diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/enumset/src | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/enumset/src')
-rw-r--r-- | third_party/rust/enumset/src/lib.rs | 971 | ||||
-rw-r--r-- | third_party/rust/enumset/src/repr.rs | 225 |
2 files changed, 1196 insertions, 0 deletions
diff --git a/third_party/rust/enumset/src/lib.rs b/third_party/rust/enumset/src/lib.rs new file mode 100644 index 0000000000..5f098f8f5c --- /dev/null +++ b/third_party/rust/enumset/src/lib.rs @@ -0,0 +1,971 @@ +#![no_std] +#![forbid(missing_docs)] +// The safety requirement is "use the procedural derive". +#![allow(clippy::missing_safety_doc)] + +//! A library for defining enums that can be used in compact bit sets. It supports enums up to 128 +//! variants, and has a macro to use these sets in constants. +//! +//! For serde support, enable the `serde` feature. +//! +//! # Defining enums for use with EnumSet +//! +//! Enums to be used with [`EnumSet`] should be defined using `#[derive(EnumSetType)]`: +//! +//! ```rust +//! # use enumset::*; +//! #[derive(EnumSetType, Debug)] +//! pub enum Enum { +//! A, B, C, D, E, F, G, +//! } +//! ``` +//! +//! For more information on more advanced use cases, see the documentation for +//! [`#[derive(EnumSetType)]`](./derive.EnumSetType.html). +//! +//! # Working with EnumSets +//! +//! EnumSets can be constructed via [`EnumSet::new()`] like a normal set. In addition, +//! `#[derive(EnumSetType)]` creates operator overloads that allow you to create EnumSets like so: +//! +//! ```rust +//! # use enumset::*; +//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } +//! let new_set = Enum::A | Enum::C | Enum::G; +//! assert_eq!(new_set.len(), 3); +//! ``` +//! +//! All bitwise operations you would expect to work on bitsets also work on both EnumSets and +//! enums with `#[derive(EnumSetType)]`: +//! ```rust +//! # use enumset::*; +//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } +//! // Intersection of sets +//! assert_eq!((Enum::A | Enum::B) & Enum::C, EnumSet::empty()); +//! assert_eq!((Enum::A | Enum::B) & Enum::A, Enum::A); +//! assert_eq!(Enum::A & Enum::B, EnumSet::empty()); +//! +//! // Symmetric difference of sets +//! assert_eq!((Enum::A | Enum::B) ^ (Enum::B | Enum::C), Enum::A | Enum::C); +//! assert_eq!(Enum::A ^ Enum::C, Enum::A | Enum::C); +//! +//! // Difference of sets +//! assert_eq!((Enum::A | Enum::B | Enum::C) - Enum::B, Enum::A | Enum::C); +//! +//! // Complement of sets +//! assert_eq!(!(Enum::E | Enum::G), Enum::A | Enum::B | Enum::C | Enum::D | Enum::F); +//! ``` +//! +//! The [`enum_set!`] macro allows you to create EnumSets in constant contexts: +//! +//! ```rust +//! # use enumset::*; +//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } +//! const CONST_SET: EnumSet<Enum> = enum_set!(Enum::A | Enum::B); +//! assert_eq!(CONST_SET, Enum::A | Enum::B); +//! ``` +//! +//! Mutable operations on the [`EnumSet`] otherwise similarly to Rust's builtin sets: +//! +//! ```rust +//! # use enumset::*; +//! # #[derive(EnumSetType, Debug)] pub enum Enum { A, B, C, D, E, F, G } +//! let mut set = EnumSet::new(); +//! set.insert(Enum::A); +//! set.insert_all(Enum::E | Enum::G); +//! assert!(set.contains(Enum::A)); +//! assert!(!set.contains(Enum::B)); +//! assert_eq!(set, Enum::A | Enum::E | Enum::G); +//! ``` + +use core::cmp::Ordering; +use core::fmt; +use core::fmt::{Debug, Formatter}; +use core::hash::{Hash, Hasher}; +use core::iter::{FromIterator, Sum}; +use core::ops::*; + +#[doc(hidden)] +/// Everything in this module is internal API and may change at any time. +pub mod __internal { + use super::*; + + /// A reexport of core to allow our macros to be generic to std vs core. + pub use ::core as core_export; + + /// A reexport of serde so there is no requirement to depend on serde. + #[cfg(feature = "serde")] + pub use serde2 as serde; + + /// The actual members of EnumSetType. Put here to avoid polluting global namespaces. + pub unsafe trait EnumSetTypePrivate { + /// The underlying type used to store the bitset. + type Repr: EnumSetTypeRepr; + /// A mask of bits that are valid in the bitset. + const ALL_BITS: Self::Repr; + + /// Converts an enum of this type into its bit position. + fn enum_into_u32(self) -> u32; + /// Converts a bit position into an enum value. + unsafe fn enum_from_u32(val: u32) -> Self; + + /// Serializes the `EnumSet`. + /// + /// This and `deserialize` are part of the `EnumSetType` trait so the procedural derive + /// can control how `EnumSet` is serialized. + #[cfg(feature = "serde")] + fn serialize<S: serde::Serializer>(set: EnumSet<Self>, ser: S) -> Result<S::Ok, S::Error> + where Self: EnumSetType; + /// Deserializes the `EnumSet`. + #[cfg(feature = "serde")] + fn deserialize<'de, D: serde::Deserializer<'de>>(de: D) -> Result<EnumSet<Self>, D::Error> + where Self: EnumSetType; + } +} +#[cfg(feature = "serde")] +use crate::__internal::serde; +use crate::__internal::EnumSetTypePrivate; +#[cfg(feature = "serde")] +use crate::serde::{Deserialize, Serialize}; + +mod repr; +use crate::repr::EnumSetTypeRepr; + +/// The procedural macro used to derive [`EnumSetType`], and allow enums to be used with +/// [`EnumSet`]. +/// +/// It may be used with any enum with no data fields, at most 127 variants, and no variant +/// discriminators larger than 127. +/// +/// # Additional Impls +/// +/// In addition to the implementation of `EnumSetType`, this procedural macro creates multiple +/// other impls that are either required for the macro to work, or make the procedural macro more +/// ergonomic to use. +/// +/// A full list of traits implemented as is follows: +/// +/// * [`Copy`], [`Clone`], [`Eq`], [`PartialEq`] implementations are created to allow `EnumSet` +/// to function properly. These automatic implementations may be suppressed using +/// `#[enumset(no_super_impls)]`, but these traits must still be implemented in another way. +/// * [`PartialEq`], [`Sub`], [`BitAnd`], [`BitOr`], [`BitXor`], and [`Not`] implementations are +/// created to allow the crate to be used more ergonomically in expressions. These automatic +/// implementations may be suppressed using `#[enumset(no_ops)]`. +/// +/// # Options +/// +/// Options are given with `#[enumset(foo)]` annotations attached to the same enum as the derive. +/// Multiple options may be given in the same annotation using the `#[enumset(foo, bar)]` syntax. +/// +/// A full list of options is as follows: +/// +/// * `#[enumset(no_super_impls)]` prevents the derive from creating implementations required for +/// [`EnumSet`] to function. When this attribute is specified, implementations of [`Copy`], +/// [`Clone`], [`Eq`], and [`PartialEq`]. This can be useful if you are using a code generator +/// that already derives these traits. These impls should function identically to the +/// automatically derived versions, or unintentional behavior may be a result. +/// * `#[enumset(no_ops)` prevents the derive from implementing any operator traits. +/// * `#[enumset(crate_name = "enumset2")]` may be used to change the name of the `enumset` crate +/// used in the generated code. When the `std` feature is enabled, enumset parses `Cargo.toml` +/// to determine the name of the crate, and this flag is unnecessary. +/// * `#[enumset(repr = "u8")]` may be used to specify the in-memory representation of `EnumSet`s +/// of this enum type. The effects of this are described in [the `EnumSet` documentation under +/// “FFI, Safety and `repr`”][EnumSet#ffi-safety-and-repr]. Allowed types are `u8`, `u16`, `u32`, +/// `u64` and `u128`. If this is not used, then the derive macro will choose a type to best fit +/// the enum, but there are no guarantees about which type will be chosen. +/// +/// When the `serde` feature is used, the following features may also be specified. These options +/// may be used (with no effect) when building without the feature enabled: +/// +/// * `#[enumset(serialize_repr = "u8")]` may be used to specify the integer type used to serialize +/// the underlying bitset. Any type allowed in the `repr` option may be used in this option. +/// * `#[enumset(serialize_as_list)]` may be used to serialize the bitset as a list of enum +/// variants instead of an integer. This requires [`Deserialize`] and [`Serialize`] be +/// implemented on the enum. +/// * `#[enumset(serialize_deny_unknown)]` causes the generated deserializer to return an error +/// for unknown bits instead of silently ignoring them. +/// +/// # Examples +/// +/// Deriving a plain EnumSetType: +/// +/// ```rust +/// # use enumset::*; +/// #[derive(EnumSetType)] +/// pub enum Enum { +/// A, B, C, D, E, F, G, +/// } +/// ``` +/// +/// Deriving a sparse EnumSetType: +/// +/// ```rust +/// # use enumset::*; +/// #[derive(EnumSetType)] +/// pub enum SparseEnum { +/// A = 10, B = 20, C = 30, D = 127, +/// } +/// ``` +/// +/// Deriving an EnumSetType without adding ops: +/// +/// ```rust +/// # use enumset::*; +/// #[derive(EnumSetType)] +/// #[enumset(no_ops)] +/// pub enum NoOpsEnum { +/// A, B, C, D, E, F, G, +/// } +/// ``` +pub use enumset_derive::EnumSetType; + +/// The trait used to define enum types that may be used with [`EnumSet`]. +/// +/// This trait must be impelmented using `#[derive(EnumSetType)]`, is not public API, and its +/// internal structure may change at any time with no warning. +/// +/// For full documentation on the procedural derive and its options, see +/// [`#[derive(EnumSetType)]`](./derive.EnumSetType.html). +pub unsafe trait EnumSetType: Copy + Eq + EnumSetTypePrivate {} + +/// An [`EnumSetType`] for which [`EnumSet`]s have a guaranteed in-memory representation. +/// +/// An implementation of this trait is generated by using +/// [`#[derive(EnumSetType)]`](./derive.EnumSetType.html) with the annotation +/// `#[enumset(repr = "…")]`, where `…` is `u8`, `u16`, `u32`, `u64` or `u128`. +/// +/// For any type `T` that implements this trait, the in-memory representation of `EnumSet<T>` +/// is guaranteed to be `Repr`. This guarantee is useful for FFI. See [the `EnumSet` documentation +/// under “FFI, Safety and `repr`”][EnumSet#ffi-safety-and-repr] for an example. +pub unsafe trait EnumSetTypeWithRepr: + EnumSetType + EnumSetTypePrivate<Repr = <Self as EnumSetTypeWithRepr>::Repr> +{ + /// The guaranteed representation. + type Repr: EnumSetTypeRepr; +} + +/// An efficient set type for enums. +/// +/// It is implemented using a bitset stored using the smallest integer that can fit all bits +/// in the underlying enum. In general, an enum variant with a discriminator of `n` is stored in +/// the nth least significant bit (corresponding with a mask of, e.g. `1 << enum as u32`). +/// +/// # Numeric representation +/// +/// `EnumSet` is internally implemented using integer types, and as such can be easily converted +/// from and to numbers. +/// +/// Each bit of the underlying integer corresponds to at most one particular enum variant. If the +/// corresponding bit for a variant is set, it present in the set. Bits that do not correspond to +/// any variant are always unset. +/// +/// By default, each enum variant is stored in a bit corresponding to its discriminator. An enum +/// variant with a discriminator of `n` is stored in the `n + 1`th least significant bit +/// (corresponding to a mask of e.g. `1 << enum as u32`). +/// +/// # Serialization +/// +/// When the `serde` feature is enabled, `EnumSet`s can be serialized and deserialized using +/// the `serde` crate. The exact serialization format can be controlled with additional attributes +/// on the enum type. These attributes are valid regardless of whether the `serde` feature +/// is enabled. +/// +/// By default, `EnumSet`s serialize by directly writing out the underlying bitset as an integer +/// of the smallest type that can fit in the underlying enum. You can add a +/// `#[enumset(serialize_repr = "u8")]` attribute to your enum to control the integer type used +/// for serialization. This can be important for avoiding unintentional breaking changes when +/// `EnumSet`s are serialized with formats like `bincode`. +/// +/// By default, unknown bits are ignored and silently removed from the bitset. To override thris +/// behavior, you can add a `#[enumset(serialize_deny_unknown)]` attribute. This will cause +/// deserialization to fail if an invalid bit is set. +/// +/// In addition, the `#[enumset(serialize_as_list)]` attribute causes the `EnumSet` to be +/// instead serialized as a list of enum variants. This requires your enum type implement +/// [`Serialize`] and [`Deserialize`]. Note that this is a breaking change. +/// +/// # FFI, Safety and `repr` +/// +/// If an enum type `T` is annotated with [`#[enumset(repr = "R")]`][derive@EnumSetType#options], +/// then several things happen: +/// +/// * `T` will implement <code>[EnumSetTypeWithRepr]<Repr = R></code> in addition to +/// [`EnumSetType`]. +/// * The `EnumSet` methods with `repr` in their name, such as [`as_repr`][EnumSet::as_repr] and +/// [`from_repr`][EnumSet::from_repr], will be available for `EnumSet<T>`. +/// * The in-memory representation of `EnumSet<T>` is guaranteed to be `R`. +/// +/// That last guarantee makes it sound to send `EnumSet<T>` across an FFI boundary. For example: +/// +/// ``` +/// # use enumset::*; +/// # +/// # mod ffi_impl { +/// # // This example “foreign” function is actually written in Rust, but for the sake +/// # // of example, we'll pretend it's written in C. +/// # #[no_mangle] +/// # extern "C" fn some_foreign_function(set: u32) -> u32 { +/// # set & 0b100 +/// # } +/// # } +/// # +/// extern "C" { +/// // This function is written in C like: +/// // uint32_t some_foreign_function(uint32_t set) { … } +/// fn some_foreign_function(set: EnumSet<MyEnum>) -> EnumSet<MyEnum>; +/// } +/// +/// #[derive(Debug, EnumSetType)] +/// #[enumset(repr = "u32")] +/// enum MyEnum { A, B, C } +/// +/// let set: EnumSet<MyEnum> = enum_set!(MyEnum::A | MyEnum::C); +/// +/// let new_set: EnumSet<MyEnum> = unsafe { some_foreign_function(set) }; +/// assert_eq!(new_set, enum_set!(MyEnum::C)); +/// ``` +/// +/// When an `EnumSet<T>` is received via FFI, all bits that don't correspond to an enum variant +/// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. +#[derive(Copy, Clone, PartialEq, Eq)] +#[repr(transparent)] +pub struct EnumSet<T: EnumSetType> { + #[doc(hidden)] + /// This is public due to the [`enum_set!`] macro. + /// This is **NOT** public API and may change at any time. + pub __priv_repr: T::Repr, +} +impl<T: EnumSetType> EnumSet<T> { + // Returns all bits valid for the enum + #[inline(always)] + fn all_bits() -> T::Repr { + T::ALL_BITS + } + + /// Creates an empty `EnumSet`. + #[inline(always)] + pub fn new() -> Self { + EnumSet { __priv_repr: T::Repr::empty() } + } + + /// Returns an `EnumSet` containing a single element. + #[inline(always)] + pub fn only(t: T) -> Self { + let mut set = Self::new(); + set.insert(t); + set + } + + /// Creates an empty `EnumSet`. + /// + /// This is an alias for [`EnumSet::new`]. + #[inline(always)] + pub fn empty() -> Self { + Self::new() + } + + /// Returns an `EnumSet` containing all valid variants of the enum. + #[inline(always)] + pub fn all() -> Self { + EnumSet { __priv_repr: Self::all_bits() } + } + + /// Total number of bits used by this type. Note that the actual amount of space used is + /// rounded up to the next highest integer type (`u8`, `u16`, `u32`, `u64`, or `u128`). + /// + /// This is the same as [`EnumSet::variant_count`] except in enums with "sparse" variants. + /// (e.g. `enum Foo { A = 10, B = 20 }`) + #[inline(always)] + pub fn bit_width() -> u32 { + T::Repr::WIDTH - T::ALL_BITS.leading_zeros() + } + + /// The number of valid variants that this type can contain. + /// + /// This is the same as [`EnumSet::bit_width`] except in enums with "sparse" variants. + /// (e.g. `enum Foo { A = 10, B = 20 }`) + #[inline(always)] + pub fn variant_count() -> u32 { + T::ALL_BITS.count_ones() + } + + /// Returns the number of elements in this set. + #[inline(always)] + pub fn len(&self) -> usize { + self.__priv_repr.count_ones() as usize + } + /// Returns `true` if the set contains no elements. + #[inline(always)] + pub fn is_empty(&self) -> bool { + self.__priv_repr.is_empty() + } + /// Removes all elements from the set. + #[inline(always)] + pub fn clear(&mut self) { + self.__priv_repr = T::Repr::empty() + } + + /// Returns `true` if `self` has no elements in common with `other`. This is equivalent to + /// checking for an empty intersection. + #[inline(always)] + pub fn is_disjoint(&self, other: Self) -> bool { + (*self & other).is_empty() + } + /// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the + /// values in `other`. + #[inline(always)] + pub fn is_superset(&self, other: Self) -> bool { + (*self & other).__priv_repr == other.__priv_repr + } + /// Returns `true` if the set is a subset of another, i.e., `other` contains at least all + /// the values in `self`. + #[inline(always)] + pub fn is_subset(&self, other: Self) -> bool { + other.is_superset(*self) + } + + /// Returns a set containing any elements present in either set. + #[inline(always)] + pub fn union(&self, other: Self) -> Self { + EnumSet { __priv_repr: self.__priv_repr | other.__priv_repr } + } + /// Returns a set containing every element present in both sets. + #[inline(always)] + pub fn intersection(&self, other: Self) -> Self { + EnumSet { __priv_repr: self.__priv_repr & other.__priv_repr } + } + /// Returns a set containing element present in `self` but not in `other`. + #[inline(always)] + pub fn difference(&self, other: Self) -> Self { + EnumSet { __priv_repr: self.__priv_repr.and_not(other.__priv_repr) } + } + /// Returns a set containing every element present in either `self` or `other`, but is not + /// present in both. + #[inline(always)] + pub fn symmetrical_difference(&self, other: Self) -> Self { + EnumSet { __priv_repr: self.__priv_repr ^ other.__priv_repr } + } + /// Returns a set containing all enum variants not in this set. + #[inline(always)] + pub fn complement(&self) -> Self { + EnumSet { __priv_repr: !self.__priv_repr & Self::all_bits() } + } + + /// Checks whether this set contains a value. + #[inline(always)] + pub fn contains(&self, value: T) -> bool { + self.__priv_repr.has_bit(value.enum_into_u32()) + } + + /// Adds a value to this set. + /// + /// If the set did not have this value present, `true` is returned. + /// + /// If the set did have this value present, `false` is returned. + #[inline(always)] + pub fn insert(&mut self, value: T) -> bool { + let contains = !self.contains(value); + self.__priv_repr.add_bit(value.enum_into_u32()); + contains + } + /// Removes a value from this set. Returns whether the value was present in the set. + #[inline(always)] + pub fn remove(&mut self, value: T) -> bool { + let contains = self.contains(value); + self.__priv_repr.remove_bit(value.enum_into_u32()); + contains + } + + /// Adds all elements in another set to this one. + #[inline(always)] + pub fn insert_all(&mut self, other: Self) { + self.__priv_repr = self.__priv_repr | other.__priv_repr + } + /// Removes all values in another set from this one. + #[inline(always)] + pub fn remove_all(&mut self, other: Self) { + self.__priv_repr = self.__priv_repr.and_not(other.__priv_repr); + } + + /// Iterates the contents of the set in order from the least significant bit to the most + /// significant bit. + /// + /// Note that iterator invalidation is impossible as the iterator contains a copy of this type, + /// rather than holding a reference to it. + pub fn iter(&self) -> EnumSetIter<T> { + EnumSetIter::new(*self) + } + + /// Returns a `T::Repr` representing the elements of this set. + /// + /// Unlike the other `as_*` methods, this method is zero-cost and guaranteed not to fail, + /// panic or truncate any bits. + /// + /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` + /// annotation. + #[inline(always)] + pub fn as_repr(&self) -> <T as EnumSetTypeWithRepr>::Repr + where T: EnumSetTypeWithRepr { + self.__priv_repr + } + + /// Constructs a bitset from a `T::Repr` without checking for invalid bits. + /// + /// Unlike the other `from_*` methods, this method is zero-cost and guaranteed not to fail, + /// panic or truncate any bits, provided the conditions under “Safety” are upheld. + /// + /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` + /// annotation. + /// + /// # Safety + /// + /// All bits in the provided parameter `bits` that don't correspond to an enum variant of + /// `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. + #[inline(always)] + pub unsafe fn from_repr_unchecked(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self + where T: EnumSetTypeWithRepr { + Self { __priv_repr: bits } + } + + /// Constructs a bitset from a `T::Repr`. + /// + /// If a bit that doesn't correspond to an enum variant is set, this + /// method will panic. + /// + /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` + /// annotation. + #[inline(always)] + pub fn from_repr(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self + where T: EnumSetTypeWithRepr { + Self::try_from_repr(bits).expect("Bitset contains invalid variants.") + } + + /// Attempts to constructs a bitset from a `T::Repr`. + /// + /// If a bit that doesn't correspond to an enum variant is set, this + /// method will return `None`. + /// + /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` + /// annotation. + #[inline(always)] + pub fn try_from_repr(bits: <T as EnumSetTypeWithRepr>::Repr) -> Option<Self> + where T: EnumSetTypeWithRepr { + let mask = Self::all().__priv_repr; + if bits.and_not(mask).is_empty() { + Some(EnumSet { __priv_repr: bits }) + } else { + None + } + } + + /// Constructs a bitset from a `T::Repr`, ignoring invalid variants. + /// + /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` + /// annotation. + #[inline(always)] + pub fn from_repr_truncated(bits: <T as EnumSetTypeWithRepr>::Repr) -> Self + where T: EnumSetTypeWithRepr { + let mask = Self::all().as_repr(); + let bits = bits & mask; + EnumSet { __priv_repr: bits } + } +} + +/// Helper macro for generating conversion functions. +macro_rules! conversion_impls { + ( + $(for_num!( + $underlying:ty, $underlying_str:expr, + $from_fn:ident $to_fn:ident $from_fn_opt:ident $to_fn_opt:ident, + $from:ident $try_from:ident $from_truncated:ident $from_unchecked:ident, + $to:ident $try_to:ident $to_truncated:ident + );)* + ) => { + impl <T : EnumSetType> EnumSet<T> {$( + #[doc = "Returns a `"] + #[doc = $underlying_str] + #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ + not fit in a `"] + #[doc = $underlying_str] + #[doc = "` or contains bits that do not correspond to an enum variant, this method \ + will panic."] + #[inline(always)] + pub fn $to(&self) -> $underlying { + self.$try_to().expect("Bitset will not fit into this type.") + } + + #[doc = "Tries to return a `"] + #[doc = $underlying_str] + #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ + not fit in a `"] + #[doc = $underlying_str] + #[doc = "` or contains bits that do not correspond to an enum variant, this method \ + will instead return `None`."] + #[inline(always)] + pub fn $try_to(&self) -> Option<$underlying> { + EnumSetTypeRepr::$to_fn_opt(&self.__priv_repr) + } + + #[doc = "Returns a truncated `"] + #[doc = $underlying_str] + #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ + not fit in a `"] + #[doc = $underlying_str] + #[doc = "`, this method will truncate any bits that don't fit or do not correspond \ + to an enum variant."] + #[inline(always)] + pub fn $to_truncated(&self) -> $underlying { + EnumSetTypeRepr::$to_fn(&self.__priv_repr) + } + + #[doc = "Constructs a bitset from a `"] + #[doc = $underlying_str] + #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ + method will panic."] + #[inline(always)] + pub fn $from(bits: $underlying) -> Self { + Self::$try_from(bits).expect("Bitset contains invalid variants.") + } + + #[doc = "Attempts to constructs a bitset from a `"] + #[doc = $underlying_str] + #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ + method will return `None`."] + #[inline(always)] + pub fn $try_from(bits: $underlying) -> Option<Self> { + let bits = T::Repr::$from_fn_opt(bits); + let mask = Self::all().__priv_repr; + bits.and_then(|bits| if bits.and_not(mask).is_empty() { + Some(EnumSet { __priv_repr: bits }) + } else { + None + }) + } + + #[doc = "Constructs a bitset from a `"] + #[doc = $underlying_str] + #[doc = "`, ignoring invalid variants."] + #[inline(always)] + pub fn $from_truncated(bits: $underlying) -> Self { + let mask = Self::all().$to_truncated(); + let bits = <T::Repr as EnumSetTypeRepr>::$from_fn(bits & mask); + EnumSet { __priv_repr: bits } + } + + #[doc = "Constructs a bitset from a `"] + #[doc = $underlying_str] + #[doc = "`, without checking for invalid bits."] + /// + /// # Safety + /// + /// All bits in the provided parameter `bits` that don't correspond to an enum variant + /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set + /// to `1`. + #[inline(always)] + pub unsafe fn $from_unchecked(bits: $underlying) -> Self { + EnumSet { __priv_repr: <T::Repr as EnumSetTypeRepr>::$from_fn(bits) } + } + )*} + } +} +conversion_impls! { + for_num!(u8, "u8", + from_u8 to_u8 from_u8_opt to_u8_opt, + from_u8 try_from_u8 from_u8_truncated from_u8_unchecked, + as_u8 try_as_u8 as_u8_truncated); + for_num!(u16, "u16", + from_u16 to_u16 from_u16_opt to_u16_opt, + from_u16 try_from_u16 from_u16_truncated from_u16_unchecked, + as_u16 try_as_u16 as_u16_truncated); + for_num!(u32, "u32", + from_u32 to_u32 from_u32_opt to_u32_opt, + from_u32 try_from_u32 from_u32_truncated from_u32_unchecked, + as_u32 try_as_u32 as_u32_truncated); + for_num!(u64, "u64", + from_u64 to_u64 from_u64_opt to_u64_opt, + from_u64 try_from_u64 from_u64_truncated from_u64_unchecked, + as_u64 try_as_u64 as_u64_truncated); + for_num!(u128, "u128", + from_u128 to_u128 from_u128_opt to_u128_opt, + from_u128 try_from_u128 from_u128_truncated from_u128_unchecked, + as_u128 try_as_u128 as_u128_truncated); + for_num!(usize, "usize", + from_usize to_usize from_usize_opt to_usize_opt, + from_usize try_from_usize from_usize_truncated from_usize_unchecked, + as_usize try_as_usize as_usize_truncated); +} + +impl<T: EnumSetType> Default for EnumSet<T> { + /// Returns an empty set. + fn default() -> Self { + Self::new() + } +} + +impl<T: EnumSetType> IntoIterator for EnumSet<T> { + type Item = T; + type IntoIter = EnumSetIter<T>; + + fn into_iter(self) -> Self::IntoIter { + self.iter() + } +} +impl<T: EnumSetType> Sum for EnumSet<T> { + fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { + iter.fold(EnumSet::empty(), |a, v| a | v) + } +} +impl<'a, T: EnumSetType> Sum<&'a EnumSet<T>> for EnumSet<T> { + fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { + iter.fold(EnumSet::empty(), |a, v| a | *v) + } +} +impl<T: EnumSetType> Sum<T> for EnumSet<T> { + fn sum<I: Iterator<Item = T>>(iter: I) -> Self { + iter.fold(EnumSet::empty(), |a, v| a | v) + } +} +impl<'a, T: EnumSetType> Sum<&'a T> for EnumSet<T> { + fn sum<I: Iterator<Item = &'a T>>(iter: I) -> Self { + iter.fold(EnumSet::empty(), |a, v| a | *v) + } +} + +impl<T: EnumSetType, O: Into<EnumSet<T>>> Sub<O> for EnumSet<T> { + type Output = Self; + #[inline(always)] + fn sub(self, other: O) -> Self::Output { + self.difference(other.into()) + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitAnd<O> for EnumSet<T> { + type Output = Self; + #[inline(always)] + fn bitand(self, other: O) -> Self::Output { + self.intersection(other.into()) + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitOr<O> for EnumSet<T> { + type Output = Self; + #[inline(always)] + fn bitor(self, other: O) -> Self::Output { + self.union(other.into()) + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitXor<O> for EnumSet<T> { + type Output = Self; + #[inline(always)] + fn bitxor(self, other: O) -> Self::Output { + self.symmetrical_difference(other.into()) + } +} + +impl<T: EnumSetType, O: Into<EnumSet<T>>> SubAssign<O> for EnumSet<T> { + #[inline(always)] + fn sub_assign(&mut self, rhs: O) { + *self = *self - rhs; + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitAndAssign<O> for EnumSet<T> { + #[inline(always)] + fn bitand_assign(&mut self, rhs: O) { + *self = *self & rhs; + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitOrAssign<O> for EnumSet<T> { + #[inline(always)] + fn bitor_assign(&mut self, rhs: O) { + *self = *self | rhs; + } +} +impl<T: EnumSetType, O: Into<EnumSet<T>>> BitXorAssign<O> for EnumSet<T> { + #[inline(always)] + fn bitxor_assign(&mut self, rhs: O) { + *self = *self ^ rhs; + } +} + +impl<T: EnumSetType> Not for EnumSet<T> { + type Output = Self; + #[inline(always)] + fn not(self) -> Self::Output { + self.complement() + } +} + +impl<T: EnumSetType> From<T> for EnumSet<T> { + fn from(t: T) -> Self { + EnumSet::only(t) + } +} + +impl<T: EnumSetType> PartialEq<T> for EnumSet<T> { + fn eq(&self, other: &T) -> bool { + self.__priv_repr == EnumSet::only(*other).__priv_repr + } +} +impl<T: EnumSetType + Debug> Debug for EnumSet<T> { + fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { + let mut is_first = true; + f.write_str("EnumSet(")?; + for v in self.iter() { + if !is_first { + f.write_str(" | ")?; + } + is_first = false; + v.fmt(f)?; + } + f.write_str(")")?; + Ok(()) + } +} + +#[allow(clippy::derive_hash_xor_eq)] // This impl exists to change trait bounds only. +impl<T: EnumSetType> Hash for EnumSet<T> { + fn hash<H: Hasher>(&self, state: &mut H) { + self.__priv_repr.hash(state) + } +} +impl<T: EnumSetType> PartialOrd for EnumSet<T> { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + self.__priv_repr.partial_cmp(&other.__priv_repr) + } +} +impl<T: EnumSetType> Ord for EnumSet<T> { + fn cmp(&self, other: &Self) -> Ordering { + self.__priv_repr.cmp(&other.__priv_repr) + } +} + +#[cfg(feature = "serde")] +impl<T: EnumSetType> Serialize for EnumSet<T> { + fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { + T::serialize(*self, serializer) + } +} + +#[cfg(feature = "serde")] +impl<'de, T: EnumSetType> Deserialize<'de> for EnumSet<T> { + fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> { + T::deserialize(deserializer) + } +} + +/// The iterator used by [`EnumSet`]s. +#[derive(Clone, Debug)] +pub struct EnumSetIter<T: EnumSetType> { + set: EnumSet<T>, +} +impl<T: EnumSetType> EnumSetIter<T> { + fn new(set: EnumSet<T>) -> EnumSetIter<T> { + EnumSetIter { set } + } +} + +impl<T: EnumSetType> Iterator for EnumSetIter<T> { + type Item = T; + + fn next(&mut self) -> Option<Self::Item> { + if self.set.is_empty() { + None + } else { + let bit = self.set.__priv_repr.trailing_zeros(); + self.set.__priv_repr.remove_bit(bit); + unsafe { Some(T::enum_from_u32(bit)) } + } + } + fn size_hint(&self) -> (usize, Option<usize>) { + let left = self.set.len(); + (left, Some(left)) + } +} + +impl<T: EnumSetType> DoubleEndedIterator for EnumSetIter<T> { + fn next_back(&mut self) -> Option<Self::Item> { + if self.set.is_empty() { + None + } else { + let bit = T::Repr::WIDTH - 1 - self.set.__priv_repr.leading_zeros(); + self.set.__priv_repr.remove_bit(bit); + unsafe { Some(T::enum_from_u32(bit)) } + } + } +} + +impl<T: EnumSetType> ExactSizeIterator for EnumSetIter<T> {} + +impl<T: EnumSetType> Extend<T> for EnumSet<T> { + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + iter.into_iter().for_each(|v| { + self.insert(v); + }); + } +} + +impl<T: EnumSetType> FromIterator<T> for EnumSet<T> { + fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self { + let mut set = EnumSet::default(); + set.extend(iter); + set + } +} + +impl<T: EnumSetType> Extend<EnumSet<T>> for EnumSet<T> { + fn extend<I: IntoIterator<Item = EnumSet<T>>>(&mut self, iter: I) { + iter.into_iter().for_each(|v| { + self.insert_all(v); + }); + } +} + +impl<T: EnumSetType> FromIterator<EnumSet<T>> for EnumSet<T> { + fn from_iter<I: IntoIterator<Item = EnumSet<T>>>(iter: I) -> Self { + let mut set = EnumSet::default(); + set.extend(iter); + set + } +} + +/// Creates a EnumSet literal, which can be used in const contexts. +/// +/// The syntax used is `enum_set!(Type::A | Type::B | Type::C)`. Each variant must be of the same +/// type, or a error will occur at compile-time. +/// +/// This macro accepts trailing `|`s to allow easier use in other macros. +/// +/// # Examples +/// +/// ```rust +/// # use enumset::*; +/// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C } +/// const CONST_SET: EnumSet<Enum> = enum_set!(Enum::A | Enum::B); +/// assert_eq!(CONST_SET, Enum::A | Enum::B); +/// ``` +/// +/// This macro is strongly typed. For example, the following will not compile: +/// +/// ```compile_fail +/// # use enumset::*; +/// # #[derive(EnumSetType, Debug)] enum Enum { A, B, C } +/// # #[derive(EnumSetType, Debug)] enum Enum2 { A, B, C } +/// let type_error = enum_set!(Enum::A | Enum2::B); +/// ``` +#[macro_export] +macro_rules! enum_set { + ($(|)*) => { + $crate::EnumSet { __priv_repr: 0 } + }; + ($value:path $(|)*) => { + { + #[allow(deprecated)] let value = $value.__impl_enumset_internal__const_only(); + value + } + }; + ($value:path | $($rest:path)|* $(|)*) => { + { + #[allow(deprecated)] let value = $value.__impl_enumset_internal__const_only(); + $(#[allow(deprecated)] let value = $rest.__impl_enumset_internal__const_merge(value);)* + value + } + }; +} diff --git a/third_party/rust/enumset/src/repr.rs b/third_party/rust/enumset/src/repr.rs new file mode 100644 index 0000000000..38546aa8c9 --- /dev/null +++ b/third_party/rust/enumset/src/repr.rs @@ -0,0 +1,225 @@ +use core::convert::TryInto; +use core::fmt::Debug; +use core::hash::Hash; +use core::ops::*; + +/// A trait marking valid underlying bitset storage types and providing the +/// operations `EnumSet` and related types use. +pub trait EnumSetTypeRepr : + // Basic traits used to derive traits + Copy + + Ord + + Eq + + Debug + + Hash + + // Operations used by enumset + BitAnd<Output = Self> + + BitOr<Output = Self> + + BitXor<Output = Self> + + Not<Output = Self> + +{ + const WIDTH: u32; + + fn is_empty(&self) -> bool; + fn empty() -> Self; + + fn add_bit(&mut self, bit: u32); + fn remove_bit(&mut self, bit: u32); + fn has_bit(&self, bit: u32) -> bool; + + fn count_ones(&self) -> u32; + fn count_remaining_ones(&self, cursor: u32) -> usize; + fn leading_zeros(&self) -> u32; + fn trailing_zeros(&self) -> u32; + + fn and_not(&self, other: Self) -> Self; + + fn from_u8(v: u8) -> Self; + fn from_u16(v: u16) -> Self; + fn from_u32(v: u32) -> Self; + fn from_u64(v: u64) -> Self; + fn from_u128(v: u128) -> Self; + fn from_usize(v: usize) -> Self; + + fn to_u8(&self) -> u8; + fn to_u16(&self) -> u16; + fn to_u32(&self) -> u32; + fn to_u64(&self) -> u64; + fn to_u128(&self) -> u128; + fn to_usize(&self) -> usize; + + fn from_u8_opt(v: u8) -> Option<Self>; + fn from_u16_opt(v: u16) -> Option<Self>; + fn from_u32_opt(v: u32) -> Option<Self>; + fn from_u64_opt(v: u64) -> Option<Self>; + fn from_u128_opt(v: u128) -> Option<Self>; + fn from_usize_opt(v: usize) -> Option<Self>; + + fn to_u8_opt(&self) -> Option<u8>; + fn to_u16_opt(&self) -> Option<u16>; + fn to_u32_opt(&self) -> Option<u32>; + fn to_u64_opt(&self) -> Option<u64>; + fn to_u128_opt(&self) -> Option<u128>; + fn to_usize_opt(&self) -> Option<usize>; +} +macro_rules! prim { + ($name:ty, $width:expr) => { + impl EnumSetTypeRepr for $name { + const WIDTH: u32 = $width; + + #[inline(always)] + fn is_empty(&self) -> bool { + *self == 0 + } + #[inline(always)] + fn empty() -> Self { + 0 + } + + #[inline(always)] + fn add_bit(&mut self, bit: u32) { + *self |= 1 << bit as $name; + } + #[inline(always)] + fn remove_bit(&mut self, bit: u32) { + *self &= !(1 << bit as $name); + } + #[inline(always)] + fn has_bit(&self, bit: u32) -> bool { + (self & (1 << bit as $name)) != 0 + } + + #[inline(always)] + fn count_ones(&self) -> u32 { + (*self).count_ones() + } + #[inline(always)] + fn leading_zeros(&self) -> u32 { + (*self).leading_zeros() + } + #[inline(always)] + fn trailing_zeros(&self) -> u32 { + (*self).trailing_zeros() + } + + #[inline(always)] + fn and_not(&self, other: Self) -> Self { + (*self) & !other + } + + #[inline(always)] + fn count_remaining_ones(&self, cursor: u32) -> usize { + let left_mask = !((1 as $name) + .checked_shl(cursor) + .unwrap_or(0) + .wrapping_sub(1)); + (*self & left_mask).count_ones() as usize + } + + #[inline(always)] + fn from_u8(v: u8) -> Self { + v as $name + } + #[inline(always)] + fn from_u16(v: u16) -> Self { + v as $name + } + #[inline(always)] + fn from_u32(v: u32) -> Self { + v as $name + } + #[inline(always)] + fn from_u64(v: u64) -> Self { + v as $name + } + #[inline(always)] + fn from_u128(v: u128) -> Self { + v as $name + } + #[inline(always)] + fn from_usize(v: usize) -> Self { + v as $name + } + + #[inline(always)] + fn to_u8(&self) -> u8 { + (*self) as u8 + } + #[inline(always)] + fn to_u16(&self) -> u16 { + (*self) as u16 + } + #[inline(always)] + fn to_u32(&self) -> u32 { + (*self) as u32 + } + #[inline(always)] + fn to_u64(&self) -> u64 { + (*self) as u64 + } + #[inline(always)] + fn to_u128(&self) -> u128 { + (*self) as u128 + } + #[inline(always)] + fn to_usize(&self) -> usize { + (*self) as usize + } + + #[inline(always)] + fn from_u8_opt(v: u8) -> Option<Self> { + v.try_into().ok() + } + #[inline(always)] + fn from_u16_opt(v: u16) -> Option<Self> { + v.try_into().ok() + } + #[inline(always)] + fn from_u32_opt(v: u32) -> Option<Self> { + v.try_into().ok() + } + #[inline(always)] + fn from_u64_opt(v: u64) -> Option<Self> { + v.try_into().ok() + } + #[inline(always)] + fn from_u128_opt(v: u128) -> Option<Self> { + v.try_into().ok() + } + #[inline(always)] + fn from_usize_opt(v: usize) -> Option<Self> { + v.try_into().ok() + } + + #[inline(always)] + fn to_u8_opt(&self) -> Option<u8> { + (*self).try_into().ok() + } + #[inline(always)] + fn to_u16_opt(&self) -> Option<u16> { + (*self).try_into().ok() + } + #[inline(always)] + fn to_u32_opt(&self) -> Option<u32> { + (*self).try_into().ok() + } + #[inline(always)] + fn to_u64_opt(&self) -> Option<u64> { + (*self).try_into().ok() + } + #[inline(always)] + fn to_u128_opt(&self) -> Option<u128> { + (*self).try_into().ok() + } + #[inline(always)] + fn to_usize_opt(&self) -> Option<usize> { + (*self).try_into().ok() + } + } + }; +} +prim!(u8, 8); +prim!(u16, 16); +prim!(u32, 32); +prim!(u64, 64); +prim!(u128, 128); |