+ conditional code flow and applying the narrowing to a block of code. The
+ conditional expression here is sometimes referred to as a "type guard".
+
+ Sometimes it would be convenient to use a user-defined boolean function
+ as a type guard. Such a function should use ``TypeGuard[...]`` as its
+ return type to alert static type checkers to this intention.
+
+ Using ``-> TypeGuard`` tells the static type checker that for a given
+ function:
+
+ 1. The return value is a boolean.
+ 2. If the return value is ``True``, the type of its argument
+ is the type inside ``TypeGuard``.
+
+ For example::
+
+ def is_str(val: Union[str, float]):
+ # "isinstance" type guard
+ if isinstance(val, str):
+ # Type of ``val`` is narrowed to ``str``
+ ...
+ else:
+ # Else, type of ``val`` is narrowed to ``float``.
+ ...
+
+ Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
+ form of ``TypeA`` (it can even be a wider form) and this may lead to
+ type-unsafe results. The main reason is to allow for things like
+ narrowing ``List[object]`` to ``List[str]`` even though the latter is not
+ a subtype of the former, since ``List`` is invariant. The responsibility of
+ writing type-safe type guards is left to the user.
+
+ ``TypeGuard`` also works with type variables. For more information, see
+ PEP 647 (User-Defined Type Guards).
+ """)
+elif hasattr(typing, '_FinalTypingBase'):
+ class _TypeGuard(typing._FinalTypingBase, _root=True):
+ """Special typing form used to annotate the return type of a user-defined
+ type guard function. ``TypeGuard`` only accepts a single type argument.
+ At runtime, functions marked this way should return a boolean.
+
+ ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
+ type checkers to determine a more precise type of an expression within a
+ program's code flow. Usually type narrowing is done by analyzing
+ conditional code flow and applying the narrowing to a block of code. The
+ conditional expression here is sometimes referred to as a "type guard".
+
+ Sometimes it would be convenient to use a user-defined boolean function
+ as a type guard. Such a function should use ``TypeGuard[...]`` as its
+ return type to alert static type checkers to this intention.
+
+ Using ``-> TypeGuard`` tells the static type checker that for a given
+ function:
+
+ 1. The return value is a boolean.
+ 2. If the return value is ``True``, the type of its argument
+ is the type inside ``TypeGuard``.
+
+ For example::
+
+ def is_str(val: Union[str, float]):
+ # "isinstance" type guard
+ if isinstance(val, str):
+ # Type of ``val`` is narrowed to ``str``
+ ...
+ else:
+ # Else, type of ``val`` is narrowed to ``float``.
+ ...
+
+ Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
+ form of ``TypeA`` (it can even be a wider form) and this may lead to
+ type-unsafe results. The main reason is to allow for things like
+ narrowing ``List[object]`` to ``List[str]`` even though the latter is not
+ a subtype of the former, since ``List`` is invariant. The responsibility of
+ writing type-safe type guards is left to the user.
+
+ ``TypeGuard`` also works with type variables. For more information, see
+ PEP 647 (User-Defined Type Guards).
+ """
+
+ __slots__ = ('__type__',)
+
+ def __init__(self, tp=None, **kwds):
+ self.__type__ = tp
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is None:
+ return cls(typing._type_check(item,
+ '{} accepts only a single type.'.format(cls.__name__[1:])),
+ _root=True)
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(new_tp, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not isinstance(other, _TypeGuard):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ TypeGuard = _TypeGuard(_root=True)
+else:
+ class _TypeGuardMeta(typing.TypingMeta):
+ """Metaclass for TypeGuard"""
+
+ def __new__(cls, name, bases, namespace, tp=None, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ if tp is not None:
+ self.__type__ = tp
+ return self
+
+ def __instancecheck__(self, obj):
+ raise TypeError("TypeGuard cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ raise TypeError("TypeGuard cannot be used with issubclass().")
+
+ def __getitem__(self, item):
+ cls = type(self)
+ if self.__type__ is not None:
+ raise TypeError('{} cannot be further subscripted'
+ .format(cls.__name__[1:]))
+
+ param = typing._type_check(
+ item,
+ '{} accepts only single type.'.format(cls.__name__[1:]))
+ return cls(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=param, _root=True)
+
+ def _eval_type(self, globalns, localns):
+ new_tp = typing._eval_type(self.__type__, globalns, localns)
+ if new_tp == self.__type__:
+ return self
+ return type(self)(self.__name__, self.__bases__,
+ dict(self.__dict__), tp=self.__type__,
+ _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__type__ is not None:
+ r += '[{}]'.format(typing._type_repr(self.__type__))
+ return r
+
+ def __hash__(self):
+ return hash((type(self).__name__, self.__type__))
+
+ def __eq__(self, other):
+ if not hasattr(other, "__type__"):
+ return NotImplemented
+ if self.__type__ is not None:
+ return self.__type__ == other.__type__
+ return self is other
+
+ class TypeGuard(typing.Final, metaclass=_TypeGuardMeta, _root=True):
+ """Special typing form used to annotate the return type of a user-defined
+ type guard function. ``TypeGuard`` only accepts a single type argument.
+ At runtime, functions marked this way should return a boolean.
+
+ ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
+ type checkers to determine a more precise type of an expression within a
+ program's code flow. Usually type narrowing is done by analyzing
+ conditional code flow and applying the narrowing to a block of code. The
+ conditional expression here is sometimes referred to as a "type guard".
+
+ Sometimes it would be convenient to use a user-defined boolean function
+ as a type guard. Such a function should use ``TypeGuard[...]`` as its
+ return type to alert static type checkers to this intention.
+
+ Using ``-> TypeGuard`` tells the static type checker that for a given
+ function:
+
+ 1. The return value is a boolean.
+ 2. If the return value is ``True``, the type of its argument
+ is the type inside ``TypeGuard``.
+
+ For example::
+
+ def is_str(val: Union[str, float]):
+ # "isinstance" type guard
+ if isinstance(val, str):
+ # Type of ``val`` is narrowed to ``str``
+ ...
+ else:
+ # Else, type of ``val`` is narrowed to ``float``.
+ ...
+
+ Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
+ form of ``TypeA`` (it can even be a wider form) and this may lead to
+ type-unsafe results. The main reason is to allow for things like
+ narrowing ``List[object]`` to ``List[str]`` even though the latter is not
+ a subtype of the former, since ``List`` is invariant. The responsibility of
+ writing type-safe type guards is left to the user.
+
+ ``TypeGuard`` also works with type variables. For more information, see
+ PEP 647 (User-Defined Type Guards).
+ """
+ __type__ = None