summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-util/src/codec/framed.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/tokio-util/src/codec/framed.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio-util/src/codec/framed.rs')
-rw-r--r--third_party/rust/tokio-util/src/codec/framed.rs373
1 files changed, 373 insertions, 0 deletions
diff --git a/third_party/rust/tokio-util/src/codec/framed.rs b/third_party/rust/tokio-util/src/codec/framed.rs
new file mode 100644
index 0000000000..d89b8b6dc3
--- /dev/null
+++ b/third_party/rust/tokio-util/src/codec/framed.rs
@@ -0,0 +1,373 @@
+use crate::codec::decoder::Decoder;
+use crate::codec::encoder::Encoder;
+use crate::codec::framed_impl::{FramedImpl, RWFrames, ReadFrame, WriteFrame};
+
+use futures_core::Stream;
+use tokio::io::{AsyncRead, AsyncWrite};
+
+use bytes::BytesMut;
+use futures_sink::Sink;
+use pin_project_lite::pin_project;
+use std::fmt;
+use std::io;
+use std::pin::Pin;
+use std::task::{Context, Poll};
+
+pin_project! {
+ /// A unified [`Stream`] and [`Sink`] interface to an underlying I/O object, using
+ /// the `Encoder` and `Decoder` traits to encode and decode frames.
+ ///
+ /// You can create a `Framed` instance by using the [`Decoder::framed`] adapter, or
+ /// by using the `new` function seen below.
+ ///
+ /// [`Stream`]: futures_core::Stream
+ /// [`Sink`]: futures_sink::Sink
+ /// [`AsyncRead`]: tokio::io::AsyncRead
+ /// [`Decoder::framed`]: crate::codec::Decoder::framed()
+ pub struct Framed<T, U> {
+ #[pin]
+ inner: FramedImpl<T, U, RWFrames>
+ }
+}
+
+impl<T, U> Framed<T, U>
+where
+ T: AsyncRead + AsyncWrite,
+{
+ /// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
+ /// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data.
+ ///
+ /// Raw I/O objects work with byte sequences, but higher-level code usually
+ /// wants to batch these into meaningful chunks, called "frames". This
+ /// method layers framing on top of an I/O object, by using the codec
+ /// traits to handle encoding and decoding of messages frames. Note that
+ /// the incoming and outgoing frame types may be distinct.
+ ///
+ /// This function returns a *single* object that is both [`Stream`] and
+ /// [`Sink`]; grouping this into a single object is often useful for layering
+ /// things like gzip or TLS, which require both read and write access to the
+ /// underlying object.
+ ///
+ /// If you want to work more directly with the streams and sink, consider
+ /// calling [`split`] on the `Framed` returned by this method, which will
+ /// break them into separate objects, allowing them to interact more easily.
+ ///
+ /// Note that, for some byte sources, the stream can be resumed after an EOF
+ /// by reading from it, even after it has returned `None`. Repeated attempts
+ /// to do so, without new data available, continue to return `None` without
+ /// creating more (closing) frames.
+ ///
+ /// [`Stream`]: futures_core::Stream
+ /// [`Sink`]: futures_sink::Sink
+ /// [`Decode`]: crate::codec::Decoder
+ /// [`Encoder`]: crate::codec::Encoder
+ /// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
+ pub fn new(inner: T, codec: U) -> Framed<T, U> {
+ Framed {
+ inner: FramedImpl {
+ inner,
+ codec,
+ state: Default::default(),
+ },
+ }
+ }
+
+ /// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
+ /// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data,
+ /// with a specific read buffer initial capacity.
+ ///
+ /// Raw I/O objects work with byte sequences, but higher-level code usually
+ /// wants to batch these into meaningful chunks, called "frames". This
+ /// method layers framing on top of an I/O object, by using the codec
+ /// traits to handle encoding and decoding of messages frames. Note that
+ /// the incoming and outgoing frame types may be distinct.
+ ///
+ /// This function returns a *single* object that is both [`Stream`] and
+ /// [`Sink`]; grouping this into a single object is often useful for layering
+ /// things like gzip or TLS, which require both read and write access to the
+ /// underlying object.
+ ///
+ /// If you want to work more directly with the streams and sink, consider
+ /// calling [`split`] on the `Framed` returned by this method, which will
+ /// break them into separate objects, allowing them to interact more easily.
+ ///
+ /// [`Stream`]: futures_core::Stream
+ /// [`Sink`]: futures_sink::Sink
+ /// [`Decode`]: crate::codec::Decoder
+ /// [`Encoder`]: crate::codec::Encoder
+ /// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
+ pub fn with_capacity(inner: T, codec: U, capacity: usize) -> Framed<T, U> {
+ Framed {
+ inner: FramedImpl {
+ inner,
+ codec,
+ state: RWFrames {
+ read: ReadFrame {
+ eof: false,
+ is_readable: false,
+ buffer: BytesMut::with_capacity(capacity),
+ has_errored: false,
+ },
+ write: WriteFrame::default(),
+ },
+ },
+ }
+ }
+}
+
+impl<T, U> Framed<T, U> {
+ /// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
+ /// I/O object, using [`Decoder`] and [`Encoder`] to read and write the raw data.
+ ///
+ /// Raw I/O objects work with byte sequences, but higher-level code usually
+ /// wants to batch these into meaningful chunks, called "frames". This
+ /// method layers framing on top of an I/O object, by using the `Codec`
+ /// traits to handle encoding and decoding of messages frames. Note that
+ /// the incoming and outgoing frame types may be distinct.
+ ///
+ /// This function returns a *single* object that is both [`Stream`] and
+ /// [`Sink`]; grouping this into a single object is often useful for layering
+ /// things like gzip or TLS, which require both read and write access to the
+ /// underlying object.
+ ///
+ /// This objects takes a stream and a readbuffer and a writebuffer. These field
+ /// can be obtained from an existing `Framed` with the [`into_parts`] method.
+ ///
+ /// If you want to work more directly with the streams and sink, consider
+ /// calling [`split`] on the `Framed` returned by this method, which will
+ /// break them into separate objects, allowing them to interact more easily.
+ ///
+ /// [`Stream`]: futures_core::Stream
+ /// [`Sink`]: futures_sink::Sink
+ /// [`Decoder`]: crate::codec::Decoder
+ /// [`Encoder`]: crate::codec::Encoder
+ /// [`into_parts`]: crate::codec::Framed::into_parts()
+ /// [`split`]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.split
+ pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
+ Framed {
+ inner: FramedImpl {
+ inner: parts.io,
+ codec: parts.codec,
+ state: RWFrames {
+ read: parts.read_buf.into(),
+ write: parts.write_buf.into(),
+ },
+ },
+ }
+ }
+
+ /// Returns a reference to the underlying I/O stream wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying stream
+ /// of data coming in as it may corrupt the stream of frames otherwise
+ /// being worked with.
+ pub fn get_ref(&self) -> &T {
+ &self.inner.inner
+ }
+
+ /// Returns a mutable reference to the underlying I/O stream wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying stream
+ /// of data coming in as it may corrupt the stream of frames otherwise
+ /// being worked with.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.inner.inner
+ }
+
+ /// Returns a pinned mutable reference to the underlying I/O stream wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying stream
+ /// of data coming in as it may corrupt the stream of frames otherwise
+ /// being worked with.
+ pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut T> {
+ self.project().inner.project().inner
+ }
+
+ /// Returns a reference to the underlying codec wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying codec
+ /// as it may corrupt the stream of frames otherwise being worked with.
+ pub fn codec(&self) -> &U {
+ &self.inner.codec
+ }
+
+ /// Returns a mutable reference to the underlying codec wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying codec
+ /// as it may corrupt the stream of frames otherwise being worked with.
+ pub fn codec_mut(&mut self) -> &mut U {
+ &mut self.inner.codec
+ }
+
+ /// Maps the codec `U` to `C`, preserving the read and write buffers
+ /// wrapped by `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying codec
+ /// as it may corrupt the stream of frames otherwise being worked with.
+ pub fn map_codec<C, F>(self, map: F) -> Framed<T, C>
+ where
+ F: FnOnce(U) -> C,
+ {
+ // This could be potentially simplified once rust-lang/rust#86555 hits stable
+ let parts = self.into_parts();
+ Framed::from_parts(FramedParts {
+ io: parts.io,
+ codec: map(parts.codec),
+ read_buf: parts.read_buf,
+ write_buf: parts.write_buf,
+ _priv: (),
+ })
+ }
+
+ /// Returns a mutable reference to the underlying codec wrapped by
+ /// `Framed`.
+ ///
+ /// Note that care should be taken to not tamper with the underlying codec
+ /// as it may corrupt the stream of frames otherwise being worked with.
+ pub fn codec_pin_mut(self: Pin<&mut Self>) -> &mut U {
+ self.project().inner.project().codec
+ }
+
+ /// Returns a reference to the read buffer.
+ pub fn read_buffer(&self) -> &BytesMut {
+ &self.inner.state.read.buffer
+ }
+
+ /// Returns a mutable reference to the read buffer.
+ pub fn read_buffer_mut(&mut self) -> &mut BytesMut {
+ &mut self.inner.state.read.buffer
+ }
+
+ /// Returns a reference to the write buffer.
+ pub fn write_buffer(&self) -> &BytesMut {
+ &self.inner.state.write.buffer
+ }
+
+ /// Returns a mutable reference to the write buffer.
+ pub fn write_buffer_mut(&mut self) -> &mut BytesMut {
+ &mut self.inner.state.write.buffer
+ }
+
+ /// Consumes the `Framed`, returning its underlying I/O stream.
+ ///
+ /// Note that care should be taken to not tamper with the underlying stream
+ /// of data coming in as it may corrupt the stream of frames otherwise
+ /// being worked with.
+ pub fn into_inner(self) -> T {
+ self.inner.inner
+ }
+
+ /// Consumes the `Framed`, returning its underlying I/O stream, the buffer
+ /// with unprocessed data, and the codec.
+ ///
+ /// Note that care should be taken to not tamper with the underlying stream
+ /// of data coming in as it may corrupt the stream of frames otherwise
+ /// being worked with.
+ pub fn into_parts(self) -> FramedParts<T, U> {
+ FramedParts {
+ io: self.inner.inner,
+ codec: self.inner.codec,
+ read_buf: self.inner.state.read.buffer,
+ write_buf: self.inner.state.write.buffer,
+ _priv: (),
+ }
+ }
+}
+
+// This impl just defers to the underlying FramedImpl
+impl<T, U> Stream for Framed<T, U>
+where
+ T: AsyncRead,
+ U: Decoder,
+{
+ type Item = Result<U::Item, U::Error>;
+
+ fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
+ self.project().inner.poll_next(cx)
+ }
+}
+
+// This impl just defers to the underlying FramedImpl
+impl<T, I, U> Sink<I> for Framed<T, U>
+where
+ T: AsyncWrite,
+ U: Encoder<I>,
+ U::Error: From<io::Error>,
+{
+ type Error = U::Error;
+
+ fn poll_ready(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
+ self.project().inner.poll_ready(cx)
+ }
+
+ fn start_send(self: Pin<&mut Self>, item: I) -> Result<(), Self::Error> {
+ self.project().inner.start_send(item)
+ }
+
+ fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
+ self.project().inner.poll_flush(cx)
+ }
+
+ fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
+ self.project().inner.poll_close(cx)
+ }
+}
+
+impl<T, U> fmt::Debug for Framed<T, U>
+where
+ T: fmt::Debug,
+ U: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Framed")
+ .field("io", self.get_ref())
+ .field("codec", self.codec())
+ .finish()
+ }
+}
+
+/// `FramedParts` contains an export of the data of a Framed transport.
+/// It can be used to construct a new [`Framed`] with a different codec.
+/// It contains all current buffers and the inner transport.
+///
+/// [`Framed`]: crate::codec::Framed
+#[derive(Debug)]
+#[allow(clippy::manual_non_exhaustive)]
+pub struct FramedParts<T, U> {
+ /// The inner transport used to read bytes to and write bytes to
+ pub io: T,
+
+ /// The codec
+ pub codec: U,
+
+ /// The buffer with read but unprocessed data.
+ pub read_buf: BytesMut,
+
+ /// A buffer with unprocessed data which are not written yet.
+ pub write_buf: BytesMut,
+
+ /// This private field allows us to add additional fields in the future in a
+ /// backwards compatible way.
+ _priv: (),
+}
+
+impl<T, U> FramedParts<T, U> {
+ /// Create a new, default, `FramedParts`
+ pub fn new<I>(io: T, codec: U) -> FramedParts<T, U>
+ where
+ U: Encoder<I>,
+ {
+ FramedParts {
+ io,
+ codec,
+ read_buf: BytesMut::new(),
+ write_buf: BytesMut::new(),
+ _priv: (),
+ }
+ }
+}