diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/num-traits/src/float.rs | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-traits/src/float.rs')
-rw-r--r-- | third_party/rust/num-traits/src/float.rs | 2351 |
1 files changed, 2351 insertions, 0 deletions
diff --git a/third_party/rust/num-traits/src/float.rs b/third_party/rust/num-traits/src/float.rs new file mode 100644 index 0000000000..47bd65431f --- /dev/null +++ b/third_party/rust/num-traits/src/float.rs @@ -0,0 +1,2351 @@ +use core::mem; +use core::num::FpCategory; +use core::ops::{Add, Div, Neg}; + +use core::f32; +use core::f64; + +use {Num, NumCast, ToPrimitive}; + +#[cfg(all(not(feature = "std"), feature = "libm"))] +use libm; + +/// Generic trait for floating point numbers that works with `no_std`. +/// +/// This trait implements a subset of the `Float` trait. +pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { + /// Returns positive infinity. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::infinity() == x); + /// } + /// + /// check(f32::INFINITY); + /// check(f64::INFINITY); + /// ``` + fn infinity() -> Self; + + /// Returns negative infinity. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::neg_infinity() == x); + /// } + /// + /// check(f32::NEG_INFINITY); + /// check(f64::NEG_INFINITY); + /// ``` + fn neg_infinity() -> Self; + + /// Returns NaN. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// + /// fn check<T: FloatCore>() { + /// let n = T::nan(); + /// assert!(n != n); + /// } + /// + /// check::<f32>(); + /// check::<f64>(); + /// ``` + fn nan() -> Self; + + /// Returns `-0.0`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(n: T) { + /// let z = T::neg_zero(); + /// assert!(z.is_zero()); + /// assert!(T::one() / z == n); + /// } + /// + /// check(f32::NEG_INFINITY); + /// check(f64::NEG_INFINITY); + /// ``` + fn neg_zero() -> Self; + + /// Returns the smallest finite value that this type can represent. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::min_value() == x); + /// } + /// + /// check(f32::MIN); + /// check(f64::MIN); + /// ``` + fn min_value() -> Self; + + /// Returns the smallest positive, normalized value that this type can represent. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::min_positive_value() == x); + /// } + /// + /// check(f32::MIN_POSITIVE); + /// check(f64::MIN_POSITIVE); + /// ``` + fn min_positive_value() -> Self; + + /// Returns epsilon, a small positive value. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::epsilon() == x); + /// } + /// + /// check(f32::EPSILON); + /// check(f64::EPSILON); + /// ``` + fn epsilon() -> Self; + + /// Returns the largest finite value that this type can represent. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T) { + /// assert!(T::max_value() == x); + /// } + /// + /// check(f32::MAX); + /// check(f64::MAX); + /// ``` + fn max_value() -> Self; + + /// Returns `true` if the number is NaN. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_nan() == p); + /// } + /// + /// check(f32::NAN, true); + /// check(f32::INFINITY, false); + /// check(f64::NAN, true); + /// check(0.0f64, false); + /// ``` + #[inline] + fn is_nan(self) -> bool { + self != self + } + + /// Returns `true` if the number is infinite. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_infinite() == p); + /// } + /// + /// check(f32::INFINITY, true); + /// check(f32::NEG_INFINITY, true); + /// check(f32::NAN, false); + /// check(f64::INFINITY, true); + /// check(f64::NEG_INFINITY, true); + /// check(0.0f64, false); + /// ``` + #[inline] + fn is_infinite(self) -> bool { + self == Self::infinity() || self == Self::neg_infinity() + } + + /// Returns `true` if the number is neither infinite or NaN. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_finite() == p); + /// } + /// + /// check(f32::INFINITY, false); + /// check(f32::MAX, true); + /// check(f64::NEG_INFINITY, false); + /// check(f64::MIN_POSITIVE, true); + /// check(f64::NAN, false); + /// ``` + #[inline] + fn is_finite(self) -> bool { + !(self.is_nan() || self.is_infinite()) + } + + /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_normal() == p); + /// } + /// + /// check(f32::INFINITY, false); + /// check(f32::MAX, true); + /// check(f64::NEG_INFINITY, false); + /// check(f64::MIN_POSITIVE, true); + /// check(0.0f64, false); + /// ``` + #[inline] + fn is_normal(self) -> bool { + self.classify() == FpCategory::Normal + } + + /// Returns the floating point category of the number. If only one property + /// is going to be tested, it is generally faster to use the specific + /// predicate instead. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// use std::num::FpCategory; + /// + /// fn check<T: FloatCore>(x: T, c: FpCategory) { + /// assert!(x.classify() == c); + /// } + /// + /// check(f32::INFINITY, FpCategory::Infinite); + /// check(f32::MAX, FpCategory::Normal); + /// check(f64::NAN, FpCategory::Nan); + /// check(f64::MIN_POSITIVE, FpCategory::Normal); + /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); + /// check(0.0f64, FpCategory::Zero); + /// ``` + fn classify(self) -> FpCategory; + + /// Returns the largest integer less than or equal to a number. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.floor() == y); + /// } + /// + /// check(f32::INFINITY, f32::INFINITY); + /// check(0.9f32, 0.0); + /// check(1.0f32, 1.0); + /// check(1.1f32, 1.0); + /// check(-0.0f64, 0.0); + /// check(-0.9f64, -1.0); + /// check(-1.0f64, -1.0); + /// check(-1.1f64, -2.0); + /// check(f64::MIN, f64::MIN); + /// ``` + #[inline] + fn floor(self) -> Self { + let f = self.fract(); + if f.is_nan() || f.is_zero() { + self + } else if self < Self::zero() { + self - f - Self::one() + } else { + self - f + } + } + + /// Returns the smallest integer greater than or equal to a number. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.ceil() == y); + /// } + /// + /// check(f32::INFINITY, f32::INFINITY); + /// check(0.9f32, 1.0); + /// check(1.0f32, 1.0); + /// check(1.1f32, 2.0); + /// check(-0.0f64, 0.0); + /// check(-0.9f64, -0.0); + /// check(-1.0f64, -1.0); + /// check(-1.1f64, -1.0); + /// check(f64::MIN, f64::MIN); + /// ``` + #[inline] + fn ceil(self) -> Self { + let f = self.fract(); + if f.is_nan() || f.is_zero() { + self + } else if self > Self::zero() { + self - f + Self::one() + } else { + self - f + } + } + + /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.round() == y); + /// } + /// + /// check(f32::INFINITY, f32::INFINITY); + /// check(0.4f32, 0.0); + /// check(0.5f32, 1.0); + /// check(0.6f32, 1.0); + /// check(-0.4f64, 0.0); + /// check(-0.5f64, -1.0); + /// check(-0.6f64, -1.0); + /// check(f64::MIN, f64::MIN); + /// ``` + #[inline] + fn round(self) -> Self { + let one = Self::one(); + let h = Self::from(0.5).expect("Unable to cast from 0.5"); + let f = self.fract(); + if f.is_nan() || f.is_zero() { + self + } else if self > Self::zero() { + if f < h { + self - f + } else { + self - f + one + } + } else { + if -f < h { + self - f + } else { + self - f - one + } + } + } + + /// Return the integer part of a number. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.trunc() == y); + /// } + /// + /// check(f32::INFINITY, f32::INFINITY); + /// check(0.9f32, 0.0); + /// check(1.0f32, 1.0); + /// check(1.1f32, 1.0); + /// check(-0.0f64, 0.0); + /// check(-0.9f64, -0.0); + /// check(-1.0f64, -1.0); + /// check(-1.1f64, -1.0); + /// check(f64::MIN, f64::MIN); + /// ``` + #[inline] + fn trunc(self) -> Self { + let f = self.fract(); + if f.is_nan() { + self + } else { + self - f + } + } + + /// Returns the fractional part of a number. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.fract() == y); + /// } + /// + /// check(f32::MAX, 0.0); + /// check(0.75f32, 0.75); + /// check(1.0f32, 0.0); + /// check(1.25f32, 0.25); + /// check(-0.0f64, 0.0); + /// check(-0.75f64, -0.75); + /// check(-1.0f64, 0.0); + /// check(-1.25f64, -0.25); + /// check(f64::MIN, 0.0); + /// ``` + #[inline] + fn fract(self) -> Self { + if self.is_zero() { + Self::zero() + } else { + self % Self::one() + } + } + + /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the + /// number is `FloatCore::nan()`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.abs() == y); + /// } + /// + /// check(f32::INFINITY, f32::INFINITY); + /// check(1.0f32, 1.0); + /// check(0.0f64, 0.0); + /// check(-0.0f64, 0.0); + /// check(-1.0f64, 1.0); + /// check(f64::MIN, f64::MAX); + /// ``` + #[inline] + fn abs(self) -> Self { + if self.is_sign_positive() { + return self; + } + if self.is_sign_negative() { + return -self; + } + Self::nan() + } + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` + /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` + /// - `FloatCore::nan()` if the number is `FloatCore::nan()` + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.signum() == y); + /// } + /// + /// check(f32::INFINITY, 1.0); + /// check(3.0f32, 1.0); + /// check(0.0f32, 1.0); + /// check(-0.0f64, -1.0); + /// check(-3.0f64, -1.0); + /// check(f64::MIN, -1.0); + /// ``` + #[inline] + fn signum(self) -> Self { + if self.is_nan() { + Self::nan() + } else if self.is_sign_negative() { + -Self::one() + } else { + Self::one() + } + } + + /// Returns `true` if `self` is positive, including `+0.0` and + /// `FloatCore::infinity()`, and since Rust 1.20 also + /// `FloatCore::nan()`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_sign_positive() == p); + /// } + /// + /// check(f32::INFINITY, true); + /// check(f32::MAX, true); + /// check(0.0f32, true); + /// check(-0.0f64, false); + /// check(f64::NEG_INFINITY, false); + /// check(f64::MIN_POSITIVE, true); + /// check(-f64::NAN, false); + /// ``` + #[inline] + fn is_sign_positive(self) -> bool { + !self.is_sign_negative() + } + + /// Returns `true` if `self` is negative, including `-0.0` and + /// `FloatCore::neg_infinity()`, and since Rust 1.20 also + /// `-FloatCore::nan()`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, p: bool) { + /// assert!(x.is_sign_negative() == p); + /// } + /// + /// check(f32::INFINITY, false); + /// check(f32::MAX, false); + /// check(0.0f32, false); + /// check(-0.0f64, true); + /// check(f64::NEG_INFINITY, true); + /// check(f64::MIN_POSITIVE, false); + /// check(f64::NAN, false); + /// ``` + #[inline] + fn is_sign_negative(self) -> bool { + let (_, _, sign) = self.integer_decode(); + sign < 0 + } + + /// Returns the minimum of the two numbers. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T, min: T) { + /// assert!(x.min(y) == min); + /// } + /// + /// check(1.0f32, 2.0, 1.0); + /// check(f32::NAN, 2.0, 2.0); + /// check(1.0f64, -2.0, -2.0); + /// check(1.0f64, f64::NAN, 1.0); + /// ``` + #[inline] + fn min(self, other: Self) -> Self { + if self.is_nan() { + return other; + } + if other.is_nan() { + return self; + } + if self < other { + self + } else { + other + } + } + + /// Returns the maximum of the two numbers. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T, max: T) { + /// assert!(x.max(y) == max); + /// } + /// + /// check(1.0f32, 2.0, 2.0); + /// check(1.0f32, f32::NAN, 1.0); + /// check(-1.0f64, 2.0, 2.0); + /// check(-1.0f64, f64::NAN, -1.0); + /// ``` + #[inline] + fn max(self, other: Self) -> Self { + if self.is_nan() { + return other; + } + if other.is_nan() { + return self; + } + if self > other { + self + } else { + other + } + } + + /// Returns the reciprocal (multiplicative inverse) of the number. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, y: T) { + /// assert!(x.recip() == y); + /// assert!(y.recip() == x); + /// } + /// + /// check(f32::INFINITY, 0.0); + /// check(2.0f32, 0.5); + /// check(-0.25f64, -4.0); + /// check(-0.0f64, f64::NEG_INFINITY); + /// ``` + #[inline] + fn recip(self) -> Self { + Self::one() / self + } + + /// Raise a number to an integer power. + /// + /// Using this function is generally faster than using `powf` + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// + /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { + /// assert!(x.powi(exp) == powi); + /// } + /// + /// check(9.0f32, 2, 81.0); + /// check(1.0f32, -2, 1.0); + /// check(10.0f64, 20, 1e20); + /// check(4.0f64, -2, 0.0625); + /// check(-1.0f64, std::i32::MIN, 1.0); + /// ``` + #[inline] + fn powi(mut self, mut exp: i32) -> Self { + if exp < 0 { + exp = exp.wrapping_neg(); + self = self.recip(); + } + // It should always be possible to convert a positive `i32` to a `usize`. + // Note, `i32::MIN` will wrap and still be negative, so we need to convert + // to `u32` without sign-extension before growing to `usize`. + super::pow(self, (exp as u32).to_usize().unwrap()) + } + + /// Converts to degrees, assuming the number is in radians. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(rad: T, deg: T) { + /// assert!(rad.to_degrees() == deg); + /// } + /// + /// check(0.0f32, 0.0); + /// check(f32::consts::PI, 180.0); + /// check(f64::consts::FRAC_PI_4, 45.0); + /// check(f64::INFINITY, f64::INFINITY); + /// ``` + fn to_degrees(self) -> Self; + + /// Converts to radians, assuming the number is in degrees. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(deg: T, rad: T) { + /// assert!(deg.to_radians() == rad); + /// } + /// + /// check(0.0f32, 0.0); + /// check(180.0, f32::consts::PI); + /// check(45.0, f64::consts::FRAC_PI_4); + /// check(f64::INFINITY, f64::INFINITY); + /// ``` + fn to_radians(self) -> Self; + + /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. + /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. + /// + /// # Examples + /// + /// ``` + /// use num_traits::float::FloatCore; + /// use std::{f32, f64}; + /// + /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { + /// let (mantissa, exponent, sign) = x.integer_decode(); + /// assert_eq!(mantissa, m); + /// assert_eq!(exponent, e); + /// assert_eq!(sign, s); + /// } + /// + /// check(2.0f32, 1 << 23, -22, 1); + /// check(-2.0f32, 1 << 23, -22, -1); + /// check(f32::INFINITY, 1 << 23, 105, 1); + /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); + /// ``` + fn integer_decode(self) -> (u64, i16, i8); +} + +impl FloatCore for f32 { + constant! { + infinity() -> f32::INFINITY; + neg_infinity() -> f32::NEG_INFINITY; + nan() -> f32::NAN; + neg_zero() -> -0.0; + min_value() -> f32::MIN; + min_positive_value() -> f32::MIN_POSITIVE; + epsilon() -> f32::EPSILON; + max_value() -> f32::MAX; + } + + #[inline] + fn integer_decode(self) -> (u64, i16, i8) { + integer_decode_f32(self) + } + + #[inline] + #[cfg(not(feature = "std"))] + fn classify(self) -> FpCategory { + const EXP_MASK: u32 = 0x7f800000; + const MAN_MASK: u32 = 0x007fffff; + + // Safety: this identical to the implementation of f32::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u32 = unsafe { mem::transmute(self) }; + match (bits & MAN_MASK, bits & EXP_MASK) { + (0, 0) => FpCategory::Zero, + (_, 0) => FpCategory::Subnormal, + (0, EXP_MASK) => FpCategory::Infinite, + (_, EXP_MASK) => FpCategory::Nan, + _ => FpCategory::Normal, + } + } + + #[inline] + #[cfg(not(feature = "std"))] + fn is_sign_negative(self) -> bool { + const SIGN_MASK: u32 = 0x80000000; + + // Safety: this identical to the implementation of f32::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u32 = unsafe { mem::transmute(self) }; + bits & SIGN_MASK != 0 + } + + #[inline] + #[cfg(not(feature = "std"))] + fn to_degrees(self) -> Self { + // Use a constant for better precision. + const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32; + self * PIS_IN_180 + } + + #[inline] + #[cfg(not(feature = "std"))] + fn to_radians(self) -> Self { + self * (f32::consts::PI / 180.0) + } + + #[cfg(feature = "std")] + forward! { + Self::is_nan(self) -> bool; + Self::is_infinite(self) -> bool; + Self::is_finite(self) -> bool; + Self::is_normal(self) -> bool; + Self::classify(self) -> FpCategory; + Self::floor(self) -> Self; + Self::ceil(self) -> Self; + Self::round(self) -> Self; + Self::trunc(self) -> Self; + Self::fract(self) -> Self; + Self::abs(self) -> Self; + Self::signum(self) -> Self; + Self::is_sign_positive(self) -> bool; + Self::is_sign_negative(self) -> bool; + Self::min(self, other: Self) -> Self; + Self::max(self, other: Self) -> Self; + Self::recip(self) -> Self; + Self::powi(self, n: i32) -> Self; + Self::to_degrees(self) -> Self; + Self::to_radians(self) -> Self; + } + + #[cfg(all(not(feature = "std"), feature = "libm"))] + forward! { + libm::floorf as floor(self) -> Self; + libm::ceilf as ceil(self) -> Self; + libm::roundf as round(self) -> Self; + libm::truncf as trunc(self) -> Self; + libm::fabsf as abs(self) -> Self; + libm::fminf as min(self, other: Self) -> Self; + libm::fmaxf as max(self, other: Self) -> Self; + } + + #[cfg(all(not(feature = "std"), feature = "libm"))] + #[inline] + fn fract(self) -> Self { + self - libm::truncf(self) + } +} + +impl FloatCore for f64 { + constant! { + infinity() -> f64::INFINITY; + neg_infinity() -> f64::NEG_INFINITY; + nan() -> f64::NAN; + neg_zero() -> -0.0; + min_value() -> f64::MIN; + min_positive_value() -> f64::MIN_POSITIVE; + epsilon() -> f64::EPSILON; + max_value() -> f64::MAX; + } + + #[inline] + fn integer_decode(self) -> (u64, i16, i8) { + integer_decode_f64(self) + } + + #[inline] + #[cfg(not(feature = "std"))] + fn classify(self) -> FpCategory { + const EXP_MASK: u64 = 0x7ff0000000000000; + const MAN_MASK: u64 = 0x000fffffffffffff; + + // Safety: this identical to the implementation of f64::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u64 = unsafe { mem::transmute(self) }; + match (bits & MAN_MASK, bits & EXP_MASK) { + (0, 0) => FpCategory::Zero, + (_, 0) => FpCategory::Subnormal, + (0, EXP_MASK) => FpCategory::Infinite, + (_, EXP_MASK) => FpCategory::Nan, + _ => FpCategory::Normal, + } + } + + #[inline] + #[cfg(not(feature = "std"))] + fn is_sign_negative(self) -> bool { + const SIGN_MASK: u64 = 0x8000000000000000; + + // Safety: this identical to the implementation of f64::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u64 = unsafe { mem::transmute(self) }; + bits & SIGN_MASK != 0 + } + + #[inline] + #[cfg(not(feature = "std"))] + fn to_degrees(self) -> Self { + // The division here is correctly rounded with respect to the true + // value of 180/π. (This differs from f32, where a constant must be + // used to ensure a correctly rounded result.) + self * (180.0 / f64::consts::PI) + } + + #[inline] + #[cfg(not(feature = "std"))] + fn to_radians(self) -> Self { + self * (f64::consts::PI / 180.0) + } + + #[cfg(feature = "std")] + forward! { + Self::is_nan(self) -> bool; + Self::is_infinite(self) -> bool; + Self::is_finite(self) -> bool; + Self::is_normal(self) -> bool; + Self::classify(self) -> FpCategory; + Self::floor(self) -> Self; + Self::ceil(self) -> Self; + Self::round(self) -> Self; + Self::trunc(self) -> Self; + Self::fract(self) -> Self; + Self::abs(self) -> Self; + Self::signum(self) -> Self; + Self::is_sign_positive(self) -> bool; + Self::is_sign_negative(self) -> bool; + Self::min(self, other: Self) -> Self; + Self::max(self, other: Self) -> Self; + Self::recip(self) -> Self; + Self::powi(self, n: i32) -> Self; + Self::to_degrees(self) -> Self; + Self::to_radians(self) -> Self; + } + + #[cfg(all(not(feature = "std"), feature = "libm"))] + forward! { + libm::floor as floor(self) -> Self; + libm::ceil as ceil(self) -> Self; + libm::round as round(self) -> Self; + libm::trunc as trunc(self) -> Self; + libm::fabs as abs(self) -> Self; + libm::fmin as min(self, other: Self) -> Self; + libm::fmax as max(self, other: Self) -> Self; + } + + #[cfg(all(not(feature = "std"), feature = "libm"))] + #[inline] + fn fract(self) -> Self { + self - libm::trunc(self) + } +} + +// FIXME: these doctests aren't actually helpful, because they're using and +// testing the inherent methods directly, not going through `Float`. + +/// Generic trait for floating point numbers +/// +/// This trait is only available with the `std` feature, or with the `libm` feature otherwise. +#[cfg(any(feature = "std", feature = "libm"))] +pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { + /// Returns the `NaN` value. + /// + /// ``` + /// use num_traits::Float; + /// + /// let nan: f32 = Float::nan(); + /// + /// assert!(nan.is_nan()); + /// ``` + fn nan() -> Self; + /// Returns the infinite value. + /// + /// ``` + /// use num_traits::Float; + /// use std::f32; + /// + /// let infinity: f32 = Float::infinity(); + /// + /// assert!(infinity.is_infinite()); + /// assert!(!infinity.is_finite()); + /// assert!(infinity > f32::MAX); + /// ``` + fn infinity() -> Self; + /// Returns the negative infinite value. + /// + /// ``` + /// use num_traits::Float; + /// use std::f32; + /// + /// let neg_infinity: f32 = Float::neg_infinity(); + /// + /// assert!(neg_infinity.is_infinite()); + /// assert!(!neg_infinity.is_finite()); + /// assert!(neg_infinity < f32::MIN); + /// ``` + fn neg_infinity() -> Self; + /// Returns `-0.0`. + /// + /// ``` + /// use num_traits::{Zero, Float}; + /// + /// let inf: f32 = Float::infinity(); + /// let zero: f32 = Zero::zero(); + /// let neg_zero: f32 = Float::neg_zero(); + /// + /// assert_eq!(zero, neg_zero); + /// assert_eq!(7.0f32/inf, zero); + /// assert_eq!(zero * 10.0, zero); + /// ``` + fn neg_zero() -> Self; + + /// Returns the smallest finite value that this type can represent. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x: f64 = Float::min_value(); + /// + /// assert_eq!(x, f64::MIN); + /// ``` + fn min_value() -> Self; + + /// Returns the smallest positive, normalized value that this type can represent. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x: f64 = Float::min_positive_value(); + /// + /// assert_eq!(x, f64::MIN_POSITIVE); + /// ``` + fn min_positive_value() -> Self; + + /// Returns epsilon, a small positive value. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x: f64 = Float::epsilon(); + /// + /// assert_eq!(x, f64::EPSILON); + /// ``` + /// + /// # Panics + /// + /// The default implementation will panic if `f32::EPSILON` cannot + /// be cast to `Self`. + fn epsilon() -> Self { + Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON") + } + + /// Returns the largest finite value that this type can represent. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x: f64 = Float::max_value(); + /// assert_eq!(x, f64::MAX); + /// ``` + fn max_value() -> Self; + + /// Returns `true` if this value is `NaN` and false otherwise. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let nan = f64::NAN; + /// let f = 7.0; + /// + /// assert!(nan.is_nan()); + /// assert!(!f.is_nan()); + /// ``` + fn is_nan(self) -> bool; + + /// Returns `true` if this value is positive infinity or negative infinity and + /// false otherwise. + /// + /// ``` + /// use num_traits::Float; + /// use std::f32; + /// + /// let f = 7.0f32; + /// let inf: f32 = Float::infinity(); + /// let neg_inf: f32 = Float::neg_infinity(); + /// let nan: f32 = f32::NAN; + /// + /// assert!(!f.is_infinite()); + /// assert!(!nan.is_infinite()); + /// + /// assert!(inf.is_infinite()); + /// assert!(neg_inf.is_infinite()); + /// ``` + fn is_infinite(self) -> bool; + + /// Returns `true` if this number is neither infinite nor `NaN`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f32; + /// + /// let f = 7.0f32; + /// let inf: f32 = Float::infinity(); + /// let neg_inf: f32 = Float::neg_infinity(); + /// let nan: f32 = f32::NAN; + /// + /// assert!(f.is_finite()); + /// + /// assert!(!nan.is_finite()); + /// assert!(!inf.is_finite()); + /// assert!(!neg_inf.is_finite()); + /// ``` + fn is_finite(self) -> bool; + + /// Returns `true` if the number is neither zero, infinite, + /// [subnormal][subnormal], or `NaN`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f32; + /// + /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 + /// let max = f32::MAX; + /// let lower_than_min = 1.0e-40_f32; + /// let zero = 0.0f32; + /// + /// assert!(min.is_normal()); + /// assert!(max.is_normal()); + /// + /// assert!(!zero.is_normal()); + /// assert!(!f32::NAN.is_normal()); + /// assert!(!f32::INFINITY.is_normal()); + /// // Values between `0` and `min` are Subnormal. + /// assert!(!lower_than_min.is_normal()); + /// ``` + /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number + fn is_normal(self) -> bool; + + /// Returns the floating point category of the number. If only one property + /// is going to be tested, it is generally faster to use the specific + /// predicate instead. + /// + /// ``` + /// use num_traits::Float; + /// use std::num::FpCategory; + /// use std::f32; + /// + /// let num = 12.4f32; + /// let inf = f32::INFINITY; + /// + /// assert_eq!(num.classify(), FpCategory::Normal); + /// assert_eq!(inf.classify(), FpCategory::Infinite); + /// ``` + fn classify(self) -> FpCategory; + + /// Returns the largest integer less than or equal to a number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 3.99; + /// let g = 3.0; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// ``` + fn floor(self) -> Self; + + /// Returns the smallest integer greater than or equal to a number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 3.01; + /// let g = 4.0; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// ``` + fn ceil(self) -> Self; + + /// Returns the nearest integer to a number. Round half-way cases away from + /// `0.0`. + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 3.3; + /// let g = -3.3; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// ``` + fn round(self) -> Self; + + /// Return the integer part of a number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 3.3; + /// let g = -3.7; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), -3.0); + /// ``` + fn trunc(self) -> Self; + + /// Returns the fractional part of a number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 3.5; + /// let y = -3.5; + /// let abs_difference_x = (x.fract() - 0.5).abs(); + /// let abs_difference_y = (y.fract() - (-0.5)).abs(); + /// + /// assert!(abs_difference_x < 1e-10); + /// assert!(abs_difference_y < 1e-10); + /// ``` + fn fract(self) -> Self; + + /// Computes the absolute value of `self`. Returns `Float::nan()` if the + /// number is `Float::nan()`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = 3.5; + /// let y = -3.5; + /// + /// let abs_difference_x = (x.abs() - x).abs(); + /// let abs_difference_y = (y.abs() - (-y)).abs(); + /// + /// assert!(abs_difference_x < 1e-10); + /// assert!(abs_difference_y < 1e-10); + /// + /// assert!(f64::NAN.abs().is_nan()); + /// ``` + fn abs(self) -> Self; + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` + /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` + /// - `Float::nan()` if the number is `Float::nan()` + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let f = 3.5; + /// + /// assert_eq!(f.signum(), 1.0); + /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); + /// + /// assert!(f64::NAN.signum().is_nan()); + /// ``` + fn signum(self) -> Self; + + /// Returns `true` if `self` is positive, including `+0.0`, + /// `Float::infinity()`, and since Rust 1.20 also `Float::nan()`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let neg_nan: f64 = -f64::NAN; + /// + /// let f = 7.0; + /// let g = -7.0; + /// + /// assert!(f.is_sign_positive()); + /// assert!(!g.is_sign_positive()); + /// assert!(!neg_nan.is_sign_positive()); + /// ``` + fn is_sign_positive(self) -> bool; + + /// Returns `true` if `self` is negative, including `-0.0`, + /// `Float::neg_infinity()`, and since Rust 1.20 also `-Float::nan()`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let nan: f64 = f64::NAN; + /// + /// let f = 7.0; + /// let g = -7.0; + /// + /// assert!(!f.is_sign_negative()); + /// assert!(g.is_sign_negative()); + /// assert!(!nan.is_sign_negative()); + /// ``` + fn is_sign_negative(self) -> bool; + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` can be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. + /// + /// ``` + /// use num_traits::Float; + /// + /// let m = 10.0; + /// let x = 4.0; + /// let b = 60.0; + /// + /// // 100.0 + /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn mul_add(self, a: Self, b: Self) -> Self; + /// Take the reciprocal (inverse) of a number, `1/x`. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 2.0; + /// let abs_difference = (x.recip() - (1.0/x)).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn recip(self) -> Self; + + /// Raise a number to an integer power. + /// + /// Using this function is generally faster than using `powf` + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 2.0; + /// let abs_difference = (x.powi(2) - x*x).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn powi(self, n: i32) -> Self; + + /// Raise a number to a floating point power. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 2.0; + /// let abs_difference = (x.powf(2.0) - x*x).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn powf(self, n: Self) -> Self; + + /// Take the square root of a number. + /// + /// Returns NaN if `self` is a negative number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let positive = 4.0; + /// let negative = -4.0; + /// + /// let abs_difference = (positive.sqrt() - 2.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// assert!(negative.sqrt().is_nan()); + /// ``` + fn sqrt(self) -> Self; + + /// Returns `e^(self)`, (the exponential function). + /// + /// ``` + /// use num_traits::Float; + /// + /// let one = 1.0; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn exp(self) -> Self; + + /// Returns `2^(self)`. + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 2.0; + /// + /// // 2^2 - 4 == 0 + /// let abs_difference = (f.exp2() - 4.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn exp2(self) -> Self; + + /// Returns the natural logarithm of the number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let one = 1.0; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn ln(self) -> Self; + + /// Returns the logarithm of the number with respect to an arbitrary base. + /// + /// ``` + /// use num_traits::Float; + /// + /// let ten = 10.0; + /// let two = 2.0; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); + /// + /// // log2(2) - 1 == 0 + /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); + /// + /// assert!(abs_difference_10 < 1e-10); + /// assert!(abs_difference_2 < 1e-10); + /// ``` + fn log(self, base: Self) -> Self; + + /// Returns the base 2 logarithm of the number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let two = 2.0; + /// + /// // log2(2) - 1 == 0 + /// let abs_difference = (two.log2() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn log2(self) -> Self; + + /// Returns the base 10 logarithm of the number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let ten = 10.0; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference = (ten.log10() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn log10(self) -> Self; + + /// Converts radians to degrees. + /// + /// ``` + /// use std::f64::consts; + /// + /// let angle = consts::PI; + /// + /// let abs_difference = (angle.to_degrees() - 180.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + #[inline] + fn to_degrees(self) -> Self { + let halfpi = Self::zero().acos(); + let ninety = Self::from(90u8).unwrap(); + self * ninety / halfpi + } + + /// Converts degrees to radians. + /// + /// ``` + /// use std::f64::consts; + /// + /// let angle = 180.0_f64; + /// + /// let abs_difference = (angle.to_radians() - consts::PI).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + #[inline] + fn to_radians(self) -> Self { + let halfpi = Self::zero().acos(); + let ninety = Self::from(90u8).unwrap(); + self * halfpi / ninety + } + + /// Returns the maximum of the two numbers. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 1.0; + /// let y = 2.0; + /// + /// assert_eq!(x.max(y), y); + /// ``` + fn max(self, other: Self) -> Self; + + /// Returns the minimum of the two numbers. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 1.0; + /// let y = 2.0; + /// + /// assert_eq!(x.min(y), x); + /// ``` + fn min(self, other: Self) -> Self; + + /// The positive difference of two numbers. + /// + /// * If `self <= other`: `0:0` + /// * Else: `self - other` + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 3.0; + /// let y = -3.0; + /// + /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); + /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); + /// + /// assert!(abs_difference_x < 1e-10); + /// assert!(abs_difference_y < 1e-10); + /// ``` + fn abs_sub(self, other: Self) -> Self; + + /// Take the cubic root of a number. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 8.0; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn cbrt(self) -> Self; + + /// Calculate the length of the hypotenuse of a right-angle triangle given + /// legs of length `x` and `y`. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 2.0; + /// let y = 3.0; + /// + /// // sqrt(x^2 + y^2) + /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn hypot(self, other: Self) -> Self; + + /// Computes the sine of a number (in radians). + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = f64::consts::PI/2.0; + /// + /// let abs_difference = (x.sin() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn sin(self) -> Self; + + /// Computes the cosine of a number (in radians). + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = 2.0*f64::consts::PI; + /// + /// let abs_difference = (x.cos() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn cos(self) -> Self; + + /// Computes the tangent of a number (in radians). + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = f64::consts::PI/4.0; + /// let abs_difference = (x.tan() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-14); + /// ``` + fn tan(self) -> Self; + + /// Computes the arcsine of a number. Return value is in radians in + /// the range [-pi/2, pi/2] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let f = f64::consts::PI / 2.0; + /// + /// // asin(sin(pi/2)) + /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn asin(self) -> Self; + + /// Computes the arccosine of a number. Return value is in radians in + /// the range [0, pi] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let f = f64::consts::PI / 4.0; + /// + /// // acos(cos(pi/4)) + /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn acos(self) -> Self; + + /// Computes the arctangent of a number. Return value is in radians in the + /// range [-pi/2, pi/2]; + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 1.0; + /// + /// // atan(tan(1)) + /// let abs_difference = (f.tan().atan() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn atan(self) -> Self; + + /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). + /// + /// * `x = 0`, `y = 0`: `0` + /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` + /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` + /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let pi = f64::consts::PI; + /// // All angles from horizontal right (+x) + /// // 45 deg counter-clockwise + /// let x1 = 3.0; + /// let y1 = -3.0; + /// + /// // 135 deg clockwise + /// let x2 = -3.0; + /// let y2 = 3.0; + /// + /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); + /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); + /// + /// assert!(abs_difference_1 < 1e-10); + /// assert!(abs_difference_2 < 1e-10); + /// ``` + fn atan2(self, other: Self) -> Self; + + /// Simultaneously computes the sine and cosine of the number, `x`. Returns + /// `(sin(x), cos(x))`. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = f64::consts::PI/4.0; + /// let f = x.sin_cos(); + /// + /// let abs_difference_0 = (f.0 - x.sin()).abs(); + /// let abs_difference_1 = (f.1 - x.cos()).abs(); + /// + /// assert!(abs_difference_0 < 1e-10); + /// assert!(abs_difference_0 < 1e-10); + /// ``` + fn sin_cos(self) -> (Self, Self); + + /// Returns `e^(self) - 1` in a way that is accurate even if the + /// number is close to zero. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 7.0; + /// + /// // e^(ln(7)) - 1 + /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn exp_m1(self) -> Self; + + /// Returns `ln(1+n)` (natural logarithm) more accurately than if + /// the operations were performed separately. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let x = f64::consts::E - 1.0; + /// + /// // ln(1 + (e - 1)) == ln(e) == 1 + /// let abs_difference = (x.ln_1p() - 1.0).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn ln_1p(self) -> Self; + + /// Hyperbolic sine function. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let e = f64::consts::E; + /// let x = 1.0; + /// + /// let f = x.sinh(); + /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` + /// let g = (e*e - 1.0)/(2.0*e); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn sinh(self) -> Self; + + /// Hyperbolic cosine function. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let e = f64::consts::E; + /// let x = 1.0; + /// let f = x.cosh(); + /// // Solving cosh() at 1 gives this result + /// let g = (e*e + 1.0)/(2.0*e); + /// let abs_difference = (f - g).abs(); + /// + /// // Same result + /// assert!(abs_difference < 1.0e-10); + /// ``` + fn cosh(self) -> Self; + + /// Hyperbolic tangent function. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let e = f64::consts::E; + /// let x = 1.0; + /// + /// let f = x.tanh(); + /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` + /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference < 1.0e-10); + /// ``` + fn tanh(self) -> Self; + + /// Inverse hyperbolic sine function. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 1.0; + /// let f = x.sinh().asinh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference < 1.0e-10); + /// ``` + fn asinh(self) -> Self; + + /// Inverse hyperbolic cosine function. + /// + /// ``` + /// use num_traits::Float; + /// + /// let x = 1.0; + /// let f = x.cosh().acosh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference < 1.0e-10); + /// ``` + fn acosh(self) -> Self; + + /// Inverse hyperbolic tangent function. + /// + /// ``` + /// use num_traits::Float; + /// use std::f64; + /// + /// let e = f64::consts::E; + /// let f = e.tanh().atanh(); + /// + /// let abs_difference = (f - e).abs(); + /// + /// assert!(abs_difference < 1.0e-10); + /// ``` + fn atanh(self) -> Self; + + /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. + /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. + /// + /// ``` + /// use num_traits::Float; + /// + /// let num = 2.0f32; + /// + /// // (8388608, -22, 1) + /// let (mantissa, exponent, sign) = Float::integer_decode(num); + /// let sign_f = sign as f32; + /// let mantissa_f = mantissa as f32; + /// let exponent_f = num.powf(exponent as f32); + /// + /// // 1 * 8388608 * 2^(-22) == 2 + /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// ``` + fn integer_decode(self) -> (u64, i16, i8); + + /// Returns a number composed of the magnitude of `self` and the sign of + /// `sign`. + /// + /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise + /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of + /// `sign` is returned. + /// + /// # Examples + /// + /// ``` + /// use num_traits::Float; + /// + /// let f = 3.5_f32; + /// + /// assert_eq!(f.copysign(0.42), 3.5_f32); + /// assert_eq!(f.copysign(-0.42), -3.5_f32); + /// assert_eq!((-f).copysign(0.42), 3.5_f32); + /// assert_eq!((-f).copysign(-0.42), -3.5_f32); + /// + /// assert!(f32::nan().copysign(1.0).is_nan()); + /// ``` + fn copysign(self, sign: Self) -> Self { + if self.is_sign_negative() == sign.is_sign_negative() { + self + } else { + self.neg() + } + } +} + +#[cfg(feature = "std")] +macro_rules! float_impl_std { + ($T:ident $decode:ident) => { + impl Float for $T { + constant! { + nan() -> $T::NAN; + infinity() -> $T::INFINITY; + neg_infinity() -> $T::NEG_INFINITY; + neg_zero() -> -0.0; + min_value() -> $T::MIN; + min_positive_value() -> $T::MIN_POSITIVE; + epsilon() -> $T::EPSILON; + max_value() -> $T::MAX; + } + + #[inline] + #[allow(deprecated)] + fn abs_sub(self, other: Self) -> Self { + <$T>::abs_sub(self, other) + } + + #[inline] + fn integer_decode(self) -> (u64, i16, i8) { + $decode(self) + } + + forward! { + Self::is_nan(self) -> bool; + Self::is_infinite(self) -> bool; + Self::is_finite(self) -> bool; + Self::is_normal(self) -> bool; + Self::classify(self) -> FpCategory; + Self::floor(self) -> Self; + Self::ceil(self) -> Self; + Self::round(self) -> Self; + Self::trunc(self) -> Self; + Self::fract(self) -> Self; + Self::abs(self) -> Self; + Self::signum(self) -> Self; + Self::is_sign_positive(self) -> bool; + Self::is_sign_negative(self) -> bool; + Self::mul_add(self, a: Self, b: Self) -> Self; + Self::recip(self) -> Self; + Self::powi(self, n: i32) -> Self; + Self::powf(self, n: Self) -> Self; + Self::sqrt(self) -> Self; + Self::exp(self) -> Self; + Self::exp2(self) -> Self; + Self::ln(self) -> Self; + Self::log(self, base: Self) -> Self; + Self::log2(self) -> Self; + Self::log10(self) -> Self; + Self::to_degrees(self) -> Self; + Self::to_radians(self) -> Self; + Self::max(self, other: Self) -> Self; + Self::min(self, other: Self) -> Self; + Self::cbrt(self) -> Self; + Self::hypot(self, other: Self) -> Self; + Self::sin(self) -> Self; + Self::cos(self) -> Self; + Self::tan(self) -> Self; + Self::asin(self) -> Self; + Self::acos(self) -> Self; + Self::atan(self) -> Self; + Self::atan2(self, other: Self) -> Self; + Self::sin_cos(self) -> (Self, Self); + Self::exp_m1(self) -> Self; + Self::ln_1p(self) -> Self; + Self::sinh(self) -> Self; + Self::cosh(self) -> Self; + Self::tanh(self) -> Self; + Self::asinh(self) -> Self; + Self::acosh(self) -> Self; + Self::atanh(self) -> Self; + } + + #[cfg(has_copysign)] + #[inline] + fn copysign(self, sign: Self) -> Self { + Self::copysign(self, sign) + } + } + }; +} + +#[cfg(all(not(feature = "std"), feature = "libm"))] +macro_rules! float_impl_libm { + ($T:ident $decode:ident) => { + constant! { + nan() -> $T::NAN; + infinity() -> $T::INFINITY; + neg_infinity() -> $T::NEG_INFINITY; + neg_zero() -> -0.0; + min_value() -> $T::MIN; + min_positive_value() -> $T::MIN_POSITIVE; + epsilon() -> $T::EPSILON; + max_value() -> $T::MAX; + } + + #[inline] + fn integer_decode(self) -> (u64, i16, i8) { + $decode(self) + } + + #[inline] + fn fract(self) -> Self { + self - Float::trunc(self) + } + + #[inline] + fn log(self, base: Self) -> Self { + self.ln() / base.ln() + } + + forward! { + FloatCore::is_nan(self) -> bool; + FloatCore::is_infinite(self) -> bool; + FloatCore::is_finite(self) -> bool; + FloatCore::is_normal(self) -> bool; + FloatCore::classify(self) -> FpCategory; + FloatCore::signum(self) -> Self; + FloatCore::is_sign_positive(self) -> bool; + FloatCore::is_sign_negative(self) -> bool; + FloatCore::recip(self) -> Self; + FloatCore::powi(self, n: i32) -> Self; + FloatCore::to_degrees(self) -> Self; + FloatCore::to_radians(self) -> Self; + } + }; +} + +fn integer_decode_f32(f: f32) -> (u64, i16, i8) { + // Safety: this identical to the implementation of f32::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u32 = unsafe { mem::transmute(f) }; + let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; + let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; + let mantissa = if exponent == 0 { + (bits & 0x7fffff) << 1 + } else { + (bits & 0x7fffff) | 0x800000 + }; + // Exponent bias + mantissa shift + exponent -= 127 + 23; + (mantissa as u64, exponent, sign) +} + +fn integer_decode_f64(f: f64) -> (u64, i16, i8) { + // Safety: this identical to the implementation of f64::to_bits(), + // which is only available starting at Rust 1.20 + let bits: u64 = unsafe { mem::transmute(f) }; + let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; + let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; + let mantissa = if exponent == 0 { + (bits & 0xfffffffffffff) << 1 + } else { + (bits & 0xfffffffffffff) | 0x10000000000000 + }; + // Exponent bias + mantissa shift + exponent -= 1023 + 52; + (mantissa, exponent, sign) +} + +#[cfg(feature = "std")] +float_impl_std!(f32 integer_decode_f32); +#[cfg(feature = "std")] +float_impl_std!(f64 integer_decode_f64); + +#[cfg(all(not(feature = "std"), feature = "libm"))] +impl Float for f32 { + float_impl_libm!(f32 integer_decode_f32); + + #[inline] + #[allow(deprecated)] + fn abs_sub(self, other: Self) -> Self { + libm::fdimf(self, other) + } + + forward! { + libm::floorf as floor(self) -> Self; + libm::ceilf as ceil(self) -> Self; + libm::roundf as round(self) -> Self; + libm::truncf as trunc(self) -> Self; + libm::fabsf as abs(self) -> Self; + libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; + libm::powf as powf(self, n: Self) -> Self; + libm::sqrtf as sqrt(self) -> Self; + libm::expf as exp(self) -> Self; + libm::exp2f as exp2(self) -> Self; + libm::logf as ln(self) -> Self; + libm::log2f as log2(self) -> Self; + libm::log10f as log10(self) -> Self; + libm::cbrtf as cbrt(self) -> Self; + libm::hypotf as hypot(self, other: Self) -> Self; + libm::sinf as sin(self) -> Self; + libm::cosf as cos(self) -> Self; + libm::tanf as tan(self) -> Self; + libm::asinf as asin(self) -> Self; + libm::acosf as acos(self) -> Self; + libm::atanf as atan(self) -> Self; + libm::atan2f as atan2(self, other: Self) -> Self; + libm::sincosf as sin_cos(self) -> (Self, Self); + libm::expm1f as exp_m1(self) -> Self; + libm::log1pf as ln_1p(self) -> Self; + libm::sinhf as sinh(self) -> Self; + libm::coshf as cosh(self) -> Self; + libm::tanhf as tanh(self) -> Self; + libm::asinhf as asinh(self) -> Self; + libm::acoshf as acosh(self) -> Self; + libm::atanhf as atanh(self) -> Self; + libm::fmaxf as max(self, other: Self) -> Self; + libm::fminf as min(self, other: Self) -> Self; + libm::copysignf as copysign(self, other: Self) -> Self; + } +} + +#[cfg(all(not(feature = "std"), feature = "libm"))] +impl Float for f64 { + float_impl_libm!(f64 integer_decode_f64); + + #[inline] + #[allow(deprecated)] + fn abs_sub(self, other: Self) -> Self { + libm::fdim(self, other) + } + + forward! { + libm::floor as floor(self) -> Self; + libm::ceil as ceil(self) -> Self; + libm::round as round(self) -> Self; + libm::trunc as trunc(self) -> Self; + libm::fabs as abs(self) -> Self; + libm::fma as mul_add(self, a: Self, b: Self) -> Self; + libm::pow as powf(self, n: Self) -> Self; + libm::sqrt as sqrt(self) -> Self; + libm::exp as exp(self) -> Self; + libm::exp2 as exp2(self) -> Self; + libm::log as ln(self) -> Self; + libm::log2 as log2(self) -> Self; + libm::log10 as log10(self) -> Self; + libm::cbrt as cbrt(self) -> Self; + libm::hypot as hypot(self, other: Self) -> Self; + libm::sin as sin(self) -> Self; + libm::cos as cos(self) -> Self; + libm::tan as tan(self) -> Self; + libm::asin as asin(self) -> Self; + libm::acos as acos(self) -> Self; + libm::atan as atan(self) -> Self; + libm::atan2 as atan2(self, other: Self) -> Self; + libm::sincos as sin_cos(self) -> (Self, Self); + libm::expm1 as exp_m1(self) -> Self; + libm::log1p as ln_1p(self) -> Self; + libm::sinh as sinh(self) -> Self; + libm::cosh as cosh(self) -> Self; + libm::tanh as tanh(self) -> Self; + libm::asinh as asinh(self) -> Self; + libm::acosh as acosh(self) -> Self; + libm::atanh as atanh(self) -> Self; + libm::fmax as max(self, other: Self) -> Self; + libm::fmin as min(self, other: Self) -> Self; + libm::copysign as copysign(self, sign: Self) -> Self; + } +} + +macro_rules! float_const_impl { + ($(#[$doc:meta] $constant:ident,)+) => ( + #[allow(non_snake_case)] + pub trait FloatConst { + $(#[$doc] fn $constant() -> Self;)+ + #[doc = "Return the full circle constant `τ`."] + #[inline] + fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { + Self::PI() + Self::PI() + } + #[doc = "Return `log10(2.0)`."] + #[inline] + fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { + Self::LN_2() / Self::LN_10() + } + #[doc = "Return `log2(10.0)`."] + #[inline] + fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { + Self::LN_10() / Self::LN_2() + } + } + float_const_impl! { @float f32, $($constant,)+ } + float_const_impl! { @float f64, $($constant,)+ } + ); + (@float $T:ident, $($constant:ident,)+) => ( + impl FloatConst for $T { + constant! { + $( $constant() -> $T::consts::$constant; )+ + TAU() -> 6.28318530717958647692528676655900577; + LOG10_2() -> 0.301029995663981195213738894724493027; + LOG2_10() -> 3.32192809488736234787031942948939018; + } + } + ); +} + +float_const_impl! { + #[doc = "Return Euler’s number."] + E, + #[doc = "Return `1.0 / π`."] + FRAC_1_PI, + #[doc = "Return `1.0 / sqrt(2.0)`."] + FRAC_1_SQRT_2, + #[doc = "Return `2.0 / π`."] + FRAC_2_PI, + #[doc = "Return `2.0 / sqrt(π)`."] + FRAC_2_SQRT_PI, + #[doc = "Return `π / 2.0`."] + FRAC_PI_2, + #[doc = "Return `π / 3.0`."] + FRAC_PI_3, + #[doc = "Return `π / 4.0`."] + FRAC_PI_4, + #[doc = "Return `π / 6.0`."] + FRAC_PI_6, + #[doc = "Return `π / 8.0`."] + FRAC_PI_8, + #[doc = "Return `ln(10.0)`."] + LN_10, + #[doc = "Return `ln(2.0)`."] + LN_2, + #[doc = "Return `log10(e)`."] + LOG10_E, + #[doc = "Return `log2(e)`."] + LOG2_E, + #[doc = "Return Archimedes’ constant `π`."] + PI, + #[doc = "Return `sqrt(2.0)`."] + SQRT_2, +} + +#[cfg(test)] +mod tests { + use core::f64::consts; + + const DEG_RAD_PAIRS: [(f64, f64); 7] = [ + (0.0, 0.), + (22.5, consts::FRAC_PI_8), + (30.0, consts::FRAC_PI_6), + (45.0, consts::FRAC_PI_4), + (60.0, consts::FRAC_PI_3), + (90.0, consts::FRAC_PI_2), + (180.0, consts::PI), + ]; + + #[test] + fn convert_deg_rad() { + use float::FloatCore; + + for &(deg, rad) in &DEG_RAD_PAIRS { + assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); + assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); + + let (deg, rad) = (deg as f32, rad as f32); + assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); + assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); + } + } + + #[cfg(any(feature = "std", feature = "libm"))] + #[test] + fn convert_deg_rad_std() { + for &(deg, rad) in &DEG_RAD_PAIRS { + use Float; + + assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); + assert!((Float::to_radians(deg) - rad).abs() < 1e-6); + + let (deg, rad) = (deg as f32, rad as f32); + assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); + assert!((Float::to_radians(deg) - rad).abs() < 1e-5); + } + } + + #[test] + // This fails with the forwarded `std` implementation in Rust 1.8. + // To avoid the failure, the test is limited to `no_std` builds. + #[cfg(not(feature = "std"))] + fn to_degrees_rounding() { + use float::FloatCore; + + assert_eq!( + FloatCore::to_degrees(1_f32), + 57.2957795130823208767981548141051703 + ); + } + + #[test] + #[cfg(any(feature = "std", feature = "libm"))] + fn extra_logs() { + use float::{Float, FloatConst}; + + fn check<F: Float + FloatConst>(diff: F) { + let _2 = F::from(2.0).unwrap(); + assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); + assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); + + let _10 = F::from(10.0).unwrap(); + assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); + assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); + } + + check::<f32>(1e-6); + check::<f64>(1e-12); + } + + #[test] + #[cfg(any(feature = "std", feature = "libm"))] + fn copysign() { + use float::Float; + test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); + test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); + test_copysignf(2.0_f32, -2.0_f32, f32::nan()); + } + + #[cfg(any(feature = "std", feature = "libm"))] + fn test_copysignf(p: f32, n: f32, nan: f32) { + use core::ops::Neg; + use float::Float; + + assert!(p.is_sign_positive()); + assert!(n.is_sign_negative()); + assert!(nan.is_nan()); + + assert_eq!(p, Float::copysign(p, p)); + assert_eq!(p.neg(), Float::copysign(p, n)); + + assert_eq!(n, Float::copysign(n, n)); + assert_eq!(n.neg(), Float::copysign(n, p)); + + // FIXME: is_sign... only works on NaN starting in Rust 1.20 + // assert!(Float::copysign(nan, p).is_sign_positive()); + // assert!(Float::copysign(nan, n).is_sign_negative()); + } + + #[cfg(any(feature = "std", feature = "libm"))] + fn test_copysign_generic<F: ::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { + assert!(p.is_sign_positive()); + assert!(n.is_sign_negative()); + assert!(nan.is_nan()); + + assert_eq!(p, p.copysign(p)); + assert_eq!(p.neg(), p.copysign(n)); + + assert_eq!(n, n.copysign(n)); + assert_eq!(n.neg(), n.copysign(p)); + + // FIXME: is_sign... only works on NaN starting in Rust 1.20 + // assert!(nan.copysign(p).is_sign_positive()); + // assert!(nan.copysign(n).is_sign_negative()); + } +} |