summaryrefslogtreecommitdiffstats
path: root/third_party/rust/num-integer/benches/gcd.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/num-integer/benches/gcd.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-integer/benches/gcd.rs')
-rw-r--r--third_party/rust/num-integer/benches/gcd.rs176
1 files changed, 176 insertions, 0 deletions
diff --git a/third_party/rust/num-integer/benches/gcd.rs b/third_party/rust/num-integer/benches/gcd.rs
new file mode 100644
index 0000000000..082d5ee09d
--- /dev/null
+++ b/third_party/rust/num-integer/benches/gcd.rs
@@ -0,0 +1,176 @@
+//! Benchmark comparing the current GCD implemtation against an older one.
+
+#![feature(test)]
+
+extern crate num_integer;
+extern crate num_traits;
+extern crate test;
+
+use num_integer::Integer;
+use num_traits::{AsPrimitive, Bounded, Signed};
+use test::{black_box, Bencher};
+
+trait GcdOld: Integer {
+ fn gcd_old(&self, other: &Self) -> Self;
+}
+
+macro_rules! impl_gcd_old_for_isize {
+ ($T:ty) => {
+ impl GcdOld for $T {
+ /// Calculates the Greatest Common Divisor (GCD) of the number and
+ /// `other`. The result is always positive.
+ #[inline]
+ fn gcd_old(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return (m | n).abs();
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // The algorithm needs positive numbers, but the minimum value
+ // can't be represented as a positive one.
+ // It's also a power of two, so the gcd can be
+ // calculated by bitshifting in that case
+
+ // Assuming two's complement, the number created by the shift
+ // is positive for all numbers except gcd = abs(min value)
+ // The call to .abs() causes a panic in debug mode
+ if m == Self::min_value() || n == Self::min_value() {
+ return (1 << shift).abs();
+ }
+
+ // guaranteed to be positive now, rest like unsigned algorithm
+ m = m.abs();
+ n = n.abs();
+
+ // divide n and m by 2 until odd
+ // m inside loop
+ n >>= n.trailing_zeros();
+
+ while m != 0 {
+ m >>= m.trailing_zeros();
+ if n > m {
+ std::mem::swap(&mut n, &mut m)
+ }
+ m -= n;
+ }
+
+ n << shift
+ }
+ }
+ };
+}
+
+impl_gcd_old_for_isize!(i8);
+impl_gcd_old_for_isize!(i16);
+impl_gcd_old_for_isize!(i32);
+impl_gcd_old_for_isize!(i64);
+impl_gcd_old_for_isize!(isize);
+impl_gcd_old_for_isize!(i128);
+
+macro_rules! impl_gcd_old_for_usize {
+ ($T:ty) => {
+ impl GcdOld for $T {
+ /// Calculates the Greatest Common Divisor (GCD) of the number and
+ /// `other`. The result is always positive.
+ #[inline]
+ fn gcd_old(&self, other: &Self) -> Self {
+ // Use Stein's algorithm
+ let mut m = *self;
+ let mut n = *other;
+ if m == 0 || n == 0 {
+ return m | n;
+ }
+
+ // find common factors of 2
+ let shift = (m | n).trailing_zeros();
+
+ // divide n and m by 2 until odd
+ // m inside loop
+ n >>= n.trailing_zeros();
+
+ while m != 0 {
+ m >>= m.trailing_zeros();
+ if n > m {
+ std::mem::swap(&mut n, &mut m)
+ }
+ m -= n;
+ }
+
+ n << shift
+ }
+ }
+ };
+}
+
+impl_gcd_old_for_usize!(u8);
+impl_gcd_old_for_usize!(u16);
+impl_gcd_old_for_usize!(u32);
+impl_gcd_old_for_usize!(u64);
+impl_gcd_old_for_usize!(usize);
+impl_gcd_old_for_usize!(u128);
+
+/// Return an iterator that yields all Fibonacci numbers fitting into a u128.
+fn fibonacci() -> impl Iterator<Item = u128> {
+ (0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| {
+ let tmp = *a;
+ *a = *b;
+ *b += tmp;
+ Some(*b)
+ })
+}
+
+fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T)
+where
+ T: AsPrimitive<u128>,
+ u128: AsPrimitive<T>,
+{
+ let max_value: u128 = T::max_value().as_();
+ let pairs: Vec<(T, T)> = fibonacci()
+ .collect::<Vec<_>>()
+ .windows(2)
+ .filter(|&pair| pair[0] <= max_value && pair[1] <= max_value)
+ .map(|pair| (pair[0].as_(), pair[1].as_()))
+ .collect();
+ b.iter(|| {
+ for &(ref m, ref n) in &pairs {
+ black_box(gcd(m, n));
+ }
+ });
+}
+
+macro_rules! bench_gcd {
+ ($T:ident) => {
+ mod $T {
+ use crate::{run_bench, GcdOld};
+ use num_integer::Integer;
+ use test::Bencher;
+
+ #[bench]
+ fn bench_gcd(b: &mut Bencher) {
+ run_bench(b, $T::gcd);
+ }
+
+ #[bench]
+ fn bench_gcd_old(b: &mut Bencher) {
+ run_bench(b, $T::gcd_old);
+ }
+ }
+ };
+}
+
+bench_gcd!(u8);
+bench_gcd!(u16);
+bench_gcd!(u32);
+bench_gcd!(u64);
+bench_gcd!(u128);
+
+bench_gcd!(i8);
+bench_gcd!(i16);
+bench_gcd!(i32);
+bench_gcd!(i64);
+bench_gcd!(i128);