summaryrefslogtreecommitdiffstats
path: root/gfx/wr/swgl/src/texture.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/wr/swgl/src/texture.h')
-rw-r--r--gfx/wr/swgl/src/texture.h1299
1 files changed, 1299 insertions, 0 deletions
diff --git a/gfx/wr/swgl/src/texture.h b/gfx/wr/swgl/src/texture.h
new file mode 100644
index 0000000000..57d27ed05c
--- /dev/null
+++ b/gfx/wr/swgl/src/texture.h
@@ -0,0 +1,1299 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+namespace glsl {
+
+using PackedRGBA8 = V16<uint8_t>;
+using WideRGBA8 = V16<uint16_t>;
+using HalfRGBA8 = V8<uint16_t>;
+
+SI WideRGBA8 unpack(PackedRGBA8 p) { return CONVERT(p, WideRGBA8); }
+
+template <int N>
+UNUSED SI VectorType<uint8_t, N> genericPackWide(VectorType<uint16_t, N> p) {
+ typedef VectorType<uint8_t, N> packed_type;
+ // Generic conversions only mask off the low byte without actually clamping
+ // like a real pack. First force the word to all 1s if it overflows, and then
+ // add on the sign bit to cause it to roll over to 0 if it was negative.
+ p = (p | (p > 255)) + (p >> 15);
+ return CONVERT(p, packed_type);
+}
+
+SI PackedRGBA8 pack(WideRGBA8 p) {
+#if USE_SSE2
+ return _mm_packus_epi16(lowHalf(p), highHalf(p));
+#elif USE_NEON
+ return vcombine_u8(vqmovun_s16(bit_cast<V8<int16_t>>(lowHalf(p))),
+ vqmovun_s16(bit_cast<V8<int16_t>>(highHalf(p))));
+#else
+ return genericPackWide(p);
+#endif
+}
+
+using PackedR8 = V4<uint8_t>;
+using WideR8 = V4<uint16_t>;
+
+SI WideR8 unpack(PackedR8 p) { return CONVERT(p, WideR8); }
+
+SI PackedR8 pack(WideR8 p) {
+#if USE_SSE2
+ auto m = expand(p);
+ auto r = bit_cast<V16<uint8_t>>(_mm_packus_epi16(m, m));
+ return SHUFFLE(r, r, 0, 1, 2, 3);
+#elif USE_NEON
+ return lowHalf(
+ bit_cast<V8<uint8_t>>(vqmovun_s16(bit_cast<V8<int16_t>>(expand(p)))));
+#else
+ return genericPackWide(p);
+#endif
+}
+
+using PackedRG8 = V8<uint8_t>;
+using WideRG8 = V8<uint16_t>;
+
+SI PackedRG8 pack(WideRG8 p) {
+#if USE_SSE2
+ return lowHalf(bit_cast<V16<uint8_t>>(_mm_packus_epi16(p, p)));
+#elif USE_NEON
+ return bit_cast<V8<uint8_t>>(vqmovun_s16(bit_cast<V8<int16_t>>(p)));
+#else
+ return genericPackWide(p);
+#endif
+}
+
+SI I32 clampCoord(I32 coord, int limit, int base = 0) {
+#if USE_SSE2
+ return _mm_min_epi16(_mm_max_epi16(coord, _mm_set1_epi32(base)),
+ _mm_set1_epi32(limit - 1));
+#else
+ return clamp(coord, base, limit - 1);
+#endif
+}
+
+SI int clampCoord(int coord, int limit, int base = 0) {
+ return min(max(coord, base), limit - 1);
+}
+
+template <typename T, typename S>
+SI T clamp2D(T P, S sampler) {
+ return T{clampCoord(P.x, sampler->width), clampCoord(P.y, sampler->height)};
+}
+
+SI float to_float(uint32_t x) { return x * (1.f / 255.f); }
+
+SI vec4 pixel_to_vec4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
+ U32 pixels = {a, b, c, d};
+ return vec4(cast((pixels >> 16) & 0xFF), cast((pixels >> 8) & 0xFF),
+ cast(pixels & 0xFF), cast(pixels >> 24)) *
+ (1.0f / 255.0f);
+}
+
+SI vec4 pixel_float_to_vec4(Float a, Float b, Float c, Float d) {
+ return vec4(Float{a.x, b.x, c.x, d.x}, Float{a.y, b.y, c.y, d.y},
+ Float{a.z, b.z, c.z, d.z}, Float{a.w, b.w, c.w, d.w});
+}
+
+SI ivec4 pixel_int_to_ivec4(I32 a, I32 b, I32 c, I32 d) {
+ return ivec4(I32{a.x, b.x, c.x, d.x}, I32{a.y, b.y, c.y, d.y},
+ I32{a.z, b.z, c.z, d.z}, I32{a.w, b.w, c.w, d.w});
+}
+
+SI vec4_scalar pixel_to_vec4(uint32_t p) {
+ U32 i = {(p >> 16) & 0xFF, (p >> 8) & 0xFF, p & 0xFF, p >> 24};
+ Float f = cast(i) * (1.0f / 255.0f);
+ return vec4_scalar(f.x, f.y, f.z, f.w);
+}
+
+template <typename S>
+SI vec4 fetchOffsetsRGBA8(S sampler, I32 offset) {
+ return pixel_to_vec4(sampler->buf[offset.x], sampler->buf[offset.y],
+ sampler->buf[offset.z], sampler->buf[offset.w]);
+}
+
+template <typename S>
+vec4 texelFetchRGBA8(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return fetchOffsetsRGBA8(sampler, offset);
+}
+
+template <typename S>
+SI Float fetchOffsetsR8(S sampler, I32 offset) {
+ U32 i = {
+ ((uint8_t*)sampler->buf)[offset.x], ((uint8_t*)sampler->buf)[offset.y],
+ ((uint8_t*)sampler->buf)[offset.z], ((uint8_t*)sampler->buf)[offset.w]};
+ return cast(i) * (1.0f / 255.0f);
+}
+
+template <typename S>
+vec4 texelFetchR8(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return vec4(fetchOffsetsR8(sampler, offset), 0.0f, 0.0f, 1.0f);
+}
+
+template <typename S>
+SI vec4 fetchOffsetsRG8(S sampler, I32 offset) {
+ uint16_t* buf = (uint16_t*)sampler->buf;
+ U16 pixels = {buf[offset.x], buf[offset.y], buf[offset.z], buf[offset.w]};
+ Float r = CONVERT(pixels & 0xFF, Float) * (1.0f / 255.0f);
+ Float g = CONVERT(pixels >> 8, Float) * (1.0f / 255.0f);
+ return vec4(r, g, 0.0f, 1.0f);
+}
+
+template <typename S>
+vec4 texelFetchRG8(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return fetchOffsetsRG8(sampler, offset);
+}
+
+template <typename S>
+SI Float fetchOffsetsR16(S sampler, I32 offset) {
+ U32 i = {
+ ((uint16_t*)sampler->buf)[offset.x], ((uint16_t*)sampler->buf)[offset.y],
+ ((uint16_t*)sampler->buf)[offset.z], ((uint16_t*)sampler->buf)[offset.w]};
+ return cast(i) * (1.0f / 65535.0f);
+}
+
+template <typename S>
+vec4 texelFetchR16(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return vec4(fetchOffsetsR16(sampler, offset), 0.0f, 0.0f, 1.0f);
+}
+
+template <typename S>
+SI vec4 fetchOffsetsRG16(S sampler, I32 offset) {
+ U32 pixels = {sampler->buf[offset.x], sampler->buf[offset.y],
+ sampler->buf[offset.z], sampler->buf[offset.w]};
+ Float r = cast(pixels & 0xFFFF) * (1.0f / 65535.0f);
+ Float g = cast(pixels >> 16) * (1.0f / 65535.0f);
+ return vec4(r, g, 0.0f, 1.0f);
+}
+
+template <typename S>
+vec4 texelFetchRG16(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return fetchOffsetsRG16(sampler, offset);
+}
+
+SI vec4 fetchOffsetsFloat(const uint32_t* buf, I32 offset) {
+ return pixel_float_to_vec4(*(Float*)&buf[offset.x], *(Float*)&buf[offset.y],
+ *(Float*)&buf[offset.z], *(Float*)&buf[offset.w]);
+}
+
+SI vec4 fetchOffsetsFloat(samplerCommon* sampler, I32 offset) {
+ return fetchOffsetsFloat(sampler->buf, offset);
+}
+
+vec4 texelFetchFloat(sampler2D sampler, ivec2 P) {
+ I32 offset = P.x * 4 + P.y * sampler->stride;
+ return fetchOffsetsFloat(sampler, offset);
+}
+
+template <typename S>
+SI vec4 fetchOffsetsYUV422(S sampler, I32 offset) {
+ // Layout is 2 pixel chunks (occupying 4 bytes) organized as: G0, B, G1, R.
+ // Offset is aligned to a chunk rather than a pixel, and selector specifies
+ // pixel within the chunk.
+ I32 selector = offset & 1;
+ offset &= ~1;
+ uint16_t* buf = (uint16_t*)sampler->buf;
+ U32 pixels = {*(uint32_t*)&buf[offset.x], *(uint32_t*)&buf[offset.y],
+ *(uint32_t*)&buf[offset.z], *(uint32_t*)&buf[offset.w]};
+ Float b = CONVERT((pixels >> 8) & 0xFF, Float) * (1.0f / 255.0f);
+ Float r = CONVERT((pixels >> 24), Float) * (1.0f / 255.0f);
+ Float g =
+ CONVERT(if_then_else(-selector, pixels >> 16, pixels) & 0xFF, Float) *
+ (1.0f / 255.0f);
+ return vec4(r, g, b, 1.0f);
+}
+
+template <typename S>
+vec4 texelFetchYUV422(S sampler, ivec2 P) {
+ I32 offset = P.x + P.y * sampler->stride;
+ return fetchOffsetsYUV422(sampler, offset);
+}
+
+vec4 texelFetch(sampler2D sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ switch (sampler->format) {
+ case TextureFormat::RGBA32F:
+ return texelFetchFloat(sampler, P);
+ case TextureFormat::RGBA8:
+ return texelFetchRGBA8(sampler, P);
+ case TextureFormat::R8:
+ return texelFetchR8(sampler, P);
+ case TextureFormat::RG8:
+ return texelFetchRG8(sampler, P);
+ case TextureFormat::R16:
+ return texelFetchR16(sampler, P);
+ case TextureFormat::RG16:
+ return texelFetchRG16(sampler, P);
+ case TextureFormat::YUV422:
+ return texelFetchYUV422(sampler, P);
+ default:
+ assert(false);
+ return vec4();
+ }
+}
+
+vec4 texelFetch(sampler2DRGBA32F sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA32F);
+ return texelFetchFloat(sampler, P);
+}
+
+vec4 texelFetch(sampler2DRGBA8 sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA8);
+ return texelFetchRGBA8(sampler, P);
+}
+
+vec4 texelFetch(sampler2DR8 sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::R8);
+ return texelFetchR8(sampler, P);
+}
+
+vec4 texelFetch(sampler2DRG8 sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RG8);
+ return texelFetchRG8(sampler, P);
+}
+
+vec4_scalar texelFetch(sampler2D sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ if (sampler->format == TextureFormat::RGBA32F) {
+ return *(vec4_scalar*)&sampler->buf[P.x * 4 + P.y * sampler->stride];
+ } else {
+ assert(sampler->format == TextureFormat::RGBA8);
+ return pixel_to_vec4(sampler->buf[P.x + P.y * sampler->stride]);
+ }
+}
+
+vec4_scalar texelFetch(sampler2DRGBA32F sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA32F);
+ return *(vec4_scalar*)&sampler->buf[P.x * 4 + P.y * sampler->stride];
+}
+
+vec4_scalar texelFetch(sampler2DRGBA8 sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA8);
+ return pixel_to_vec4(sampler->buf[P.x + P.y * sampler->stride]);
+}
+
+vec4_scalar texelFetch(sampler2DR8 sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::R8);
+ return vec4_scalar{
+ to_float(((uint8_t*)sampler->buf)[P.x + P.y * sampler->stride]), 0.0f,
+ 0.0f, 1.0f};
+}
+
+vec4_scalar texelFetch(sampler2DRG8 sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RG8);
+ uint16_t pixel = ((uint16_t*)sampler->buf)[P.x + P.y * sampler->stride];
+ return vec4_scalar{to_float(pixel & 0xFF), to_float(pixel >> 8), 0.0f, 1.0f};
+}
+
+vec4 texelFetch(sampler2DRect sampler, ivec2 P) {
+ P = clamp2D(P, sampler);
+ switch (sampler->format) {
+ case TextureFormat::RGBA8:
+ return texelFetchRGBA8(sampler, P);
+ case TextureFormat::R8:
+ return texelFetchR8(sampler, P);
+ case TextureFormat::RG8:
+ return texelFetchRG8(sampler, P);
+ case TextureFormat::R16:
+ return texelFetchR16(sampler, P);
+ case TextureFormat::RG16:
+ return texelFetchRG16(sampler, P);
+ case TextureFormat::YUV422:
+ return texelFetchYUV422(sampler, P);
+ default:
+ assert(false);
+ return vec4();
+ }
+}
+
+SI ivec4 fetchOffsetsInt(const uint32_t* buf, I32 offset) {
+ return pixel_int_to_ivec4(*(I32*)&buf[offset.x], *(I32*)&buf[offset.y],
+ *(I32*)&buf[offset.z], *(I32*)&buf[offset.w]);
+}
+
+SI ivec4 fetchOffsetsInt(samplerCommon* sampler, I32 offset) {
+ return fetchOffsetsInt(sampler->buf, offset);
+}
+
+ivec4 texelFetch(isampler2D sampler, ivec2 P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA32I);
+ I32 offset = P.x * 4 + P.y * sampler->stride;
+ return fetchOffsetsInt(sampler, offset);
+}
+
+ivec4_scalar texelFetch(isampler2D sampler, ivec2_scalar P, int lod) {
+ assert(lod == 0);
+ P = clamp2D(P, sampler);
+ assert(sampler->format == TextureFormat::RGBA32I);
+ return *(ivec4_scalar*)&sampler->buf[P.x * 4 + P.y * sampler->stride];
+}
+
+constexpr int MAX_TEXEL_OFFSET = 8;
+
+// Fill texelFetchOffset outside the valid texture bounds with zeroes. The
+// stride will be set to 0 so that only one row of zeroes is needed.
+static const uint32_t
+ zeroFetchBuf[MAX_TEXEL_OFFSET * sizeof(Float) / sizeof(uint32_t)] = {0};
+
+struct FetchScalar {
+ const uint32_t* buf;
+ uint32_t stride;
+};
+
+template <typename S>
+SI FetchScalar texelFetchPtr(S sampler, ivec2_scalar P, int min_x, int max_x,
+ int min_y, int max_y) {
+ assert(max_x < MAX_TEXEL_OFFSET);
+ if (P.x < -min_x || P.x >= int(sampler->width) - max_x || P.y < -min_y ||
+ P.y >= int(sampler->height) - max_y) {
+ return FetchScalar{zeroFetchBuf, 0};
+ }
+ return FetchScalar{&sampler->buf[P.x * 4 + P.y * sampler->stride],
+ sampler->stride};
+}
+
+SI vec4_scalar texelFetchUnchecked(sampler2D sampler, FetchScalar ptr, int x,
+ int y = 0) {
+ assert(sampler->format == TextureFormat::RGBA32F);
+ return *(vec4_scalar*)&ptr.buf[x * 4 + y * ptr.stride];
+}
+
+SI ivec4_scalar texelFetchUnchecked(isampler2D sampler, FetchScalar ptr, int x,
+ int y = 0) {
+ assert(sampler->format == TextureFormat::RGBA32I);
+ return *(ivec4_scalar*)&ptr.buf[x * 4 + y * ptr.stride];
+}
+
+struct FetchVector {
+ const uint32_t* buf;
+ I32 offset;
+ uint32_t stride;
+};
+
+template <typename S>
+SI FetchVector texelFetchPtr(S sampler, ivec2 P, int min_x, int max_x,
+ int min_y, int max_y) {
+ assert(max_x < MAX_TEXEL_OFFSET);
+ if (test_any(P.x < -min_x || P.x >= int(sampler->width) - max_x ||
+ P.y < -min_y || P.y >= int(sampler->height) - max_y)) {
+ return FetchVector{zeroFetchBuf, I32(0), 0};
+ }
+ return FetchVector{sampler->buf, P.x * 4 + P.y * sampler->stride,
+ sampler->stride};
+}
+
+SI vec4 texelFetchUnchecked(sampler2D sampler, FetchVector ptr, int x,
+ int y = 0) {
+ assert(sampler->format == TextureFormat::RGBA32F);
+ return fetchOffsetsFloat(&ptr.buf[x * 4 + y * ptr.stride], ptr.offset);
+}
+
+SI ivec4 texelFetchUnchecked(isampler2D sampler, FetchVector ptr, int x,
+ int y = 0) {
+ assert(sampler->format == TextureFormat::RGBA32I);
+ return fetchOffsetsInt(&ptr.buf[x * 4 + y * ptr.stride], ptr.offset);
+}
+
+#define texelFetchOffset(sampler, P, lod, offset) \
+ texelFetch(sampler, (P) + (offset), lod)
+
+// Scale texture coords for quantization, subtract offset for filtering
+// (assuming coords already offset to texel centers), and round to nearest
+// 1/scale increment
+template <typename T>
+SI T linearQuantize(T P, float scale) {
+ return P * scale + (0.5f - 0.5f * scale);
+}
+
+// Helper version that also scales normalized texture coords for sampler
+template <typename T, typename S>
+SI T samplerScale(S sampler, T P) {
+ P.x *= sampler->width;
+ P.y *= sampler->height;
+ return P;
+}
+
+template <typename T>
+SI T samplerScale(UNUSED sampler2DRect sampler, T P) {
+ return P;
+}
+
+template <typename T, typename S>
+SI T linearQuantize(T P, float scale, S sampler) {
+ return linearQuantize(samplerScale(sampler, P), scale);
+}
+
+// Compute clamped offset of first row for linear interpolation
+template <typename S, typename I>
+SI auto computeRow(S sampler, I i, size_t margin = 1) -> decltype(i.x) {
+ return clampCoord(i.x, sampler->width - margin) +
+ clampCoord(i.y, sampler->height) * sampler->stride;
+}
+
+// Compute clamped offset of second row for linear interpolation from first row
+template <typename S, typename I>
+SI auto computeNextRowOffset(S sampler, I i) -> decltype(i.x) {
+ return if_then_else(i.y >= 0 && i.y < int32_t(sampler->height) - 1,
+ sampler->stride, 0);
+}
+
+// Convert X coordinate to a 2^7 scale fraction for interpolation
+template <typename S>
+SI I16 computeFracX(S sampler, ivec2 i, ivec2 frac) {
+ auto overread = i.x > int32_t(sampler->width) - 2;
+ return CONVERT((((frac.x & (i.x >= 0)) | overread) & 0x7F) - overread, I16);
+}
+
+// Convert Y coordinate to a 2^7 scale fraction for interpolation
+SI I16 computeFracNoClamp(I32 frac) { return CONVERT(frac & 0x7F, I16); }
+SI I16 computeFracY(ivec2 frac) { return computeFracNoClamp(frac.y); }
+
+struct WidePlanarRGBA8 {
+ V8<uint16_t> rg;
+ V8<uint16_t> ba;
+};
+
+template <typename S>
+SI WidePlanarRGBA8 textureLinearPlanarRGBA8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RGBA8);
+
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ I16 fracx = computeFracX(sampler, i, frac);
+ I16 fracy = computeFracY(frac);
+
+ auto a0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.x]), V8<int16_t>);
+ auto a1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.x]), V8<int16_t>);
+ a0 += ((a1 - a0) * fracy.x) >> 7;
+
+ auto b0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.y]), V8<int16_t>);
+ auto b1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.y]), V8<int16_t>);
+ b0 += ((b1 - b0) * fracy.y) >> 7;
+
+ auto abl = zipLow(a0, b0);
+ auto abh = zipHigh(a0, b0);
+ abl += ((abh - abl) * fracx.xyxyxyxy) >> 7;
+
+ auto c0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.z]), V8<int16_t>);
+ auto c1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.z]), V8<int16_t>);
+ c0 += ((c1 - c0) * fracy.z) >> 7;
+
+ auto d0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.w]), V8<int16_t>);
+ auto d1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.w]), V8<int16_t>);
+ d0 += ((d1 - d0) * fracy.w) >> 7;
+
+ auto cdl = zipLow(c0, d0);
+ auto cdh = zipHigh(c0, d0);
+ cdl += ((cdh - cdl) * fracx.zwzwzwzw) >> 7;
+
+ auto rg = V8<uint16_t>(zip2Low(abl, cdl));
+ auto ba = V8<uint16_t>(zip2High(abl, cdl));
+ return WidePlanarRGBA8{rg, ba};
+}
+
+template <typename S>
+vec4 textureLinearRGBA8(S sampler, vec2 P) {
+ ivec2 i(linearQuantize(P, 128, sampler));
+ auto planar = textureLinearPlanarRGBA8(sampler, i);
+ auto rg = CONVERT(planar.rg, V8<float>);
+ auto ba = CONVERT(planar.ba, V8<float>);
+ auto r = lowHalf(rg);
+ auto g = highHalf(rg);
+ auto b = lowHalf(ba);
+ auto a = highHalf(ba);
+ return vec4(b, g, r, a) * (1.0f / 255.0f);
+}
+
+template <typename S>
+static inline U16 textureLinearUnpackedR8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::R8);
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ I16 fracx = computeFracX(sampler, i, frac);
+ I16 fracy = computeFracY(frac);
+
+ uint8_t* buf = (uint8_t*)sampler->buf;
+ auto a0 = unaligned_load<V2<uint8_t>>(&buf[row0.x]);
+ auto b0 = unaligned_load<V2<uint8_t>>(&buf[row0.y]);
+ auto c0 = unaligned_load<V2<uint8_t>>(&buf[row0.z]);
+ auto d0 = unaligned_load<V2<uint8_t>>(&buf[row0.w]);
+ auto abcd0 = CONVERT(combine(a0, b0, c0, d0), V8<int16_t>);
+
+ auto a1 = unaligned_load<V2<uint8_t>>(&buf[row1.x]);
+ auto b1 = unaligned_load<V2<uint8_t>>(&buf[row1.y]);
+ auto c1 = unaligned_load<V2<uint8_t>>(&buf[row1.z]);
+ auto d1 = unaligned_load<V2<uint8_t>>(&buf[row1.w]);
+ auto abcd1 = CONVERT(combine(a1, b1, c1, d1), V8<int16_t>);
+
+ abcd0 += ((abcd1 - abcd0) * fracy.xxyyzzww) >> 7;
+
+ abcd0 = SHUFFLE(abcd0, abcd0, 0, 2, 4, 6, 1, 3, 5, 7);
+ auto abcdl = lowHalf(abcd0);
+ auto abcdh = highHalf(abcd0);
+ abcdl += ((abcdh - abcdl) * fracx) >> 7;
+
+ return U16(abcdl);
+}
+
+template <typename S>
+vec4 textureLinearR8(S sampler, vec2 P) {
+ assert(sampler->format == TextureFormat::R8);
+
+ ivec2 i(linearQuantize(P, 128, sampler));
+ Float r = CONVERT(textureLinearUnpackedR8(sampler, i), Float);
+ return vec4(r * (1.0f / 255.0f), 0.0f, 0.0f, 1.0f);
+}
+
+struct WidePlanarRG8 {
+ V8<uint16_t> rg;
+};
+
+template <typename S>
+SI WidePlanarRG8 textureLinearPlanarRG8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RG8);
+
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ I16 fracx = computeFracX(sampler, i, frac);
+ I16 fracy = computeFracY(frac);
+
+ uint16_t* buf = (uint16_t*)sampler->buf;
+
+ // Load RG bytes for two adjacent pixels - rgRG
+ auto a0 = unaligned_load<V4<uint8_t>>(&buf[row0.x]);
+ auto b0 = unaligned_load<V4<uint8_t>>(&buf[row0.y]);
+ auto ab0 = CONVERT(combine(a0, b0), V8<int16_t>);
+ // Load two pixels for next row
+ auto a1 = unaligned_load<V4<uint8_t>>(&buf[row1.x]);
+ auto b1 = unaligned_load<V4<uint8_t>>(&buf[row1.y]);
+ auto ab1 = CONVERT(combine(a1, b1), V8<int16_t>);
+ // Blend rows
+ ab0 += ((ab1 - ab0) * fracy.xxxxyyyy) >> 7;
+
+ auto c0 = unaligned_load<V4<uint8_t>>(&buf[row0.z]);
+ auto d0 = unaligned_load<V4<uint8_t>>(&buf[row0.w]);
+ auto cd0 = CONVERT(combine(c0, d0), V8<int16_t>);
+ auto c1 = unaligned_load<V4<uint8_t>>(&buf[row1.z]);
+ auto d1 = unaligned_load<V4<uint8_t>>(&buf[row1.w]);
+ auto cd1 = CONVERT(combine(c1, d1), V8<int16_t>);
+ // Blend rows
+ cd0 += ((cd1 - cd0) * fracy.zzzzwwww) >> 7;
+
+ // ab = a.rgRG,b.rgRG
+ // cd = c.rgRG,d.rgRG
+ // ... ac = ar,cr,ag,cg,aR,cR,aG,cG
+ // ... bd = br,dr,bg,dg,bR,dR,bG,dG
+ auto ac = zipLow(ab0, cd0);
+ auto bd = zipHigh(ab0, cd0);
+ // ar,br,cr,dr,ag,bg,cg,dg
+ // aR,bR,cR,dR,aG,bG,cG,dG
+ auto abcdl = zipLow(ac, bd);
+ auto abcdh = zipHigh(ac, bd);
+ // Blend columns
+ abcdl += ((abcdh - abcdl) * fracx.xyzwxyzw) >> 7;
+
+ auto rg = V8<uint16_t>(abcdl);
+ return WidePlanarRG8{rg};
+}
+
+template <typename S>
+vec4 textureLinearRG8(S sampler, vec2 P) {
+ ivec2 i(linearQuantize(P, 128, sampler));
+ auto planar = textureLinearPlanarRG8(sampler, i);
+ auto rg = CONVERT(planar.rg, V8<float>) * (1.0f / 255.0f);
+ auto r = lowHalf(rg);
+ auto g = highHalf(rg);
+ return vec4(r, g, 0.0f, 1.0f);
+}
+
+// Samples R16 texture with linear filtering and returns results packed as
+// signed I16. One bit of precision is shifted away from the bottom end to
+// accommodate the sign bit, so only 15 bits of precision is left.
+template <typename S>
+static inline I16 textureLinearUnpackedR16(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::R16);
+
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+
+ I16 fracx =
+ CONVERT(
+ ((frac.x & (i.x >= 0)) | (i.x > int32_t(sampler->width) - 2)) & 0x7F,
+ I16)
+ << 8;
+ I16 fracy = computeFracY(frac) << 8;
+
+ // Sample the 16 bit data for both rows
+ uint16_t* buf = (uint16_t*)sampler->buf;
+ auto a0 = unaligned_load<V2<uint16_t>>(&buf[row0.x]);
+ auto b0 = unaligned_load<V2<uint16_t>>(&buf[row0.y]);
+ auto c0 = unaligned_load<V2<uint16_t>>(&buf[row0.z]);
+ auto d0 = unaligned_load<V2<uint16_t>>(&buf[row0.w]);
+ auto abcd0 = CONVERT(combine(a0, b0, c0, d0) >> 1, V8<int16_t>);
+
+ auto a1 = unaligned_load<V2<uint16_t>>(&buf[row1.x]);
+ auto b1 = unaligned_load<V2<uint16_t>>(&buf[row1.y]);
+ auto c1 = unaligned_load<V2<uint16_t>>(&buf[row1.z]);
+ auto d1 = unaligned_load<V2<uint16_t>>(&buf[row1.w]);
+ auto abcd1 = CONVERT(combine(a1, b1, c1, d1) >> 1, V8<int16_t>);
+
+ // The samples occupy 15 bits and the fraction occupies 15 bits, so that when
+ // they are multiplied together, the new scaled sample will fit in the high
+ // 14 bits of the result. It is left shifted once to make it 15 bits again
+ // for the final multiply.
+#if USE_SSE2
+ abcd0 += bit_cast<V8<int16_t>>(_mm_mulhi_epi16(abcd1 - abcd0, fracy.xxyyzzww))
+ << 1;
+#elif USE_NEON
+ // NEON has a convenient instruction that does both the multiply and the
+ // doubling, so doesn't need an extra shift.
+ abcd0 += bit_cast<V8<int16_t>>(vqrdmulhq_s16(abcd1 - abcd0, fracy.xxyyzzww));
+#else
+ abcd0 += CONVERT((CONVERT(abcd1 - abcd0, V8<int32_t>) *
+ CONVERT(fracy.xxyyzzww, V8<int32_t>)) >>
+ 16,
+ V8<int16_t>)
+ << 1;
+#endif
+
+ abcd0 = SHUFFLE(abcd0, abcd0, 0, 2, 4, 6, 1, 3, 5, 7);
+ auto abcdl = lowHalf(abcd0);
+ auto abcdh = highHalf(abcd0);
+#if USE_SSE2
+ abcdl += lowHalf(bit_cast<V8<int16_t>>(
+ _mm_mulhi_epi16(expand(abcdh - abcdl), expand(fracx))))
+ << 1;
+#elif USE_NEON
+ abcdl += bit_cast<V4<int16_t>>(vqrdmulh_s16(abcdh - abcdl, fracx));
+#else
+ abcdl += CONVERT((CONVERT(abcdh - abcdl, V4<int32_t>) *
+ CONVERT(fracx, V4<int32_t>)) >>
+ 16,
+ V4<int16_t>)
+ << 1;
+#endif
+
+ return abcdl;
+}
+
+template <typename S>
+vec4 textureLinearR16(S sampler, vec2 P) {
+ assert(sampler->format == TextureFormat::R16);
+
+ ivec2 i(linearQuantize(P, 128, sampler));
+ Float r = CONVERT(textureLinearUnpackedR16(sampler, i), Float);
+ return vec4(r * (1.0f / 32767.0f), 0.0f, 0.0f, 1.0f);
+}
+
+// Samples RG16 texture with linear filtering and returns results packed as
+// signed I16. One bit of precision is shifted away from the bottom end to
+// accommodate the sign bit, so only 15 bits of precision is left.
+template <typename S>
+static inline V8<int16_t> textureLinearUnpackedRG16(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RG16);
+
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+
+ I16 fracx =
+ CONVERT(
+ ((frac.x & (i.x >= 0)) | (i.x > int32_t(sampler->width) - 2)) & 0x7F,
+ I16)
+ << 8;
+ I16 fracy = computeFracY(frac) << 8;
+
+ // Sample the 2x16 bit data for both rows
+ auto a0 = unaligned_load<V4<uint16_t>>(&sampler->buf[row0.x]);
+ auto b0 = unaligned_load<V4<uint16_t>>(&sampler->buf[row0.y]);
+ auto ab0 = CONVERT(combine(a0, b0) >> 1, V8<int16_t>);
+ auto c0 = unaligned_load<V4<uint16_t>>(&sampler->buf[row0.z]);
+ auto d0 = unaligned_load<V4<uint16_t>>(&sampler->buf[row0.w]);
+ auto cd0 = CONVERT(combine(c0, d0) >> 1, V8<int16_t>);
+
+ auto a1 = unaligned_load<V4<uint16_t>>(&sampler->buf[row1.x]);
+ auto b1 = unaligned_load<V4<uint16_t>>(&sampler->buf[row1.y]);
+ auto ab1 = CONVERT(combine(a1, b1) >> 1, V8<int16_t>);
+ auto c1 = unaligned_load<V4<uint16_t>>(&sampler->buf[row1.z]);
+ auto d1 = unaligned_load<V4<uint16_t>>(&sampler->buf[row1.w]);
+ auto cd1 = CONVERT(combine(c1, d1) >> 1, V8<int16_t>);
+
+ // The samples occupy 15 bits and the fraction occupies 15 bits, so that when
+ // they are multiplied together, the new scaled sample will fit in the high
+ // 14 bits of the result. It is left shifted once to make it 15 bits again
+ // for the final multiply.
+#if USE_SSE2
+ ab0 += bit_cast<V8<int16_t>>(_mm_mulhi_epi16(ab1 - ab0, fracy.xxxxyyyy)) << 1;
+ cd0 += bit_cast<V8<int16_t>>(_mm_mulhi_epi16(cd1 - cd0, fracy.zzzzwwww)) << 1;
+#elif USE_NEON
+ // NEON has a convenient instruction that does both the multiply and the
+ // doubling, so doesn't need an extra shift.
+ ab0 += bit_cast<V8<int16_t>>(vqrdmulhq_s16(ab1 - ab0, fracy.xxxxyyyy));
+ cd0 += bit_cast<V8<int16_t>>(vqrdmulhq_s16(cd1 - cd0, fracy.zzzzwwww));
+#else
+ ab0 += CONVERT((CONVERT(ab1 - ab0, V8<int32_t>) *
+ CONVERT(fracy.xxxxyyyy, V8<int32_t>)) >>
+ 16,
+ V8<int16_t>)
+ << 1;
+ cd0 += CONVERT((CONVERT(cd1 - cd0, V8<int32_t>) *
+ CONVERT(fracy.zzzzwwww, V8<int32_t>)) >>
+ 16,
+ V8<int16_t>)
+ << 1;
+#endif
+
+ // ab = a.rgRG,b.rgRG
+ // cd = c.rgRG,d.rgRG
+ // ... ac = a.rg,c.rg,a.RG,c.RG
+ // ... bd = b.rg,d.rg,b.RG,d.RG
+ auto ac = zip2Low(ab0, cd0);
+ auto bd = zip2High(ab0, cd0);
+ // a.rg,b.rg,c.rg,d.rg
+ // a.RG,b.RG,c.RG,d.RG
+ auto abcdl = zip2Low(ac, bd);
+ auto abcdh = zip2High(ac, bd);
+ // Blend columns
+#if USE_SSE2
+ abcdl += bit_cast<V8<int16_t>>(_mm_mulhi_epi16(abcdh - abcdl, fracx.xxyyzzww))
+ << 1;
+#elif USE_NEON
+ abcdl += bit_cast<V8<int16_t>>(vqrdmulhq_s16(abcdh - abcdl, fracx.xxyyzzww));
+#else
+ abcdl += CONVERT((CONVERT(abcdh - abcdl, V8<int32_t>) *
+ CONVERT(fracx.xxyyzzww, V8<int32_t>)) >>
+ 16,
+ V8<int16_t>)
+ << 1;
+#endif
+
+ return abcdl;
+}
+
+template <typename S>
+vec4 textureLinearRG16(S sampler, vec2 P) {
+ assert(sampler->format == TextureFormat::RG16);
+
+ ivec2 i(linearQuantize(P, 128, sampler));
+ auto rg = bit_cast<V4<int32_t>>(textureLinearUnpackedRG16(sampler, i));
+ auto r = cast(rg & 0xFFFF) * (1.0f / 32767.0f);
+ auto g = cast(rg >> 16) * (1.0f / 32767.0f);
+ return vec4(r, g, 0.0f, 1.0f);
+}
+
+using PackedRGBA32F = V16<float>;
+using WideRGBA32F = V16<float>;
+
+template <typename S>
+vec4 textureLinearRGBA32F(S sampler, vec2 P) {
+ assert(sampler->format == TextureFormat::RGBA32F);
+ P = samplerScale(sampler, P);
+ P -= 0.5f;
+ vec2 f = floor(P);
+ vec2 r = P - f;
+ ivec2 i(f);
+ ivec2 c(clampCoord(i.x, sampler->width - 1),
+ clampCoord(i.y, sampler->height));
+ r.x = if_then_else(i.x >= 0, if_then_else(i.x < sampler->width - 1, r.x, 1.0),
+ 0.0f);
+ I32 offset0 = c.x * 4 + c.y * sampler->stride;
+ I32 offset1 = offset0 + computeNextRowOffset(sampler, i);
+
+ Float c0 = mix(mix(*(Float*)&sampler->buf[offset0.x],
+ *(Float*)&sampler->buf[offset0.x + 4], r.x),
+ mix(*(Float*)&sampler->buf[offset1.x],
+ *(Float*)&sampler->buf[offset1.x + 4], r.x),
+ r.y);
+ Float c1 = mix(mix(*(Float*)&sampler->buf[offset0.y],
+ *(Float*)&sampler->buf[offset0.y + 4], r.x),
+ mix(*(Float*)&sampler->buf[offset1.y],
+ *(Float*)&sampler->buf[offset1.y + 4], r.x),
+ r.y);
+ Float c2 = mix(mix(*(Float*)&sampler->buf[offset0.z],
+ *(Float*)&sampler->buf[offset0.z + 4], r.x),
+ mix(*(Float*)&sampler->buf[offset1.z],
+ *(Float*)&sampler->buf[offset1.z + 4], r.x),
+ r.y);
+ Float c3 = mix(mix(*(Float*)&sampler->buf[offset0.w],
+ *(Float*)&sampler->buf[offset0.w + 4], r.x),
+ mix(*(Float*)&sampler->buf[offset1.w],
+ *(Float*)&sampler->buf[offset1.w + 4], r.x),
+ r.y);
+ return pixel_float_to_vec4(c0, c1, c2, c3);
+}
+
+struct WidePlanarYUV8 {
+ U16 y;
+ U16 u;
+ U16 v;
+};
+
+template <typename S>
+SI WidePlanarYUV8 textureLinearPlanarYUV422(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::YUV422);
+
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i, 2);
+ // Layout is 2 pixel chunks (occupying 4 bytes) organized as: G0, B, G1, R.
+ // Get the selector for the pixel within the chunk.
+ I32 selector = row0 & 1;
+ // Align the row index to the chunk.
+ row0 &= ~1;
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ // G only needs to be clamped to a pixel boundary for safe interpolation,
+ // whereas the BR fraction needs to be clamped 1 extra pixel inside to a chunk
+ // boundary.
+ frac.x &= (i.x >= 0);
+ auto fracx =
+ CONVERT(combine(frac.x | (i.x > int32_t(sampler->width) - 3),
+ (frac.x >> 1) | (i.x > int32_t(sampler->width) - 3)) &
+ 0x7F,
+ V8<int16_t>);
+ I16 fracy = computeFracY(frac);
+
+ uint16_t* buf = (uint16_t*)sampler->buf;
+
+ // Load bytes for two adjacent chunks - g0,b,g1,r,G0,B,G1,R
+ // We always need to interpolate between (b,r) and (B,R).
+ // Depending on selector we need to either interpolate between g0 and g1
+ // or between g1 and G0. So for now we just interpolate both cases for g
+ // and will select the appropriate one on output.
+ auto a0 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row0.x]), V8<int16_t>);
+ auto a1 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row1.x]), V8<int16_t>);
+ // Combine with next row.
+ a0 += ((a1 - a0) * fracy.x) >> 7;
+
+ auto b0 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row0.y]), V8<int16_t>);
+ auto b1 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row1.y]), V8<int16_t>);
+ b0 += ((b1 - b0) * fracy.y) >> 7;
+
+ auto c0 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row0.z]), V8<int16_t>);
+ auto c1 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row1.z]), V8<int16_t>);
+ c0 += ((c1 - c0) * fracy.z) >> 7;
+
+ auto d0 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row0.w]), V8<int16_t>);
+ auto d1 = CONVERT(unaligned_load<V8<uint8_t>>(&buf[row1.w]), V8<int16_t>);
+ d0 += ((d1 - d0) * fracy.w) >> 7;
+
+ // Shuffle things around so we end up with g0,g0,g0,g0,b,b,b,b and
+ // g1,g1,g1,g1,r,r,r,r.
+ auto abl = zipLow(a0, b0);
+ auto cdl = zipLow(c0, d0);
+ auto g0b = zip2Low(abl, cdl);
+ auto g1r = zip2High(abl, cdl);
+
+ // Need to zip g1,B,G0,R. Instead of using a bunch of complicated masks and
+ // and shifts, just shuffle here instead... We finally end up with
+ // g1,g1,g1,g1,B,B,B,B and G0,G0,G0,G0,R,R,R,R.
+ auto abh = SHUFFLE(a0, b0, 2, 10, 5, 13, 4, 12, 7, 15);
+ auto cdh = SHUFFLE(c0, d0, 2, 10, 5, 13, 4, 12, 7, 15);
+ auto g1B = zip2Low(abh, cdh);
+ auto G0R = zip2High(abh, cdh);
+
+ // Finally interpolate between adjacent columns.
+ g0b += ((g1B - g0b) * fracx) >> 7;
+ g1r += ((G0R - g1r) * fracx) >> 7;
+
+ // Choose either g0 or g1 based on selector.
+ return WidePlanarYUV8{
+ U16(if_then_else(CONVERT(-selector, I16), lowHalf(g1r), lowHalf(g0b))),
+ U16(highHalf(g0b)), U16(highHalf(g1r))};
+}
+
+template <typename S>
+vec4 textureLinearYUV422(S sampler, vec2 P) {
+ ivec2 i(linearQuantize(P, 128, sampler));
+ auto planar = textureLinearPlanarYUV422(sampler, i);
+ auto y = CONVERT(planar.y, Float) * (1.0f / 255.0f);
+ auto u = CONVERT(planar.u, Float) * (1.0f / 255.0f);
+ auto v = CONVERT(planar.v, Float) * (1.0f / 255.0f);
+ return vec4(v, y, u, 1.0f);
+}
+
+SI vec4 texture(sampler2D sampler, vec2 P) {
+ if (sampler->filter == TextureFilter::LINEAR) {
+ switch (sampler->format) {
+ case TextureFormat::RGBA32F:
+ return textureLinearRGBA32F(sampler, P);
+ case TextureFormat::RGBA8:
+ return textureLinearRGBA8(sampler, P);
+ case TextureFormat::R8:
+ return textureLinearR8(sampler, P);
+ case TextureFormat::RG8:
+ return textureLinearRG8(sampler, P);
+ case TextureFormat::R16:
+ return textureLinearR16(sampler, P);
+ case TextureFormat::RG16:
+ return textureLinearRG16(sampler, P);
+ case TextureFormat::YUV422:
+ return textureLinearYUV422(sampler, P);
+ default:
+ assert(false);
+ return vec4();
+ }
+ } else {
+ ivec2 coord(roundzero(P.x, sampler->width),
+ roundzero(P.y, sampler->height));
+ return texelFetch(sampler, coord, 0);
+ }
+}
+
+vec4 texture(sampler2DRect sampler, vec2 P) {
+ if (sampler->filter == TextureFilter::LINEAR) {
+ switch (sampler->format) {
+ case TextureFormat::RGBA8:
+ return textureLinearRGBA8(sampler, P);
+ case TextureFormat::R8:
+ return textureLinearR8(sampler, P);
+ case TextureFormat::RG8:
+ return textureLinearRG8(sampler, P);
+ case TextureFormat::R16:
+ return textureLinearR16(sampler, P);
+ case TextureFormat::RG16:
+ return textureLinearRG16(sampler, P);
+ case TextureFormat::YUV422:
+ return textureLinearYUV422(sampler, P);
+ default:
+ assert(false);
+ return vec4();
+ }
+ } else {
+ ivec2 coord(roundzero(P.x, 1.0f), roundzero(P.y, 1.0f));
+ return texelFetch(sampler, coord);
+ }
+}
+
+template <typename S>
+vec4_scalar texture(S sampler, vec2_scalar P) {
+ return force_scalar(texture(sampler, vec2(P)));
+}
+
+ivec2_scalar textureSize(sampler2D sampler, int) {
+ return ivec2_scalar{int32_t(sampler->width), int32_t(sampler->height)};
+}
+
+ivec2_scalar textureSize(sampler2DRect sampler) {
+ return ivec2_scalar{int32_t(sampler->width), int32_t(sampler->height)};
+}
+
+template <typename S>
+static WideRGBA8 textureLinearUnpackedRGBA8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RGBA8);
+ ivec2 frac = i;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ I16 fracx = computeFracX(sampler, i, frac);
+ I16 fracy = computeFracY(frac);
+
+ auto a0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.x]), V8<int16_t>);
+ auto a1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.x]), V8<int16_t>);
+ a0 += ((a1 - a0) * fracy.x) >> 7;
+
+ auto b0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.y]), V8<int16_t>);
+ auto b1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.y]), V8<int16_t>);
+ b0 += ((b1 - b0) * fracy.y) >> 7;
+
+ auto abl = combine(lowHalf(a0), lowHalf(b0));
+ auto abh = combine(highHalf(a0), highHalf(b0));
+ abl += ((abh - abl) * fracx.xxxxyyyy) >> 7;
+
+ auto c0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.z]), V8<int16_t>);
+ auto c1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.z]), V8<int16_t>);
+ c0 += ((c1 - c0) * fracy.z) >> 7;
+
+ auto d0 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row0.w]), V8<int16_t>);
+ auto d1 =
+ CONVERT(unaligned_load<V8<uint8_t>>(&sampler->buf[row1.w]), V8<int16_t>);
+ d0 += ((d1 - d0) * fracy.w) >> 7;
+
+ auto cdl = combine(lowHalf(c0), lowHalf(d0));
+ auto cdh = combine(highHalf(c0), highHalf(d0));
+ cdl += ((cdh - cdl) * fracx.zzzzwwww) >> 7;
+
+ return combine(HalfRGBA8(abl), HalfRGBA8(cdl));
+}
+
+template <typename S>
+static PackedRGBA8 textureLinearPackedRGBA8(S sampler, ivec2 i) {
+ return pack(textureLinearUnpackedRGBA8(sampler, i));
+}
+
+template <typename S>
+static PackedRGBA8 textureNearestPackedRGBA8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RGBA8);
+ I32 row = computeRow(sampler, i, 0);
+ return combine(unaligned_load<V4<uint8_t>>(&sampler->buf[row.x]),
+ unaligned_load<V4<uint8_t>>(&sampler->buf[row.y]),
+ unaligned_load<V4<uint8_t>>(&sampler->buf[row.z]),
+ unaligned_load<V4<uint8_t>>(&sampler->buf[row.w]));
+}
+
+template <typename S>
+static PackedR8 textureLinearPackedR8(S sampler, ivec2 i) {
+ return pack(textureLinearUnpackedR8(sampler, i));
+}
+
+template <typename S>
+static WideRG8 textureLinearUnpackedRG8(S sampler, ivec2 i) {
+ assert(sampler->format == TextureFormat::RG8);
+ ivec2 frac = i & 0x7F;
+ i >>= 7;
+
+ I32 row0 = computeRow(sampler, i);
+ I32 row1 = row0 + computeNextRowOffset(sampler, i);
+ I16 fracx = computeFracX(sampler, i, frac);
+ I16 fracy = computeFracY(frac);
+
+ uint16_t* buf = (uint16_t*)sampler->buf;
+
+ // Load RG bytes for two adjacent pixels - rgRG
+ auto a0 = unaligned_load<V4<uint8_t>>(&buf[row0.x]);
+ auto b0 = unaligned_load<V4<uint8_t>>(&buf[row0.y]);
+ auto ab0 = CONVERT(combine(a0, b0), V8<int16_t>);
+ // Load two pixels for next row
+ auto a1 = unaligned_load<V4<uint8_t>>(&buf[row1.x]);
+ auto b1 = unaligned_load<V4<uint8_t>>(&buf[row1.y]);
+ auto ab1 = CONVERT(combine(a1, b1), V8<int16_t>);
+ // Blend rows
+ ab0 += ((ab1 - ab0) * fracy.xxxxyyyy) >> 7;
+
+ auto c0 = unaligned_load<V4<uint8_t>>(&buf[row0.z]);
+ auto d0 = unaligned_load<V4<uint8_t>>(&buf[row0.w]);
+ auto cd0 = CONVERT(combine(c0, d0), V8<int16_t>);
+ auto c1 = unaligned_load<V4<uint8_t>>(&buf[row1.z]);
+ auto d1 = unaligned_load<V4<uint8_t>>(&buf[row1.w]);
+ auto cd1 = CONVERT(combine(c1, d1), V8<int16_t>);
+ // Blend rows
+ cd0 += ((cd1 - cd0) * fracy.zzzzwwww) >> 7;
+
+ // ab = a.rgRG,b.rgRG
+ // cd = c.rgRG,d.rgRG
+ // ... ac = a.rg,c.rg,a.RG,c.RG
+ // ... bd = b.rg,d.rg,b.RG,d.RG
+ auto ac = zip2Low(ab0, cd0);
+ auto bd = zip2High(ab0, cd0);
+ // a.rg,b.rg,c.rg,d.rg
+ // a.RG,b.RG,c.RG,d.RG
+ auto abcdl = zip2Low(ac, bd);
+ auto abcdh = zip2High(ac, bd);
+ // Blend columns
+ abcdl += ((abcdh - abcdl) * fracx.xxyyzzww) >> 7;
+
+ return WideRG8(abcdl);
+}
+
+template <typename S>
+static PackedRG8 textureLinearPackedRG8(S sampler, ivec2 i) {
+ return pack(textureLinearUnpackedRG8(sampler, i));
+}
+
+template <int N>
+static ALWAYS_INLINE VectorType<uint16_t, N> addsat(VectorType<uint16_t, N> x,
+ VectorType<uint16_t, N> y) {
+ auto r = x + y;
+ return r | (r < x);
+}
+
+template <typename P, typename S>
+static VectorType<uint16_t, 4 * sizeof(P)> gaussianBlurHorizontal(
+ S sampler, const ivec2_scalar& i, int minX, int maxX, int radius,
+ float coeff, float coeffStep) {
+ // Packed and unpacked vectors for a chunk of the given pixel type.
+ typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
+ typedef VectorType<uint16_t, 4 * sizeof(P)> unpacked_type;
+
+ // Pre-scale the coefficient by 8 bits of fractional precision, so that when
+ // the sample is multiplied by it, it will yield a 16 bit unsigned integer
+ // that will use all 16 bits of precision to accumulate the sum.
+ coeff *= 1 << 8;
+ float coeffStep2 = coeffStep * coeffStep;
+
+ int row = computeRow(sampler, i);
+ P* buf = (P*)sampler->buf;
+ auto pixelsRight = unaligned_load<V4<P>>(&buf[row]);
+ auto pixelsLeft = pixelsRight;
+ auto sum = CONVERT(bit_cast<packed_type>(pixelsRight), unpacked_type) *
+ uint16_t(coeff + 0.5f);
+
+ // Here we use some trickery to reuse the pixels within a chunk, shifted over
+ // by one pixel, to get the next sample for the entire chunk. This allows us
+ // to sample only one pixel for each offset across the entire chunk in both
+ // the left and right directions. To avoid clamping within the loop to the
+ // texture bounds, we compute the valid radius that doesn't require clamping
+ // and fall back to a slower clamping loop outside of that valid radius.
+ int offset = 1;
+ // The left bound is how much we can offset the sample before the start of
+ // the row bounds.
+ int leftBound = i.x - max(minX, 0);
+ // The right bound is how much we can offset the sample before the end of the
+ // row bounds.
+ int rightBound = min(maxX, sampler->width - 1) - i.x;
+ int validRadius = min(radius, min(leftBound, rightBound - (4 - 1)));
+ for (; offset <= validRadius; offset++) {
+ // Overwrite the pixel that needs to be shifted out with the new pixel, and
+ // shift it into the correct location.
+ pixelsRight.x = unaligned_load<P>(&buf[row + offset + 4 - 1]);
+ pixelsRight = pixelsRight.yzwx;
+ pixelsLeft = pixelsLeft.wxyz;
+ pixelsLeft.x = unaligned_load<P>(&buf[row - offset]);
+
+ // Accumulate the Gaussian coefficients step-wise.
+ coeff *= coeffStep;
+ coeffStep *= coeffStep2;
+
+ // Both left and right samples at this offset use the same coefficient.
+ sum = addsat(sum,
+ (CONVERT(bit_cast<packed_type>(pixelsRight), unpacked_type) +
+ CONVERT(bit_cast<packed_type>(pixelsLeft), unpacked_type)) *
+ uint16_t(coeff + 0.5f));
+ }
+
+ for (; offset <= radius; offset++) {
+ pixelsRight.x =
+ unaligned_load<P>(&buf[row + min(offset + 4 - 1, rightBound)]);
+ pixelsRight = pixelsRight.yzwx;
+ pixelsLeft = pixelsLeft.wxyz;
+ pixelsLeft.x = unaligned_load<P>(&buf[row - min(offset, leftBound)]);
+
+ coeff *= coeffStep;
+ coeffStep *= coeffStep2;
+
+ sum = addsat(sum,
+ (CONVERT(bit_cast<packed_type>(pixelsRight), unpacked_type) +
+ CONVERT(bit_cast<packed_type>(pixelsLeft), unpacked_type)) *
+ uint16_t(coeff + 0.5f));
+ }
+
+ // Shift away the intermediate precision.
+ return sum >> 8;
+}
+
+template <typename P, typename S>
+static VectorType<uint16_t, 4 * sizeof(P)> gaussianBlurVertical(
+ S sampler, const ivec2_scalar& i, int minY, int maxY, int radius,
+ float coeff, float coeffStep) {
+ // Packed and unpacked vectors for a chunk of the given pixel type.
+ typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
+ typedef VectorType<uint16_t, 4 * sizeof(P)> unpacked_type;
+
+ // Pre-scale the coefficient by 8 bits of fractional precision, so that when
+ // the sample is multiplied by it, it will yield a 16 bit unsigned integer
+ // that will use all 16 bits of precision to accumulate the sum.
+ coeff *= 1 << 8;
+ float coeffStep2 = coeffStep * coeffStep;
+
+ int rowAbove = computeRow(sampler, i);
+ int rowBelow = rowAbove;
+ P* buf = (P*)sampler->buf;
+ auto pixels = unaligned_load<V4<P>>(&buf[rowAbove]);
+ auto sum = CONVERT(bit_cast<packed_type>(pixels), unpacked_type) *
+ uint16_t(coeff + 0.5f);
+
+ // For the vertical loop we can't be quite as creative with reusing old values
+ // as we were in the horizontal loop. We just do the obvious implementation of
+ // loading a chunk from each row in turn and accumulating it into the sum. We
+ // compute a valid radius within which we don't need to clamp the sampled row
+ // and use that to avoid any clamping in the main inner loop. We fall back to
+ // a slower clamping loop outside of that valid radius.
+ int offset = 1;
+ int belowBound = i.y - max(minY, 0);
+ int aboveBound = min(maxY, sampler->height - 1) - i.y;
+ int validRadius = min(radius, min(belowBound, aboveBound));
+ for (; offset <= validRadius; offset++) {
+ rowAbove += sampler->stride;
+ rowBelow -= sampler->stride;
+ auto pixelsAbove = unaligned_load<V4<P>>(&buf[rowAbove]);
+ auto pixelsBelow = unaligned_load<V4<P>>(&buf[rowBelow]);
+
+ // Accumulate the Gaussian coefficients step-wise.
+ coeff *= coeffStep;
+ coeffStep *= coeffStep2;
+
+ // Both above and below samples at this offset use the same coefficient.
+ sum = addsat(sum,
+ (CONVERT(bit_cast<packed_type>(pixelsAbove), unpacked_type) +
+ CONVERT(bit_cast<packed_type>(pixelsBelow), unpacked_type)) *
+ uint16_t(coeff + 0.5f));
+ }
+
+ for (; offset <= radius; offset++) {
+ if (offset <= aboveBound) {
+ rowAbove += sampler->stride;
+ }
+ if (offset <= belowBound) {
+ rowBelow -= sampler->stride;
+ }
+ auto pixelsAbove = unaligned_load<V4<P>>(&buf[rowAbove]);
+ auto pixelsBelow = unaligned_load<V4<P>>(&buf[rowBelow]);
+
+ coeff *= coeffStep;
+ coeffStep *= coeffStep2;
+
+ sum = addsat(sum,
+ (CONVERT(bit_cast<packed_type>(pixelsAbove), unpacked_type) +
+ CONVERT(bit_cast<packed_type>(pixelsBelow), unpacked_type)) *
+ uint16_t(coeff + 0.5f));
+ }
+
+ // Shift away the intermediate precision.
+ return sum >> 8;
+}
+
+} // namespace glsl