summaryrefslogtreecommitdiffstats
path: root/third_party/rust/crossbeam-queue/src/seg_queue.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/crossbeam-queue/src/seg_queue.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/crossbeam-queue/src/seg_queue.rs')
-rw-r--r--third_party/rust/crossbeam-queue/src/seg_queue.rs547
1 files changed, 547 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-queue/src/seg_queue.rs b/third_party/rust/crossbeam-queue/src/seg_queue.rs
new file mode 100644
index 0000000000..2761dc07cd
--- /dev/null
+++ b/third_party/rust/crossbeam-queue/src/seg_queue.rs
@@ -0,0 +1,547 @@
+use alloc::boxed::Box;
+use core::cell::UnsafeCell;
+use core::fmt;
+use core::marker::PhantomData;
+use core::mem::MaybeUninit;
+use core::ptr;
+use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
+
+use crossbeam_utils::{Backoff, CachePadded};
+
+// Bits indicating the state of a slot:
+// * If a value has been written into the slot, `WRITE` is set.
+// * If a value has been read from the slot, `READ` is set.
+// * If the block is being destroyed, `DESTROY` is set.
+const WRITE: usize = 1;
+const READ: usize = 2;
+const DESTROY: usize = 4;
+
+// Each block covers one "lap" of indices.
+const LAP: usize = 32;
+// The maximum number of values a block can hold.
+const BLOCK_CAP: usize = LAP - 1;
+// How many lower bits are reserved for metadata.
+const SHIFT: usize = 1;
+// Indicates that the block is not the last one.
+const HAS_NEXT: usize = 1;
+
+/// A slot in a block.
+struct Slot<T> {
+ /// The value.
+ value: UnsafeCell<MaybeUninit<T>>,
+
+ /// The state of the slot.
+ state: AtomicUsize,
+}
+
+impl<T> Slot<T> {
+ const UNINIT: Self = Self {
+ value: UnsafeCell::new(MaybeUninit::uninit()),
+ state: AtomicUsize::new(0),
+ };
+
+ /// Waits until a value is written into the slot.
+ fn wait_write(&self) {
+ let backoff = Backoff::new();
+ while self.state.load(Ordering::Acquire) & WRITE == 0 {
+ backoff.snooze();
+ }
+ }
+}
+
+/// A block in a linked list.
+///
+/// Each block in the list can hold up to `BLOCK_CAP` values.
+struct Block<T> {
+ /// The next block in the linked list.
+ next: AtomicPtr<Block<T>>,
+
+ /// Slots for values.
+ slots: [Slot<T>; BLOCK_CAP],
+}
+
+impl<T> Block<T> {
+ /// Creates an empty block that starts at `start_index`.
+ fn new() -> Block<T> {
+ Self {
+ next: AtomicPtr::new(ptr::null_mut()),
+ slots: [Slot::UNINIT; BLOCK_CAP],
+ }
+ }
+
+ /// Waits until the next pointer is set.
+ fn wait_next(&self) -> *mut Block<T> {
+ let backoff = Backoff::new();
+ loop {
+ let next = self.next.load(Ordering::Acquire);
+ if !next.is_null() {
+ return next;
+ }
+ backoff.snooze();
+ }
+ }
+
+ /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
+ unsafe fn destroy(this: *mut Block<T>, start: usize) {
+ // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
+ // begun destruction of the block.
+ for i in start..BLOCK_CAP - 1 {
+ let slot = (*this).slots.get_unchecked(i);
+
+ // Mark the `DESTROY` bit if a thread is still using the slot.
+ if slot.state.load(Ordering::Acquire) & READ == 0
+ && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
+ {
+ // If a thread is still using the slot, it will continue destruction of the block.
+ return;
+ }
+ }
+
+ // No thread is using the block, now it is safe to destroy it.
+ drop(Box::from_raw(this));
+ }
+}
+
+/// A position in a queue.
+struct Position<T> {
+ /// The index in the queue.
+ index: AtomicUsize,
+
+ /// The block in the linked list.
+ block: AtomicPtr<Block<T>>,
+}
+
+/// An unbounded multi-producer multi-consumer queue.
+///
+/// This queue is implemented as a linked list of segments, where each segment is a small buffer
+/// that can hold a handful of elements. There is no limit to how many elements can be in the queue
+/// at a time. However, since segments need to be dynamically allocated as elements get pushed,
+/// this queue is somewhat slower than [`ArrayQueue`].
+///
+/// [`ArrayQueue`]: super::ArrayQueue
+///
+/// # Examples
+///
+/// ```
+/// use crossbeam_queue::SegQueue;
+///
+/// let q = SegQueue::new();
+///
+/// q.push('a');
+/// q.push('b');
+///
+/// assert_eq!(q.pop(), Some('a'));
+/// assert_eq!(q.pop(), Some('b'));
+/// assert!(q.pop().is_none());
+/// ```
+pub struct SegQueue<T> {
+ /// The head of the queue.
+ head: CachePadded<Position<T>>,
+
+ /// The tail of the queue.
+ tail: CachePadded<Position<T>>,
+
+ /// Indicates that dropping a `SegQueue<T>` may drop values of type `T`.
+ _marker: PhantomData<T>,
+}
+
+unsafe impl<T: Send> Send for SegQueue<T> {}
+unsafe impl<T: Send> Sync for SegQueue<T> {}
+
+impl<T> SegQueue<T> {
+ /// Creates a new unbounded queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_queue::SegQueue;
+ ///
+ /// let q = SegQueue::<i32>::new();
+ /// ```
+ pub const fn new() -> SegQueue<T> {
+ SegQueue {
+ head: CachePadded::new(Position {
+ block: AtomicPtr::new(ptr::null_mut()),
+ index: AtomicUsize::new(0),
+ }),
+ tail: CachePadded::new(Position {
+ block: AtomicPtr::new(ptr::null_mut()),
+ index: AtomicUsize::new(0),
+ }),
+ _marker: PhantomData,
+ }
+ }
+
+ /// Pushes an element into the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_queue::SegQueue;
+ ///
+ /// let q = SegQueue::new();
+ ///
+ /// q.push(10);
+ /// q.push(20);
+ /// ```
+ pub fn push(&self, value: T) {
+ let backoff = Backoff::new();
+ let mut tail = self.tail.index.load(Ordering::Acquire);
+ let mut block = self.tail.block.load(Ordering::Acquire);
+ let mut next_block = None;
+
+ loop {
+ // Calculate the offset of the index into the block.
+ let offset = (tail >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // If we're going to have to install the next block, allocate it in advance in order to
+ // make the wait for other threads as short as possible.
+ if offset + 1 == BLOCK_CAP && next_block.is_none() {
+ next_block = Some(Box::new(Block::<T>::new()));
+ }
+
+ // If this is the first push operation, we need to allocate the first block.
+ if block.is_null() {
+ let new = Box::into_raw(Box::new(Block::<T>::new()));
+
+ if self
+ .tail
+ .block
+ .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
+ .is_ok()
+ {
+ self.head.block.store(new, Ordering::Release);
+ block = new;
+ } else {
+ next_block = unsafe { Some(Box::from_raw(new)) };
+ tail = self.tail.index.load(Ordering::Acquire);
+ block = self.tail.block.load(Ordering::Acquire);
+ continue;
+ }
+ }
+
+ let new_tail = tail + (1 << SHIFT);
+
+ // Try advancing the tail forward.
+ match self.tail.index.compare_exchange_weak(
+ tail,
+ new_tail,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, install the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next_block = Box::into_raw(next_block.unwrap());
+ let next_index = new_tail.wrapping_add(1 << SHIFT);
+
+ self.tail.block.store(next_block, Ordering::Release);
+ self.tail.index.store(next_index, Ordering::Release);
+ (*block).next.store(next_block, Ordering::Release);
+ }
+
+ // Write the value into the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.value.get().write(MaybeUninit::new(value));
+ slot.state.fetch_or(WRITE, Ordering::Release);
+
+ return;
+ },
+ Err(t) => {
+ tail = t;
+ block = self.tail.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Pops an element from the queue.
+ ///
+ /// If the queue is empty, `None` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_queue::SegQueue;
+ ///
+ /// let q = SegQueue::new();
+ ///
+ /// q.push(10);
+ /// assert_eq!(q.pop(), Some(10));
+ /// assert!(q.pop().is_none());
+ /// ```
+ pub fn pop(&self) -> Option<T> {
+ let backoff = Backoff::new();
+ let mut head = self.head.index.load(Ordering::Acquire);
+ let mut block = self.head.block.load(Ordering::Acquire);
+
+ loop {
+ // Calculate the offset of the index into the block.
+ let offset = (head >> SHIFT) % LAP;
+
+ // If we reached the end of the block, wait until the next one is installed.
+ if offset == BLOCK_CAP {
+ backoff.snooze();
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ let mut new_head = head + (1 << SHIFT);
+
+ if new_head & HAS_NEXT == 0 {
+ atomic::fence(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::Relaxed);
+
+ // If the tail equals the head, that means the queue is empty.
+ if head >> SHIFT == tail >> SHIFT {
+ return None;
+ }
+
+ // If head and tail are not in the same block, set `HAS_NEXT` in head.
+ if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
+ new_head |= HAS_NEXT;
+ }
+ }
+
+ // The block can be null here only if the first push operation is in progress. In that
+ // case, just wait until it gets initialized.
+ if block.is_null() {
+ backoff.snooze();
+ head = self.head.index.load(Ordering::Acquire);
+ block = self.head.block.load(Ordering::Acquire);
+ continue;
+ }
+
+ // Try moving the head index forward.
+ match self.head.index.compare_exchange_weak(
+ head,
+ new_head,
+ Ordering::SeqCst,
+ Ordering::Acquire,
+ ) {
+ Ok(_) => unsafe {
+ // If we've reached the end of the block, move to the next one.
+ if offset + 1 == BLOCK_CAP {
+ let next = (*block).wait_next();
+ let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
+ if !(*next).next.load(Ordering::Relaxed).is_null() {
+ next_index |= HAS_NEXT;
+ }
+
+ self.head.block.store(next, Ordering::Release);
+ self.head.index.store(next_index, Ordering::Release);
+ }
+
+ // Read the value.
+ let slot = (*block).slots.get_unchecked(offset);
+ slot.wait_write();
+ let value = slot.value.get().read().assume_init();
+
+ // Destroy the block if we've reached the end, or if another thread wanted to
+ // destroy but couldn't because we were busy reading from the slot.
+ if offset + 1 == BLOCK_CAP {
+ Block::destroy(block, 0);
+ } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
+ Block::destroy(block, offset + 1);
+ }
+
+ return Some(value);
+ },
+ Err(h) => {
+ head = h;
+ block = self.head.block.load(Ordering::Acquire);
+ backoff.spin();
+ }
+ }
+ }
+ }
+
+ /// Returns `true` if the queue is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_queue::SegQueue;
+ ///
+ /// let q = SegQueue::new();
+ ///
+ /// assert!(q.is_empty());
+ /// q.push(1);
+ /// assert!(!q.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ let head = self.head.index.load(Ordering::SeqCst);
+ let tail = self.tail.index.load(Ordering::SeqCst);
+ head >> SHIFT == tail >> SHIFT
+ }
+
+ /// Returns the number of elements in the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use crossbeam_queue::SegQueue;
+ ///
+ /// let q = SegQueue::new();
+ /// assert_eq!(q.len(), 0);
+ ///
+ /// q.push(10);
+ /// assert_eq!(q.len(), 1);
+ ///
+ /// q.push(20);
+ /// assert_eq!(q.len(), 2);
+ /// ```
+ pub fn len(&self) -> usize {
+ loop {
+ // Load the tail index, then load the head index.
+ let mut tail = self.tail.index.load(Ordering::SeqCst);
+ let mut head = self.head.index.load(Ordering::SeqCst);
+
+ // If the tail index didn't change, we've got consistent indices to work with.
+ if self.tail.index.load(Ordering::SeqCst) == tail {
+ // Erase the lower bits.
+ tail &= !((1 << SHIFT) - 1);
+ head &= !((1 << SHIFT) - 1);
+
+ // Fix up indices if they fall onto block ends.
+ if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
+ tail = tail.wrapping_add(1 << SHIFT);
+ }
+ if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Rotate indices so that head falls into the first block.
+ let lap = (head >> SHIFT) / LAP;
+ tail = tail.wrapping_sub((lap * LAP) << SHIFT);
+ head = head.wrapping_sub((lap * LAP) << SHIFT);
+
+ // Remove the lower bits.
+ tail >>= SHIFT;
+ head >>= SHIFT;
+
+ // Return the difference minus the number of blocks between tail and head.
+ return tail - head - tail / LAP;
+ }
+ }
+ }
+}
+
+impl<T> Drop for SegQueue<T> {
+ fn drop(&mut self) {
+ let mut head = *self.head.index.get_mut();
+ let mut tail = *self.tail.index.get_mut();
+ let mut block = *self.head.block.get_mut();
+
+ // Erase the lower bits.
+ head &= !((1 << SHIFT) - 1);
+ tail &= !((1 << SHIFT) - 1);
+
+ unsafe {
+ // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
+ while head != tail {
+ let offset = (head >> SHIFT) % LAP;
+
+ if offset < BLOCK_CAP {
+ // Drop the value in the slot.
+ let slot = (*block).slots.get_unchecked(offset);
+ let p = &mut *slot.value.get();
+ p.as_mut_ptr().drop_in_place();
+ } else {
+ // Deallocate the block and move to the next one.
+ let next = *(*block).next.get_mut();
+ drop(Box::from_raw(block));
+ block = next;
+ }
+
+ head = head.wrapping_add(1 << SHIFT);
+ }
+
+ // Deallocate the last remaining block.
+ if !block.is_null() {
+ drop(Box::from_raw(block));
+ }
+ }
+ }
+}
+
+impl<T> fmt::Debug for SegQueue<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.pad("SegQueue { .. }")
+ }
+}
+
+impl<T> Default for SegQueue<T> {
+ fn default() -> SegQueue<T> {
+ SegQueue::new()
+ }
+}
+
+impl<T> IntoIterator for SegQueue<T> {
+ type Item = T;
+
+ type IntoIter = IntoIter<T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ IntoIter { value: self }
+ }
+}
+
+#[derive(Debug)]
+pub struct IntoIter<T> {
+ value: SegQueue<T>,
+}
+
+impl<T> Iterator for IntoIter<T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ let value = &mut self.value;
+ let head = *value.head.index.get_mut();
+ let tail = *value.tail.index.get_mut();
+ if head >> SHIFT == tail >> SHIFT {
+ None
+ } else {
+ let block = *value.head.block.get_mut();
+ let offset = (head >> SHIFT) % LAP;
+
+ // SAFETY: We have mutable access to this, so we can read without
+ // worrying about concurrency. Furthermore, we know this is
+ // initialized because it is the value pointed at by `value.head`
+ // and this is a non-empty queue.
+ let item = unsafe {
+ let slot = (*block).slots.get_unchecked(offset);
+ let p = &mut *slot.value.get();
+ p.as_mut_ptr().read()
+ };
+ if offset + 1 == BLOCK_CAP {
+ // Deallocate the block and move to the next one.
+ // SAFETY: The block is initialized because we've been reading
+ // from it this entire time. We can drop it b/c everything has
+ // been read out of it, so nothing is pointing to it anymore.
+ unsafe {
+ let next = *(*block).next.get_mut();
+ drop(Box::from_raw(block));
+ *value.head.block.get_mut() = next;
+ }
+ // The last value in a block is empty, so skip it
+ *value.head.index.get_mut() = head.wrapping_add(2 << SHIFT);
+ // Double-check that we're pointing to the first item in a block.
+ debug_assert_eq!((*value.head.index.get_mut() >> SHIFT) % LAP, 0);
+ } else {
+ *value.head.index.get_mut() = head.wrapping_add(1 << SHIFT);
+ }
+ Some(item)
+ }
+ }
+}