summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/deprecated/alg2268.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/deprecated/alg2268.c')
-rw-r--r--security/nss/lib/freebl/deprecated/alg2268.c509
1 files changed, 509 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/deprecated/alg2268.c b/security/nss/lib/freebl/deprecated/alg2268.c
new file mode 100644
index 0000000000..ac97363099
--- /dev/null
+++ b/security/nss/lib/freebl/deprecated/alg2268.c
@@ -0,0 +1,509 @@
+/*
+ * alg2268.c - implementation of the algorithm in RFC 2268
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "../stubs.h"
+#endif
+
+#include "../blapi.h"
+#include "../blapii.h"
+#include "secerr.h"
+#ifdef XP_UNIX_XXX
+#include <stddef.h> /* for ptrdiff_t */
+#endif
+
+/*
+** RC2 symmetric block cypher
+*/
+
+typedef SECStatus(rc2Func)(RC2Context *cx, unsigned char *output,
+ const unsigned char *input, unsigned int inputLen);
+
+/* forward declarations */
+static rc2Func rc2_EncryptECB;
+static rc2Func rc2_DecryptECB;
+static rc2Func rc2_EncryptCBC;
+static rc2Func rc2_DecryptCBC;
+
+typedef union {
+ PRUint32 l[2];
+ PRUint16 s[4];
+ PRUint8 b[8];
+} RC2Block;
+
+struct RC2ContextStr {
+ union {
+ PRUint8 Kb[128];
+ PRUint16 Kw[64];
+ } u;
+ RC2Block iv;
+ rc2Func *enc;
+ rc2Func *dec;
+};
+
+#define B u.Kb
+#define K u.Kw
+#define BYTESWAP(x) ((x) << 8 | (x) >> 8)
+#define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
+#define RC2_BLOCK_SIZE 8
+
+#define LOAD_HARD(R) \
+ R[0] = (PRUint16)input[1] << 8 | input[0]; \
+ R[1] = (PRUint16)input[3] << 8 | input[2]; \
+ R[2] = (PRUint16)input[5] << 8 | input[4]; \
+ R[3] = (PRUint16)input[7] << 8 | input[6];
+#define LOAD_EASY(R) \
+ R[0] = ((PRUint16 *)input)[0]; \
+ R[1] = ((PRUint16 *)input)[1]; \
+ R[2] = ((PRUint16 *)input)[2]; \
+ R[3] = ((PRUint16 *)input)[3];
+#define STORE_HARD(R) \
+ output[0] = (PRUint8)(R[0]); \
+ output[1] = (PRUint8)(R[0] >> 8); \
+ output[2] = (PRUint8)(R[1]); \
+ output[3] = (PRUint8)(R[1] >> 8); \
+ output[4] = (PRUint8)(R[2]); \
+ output[5] = (PRUint8)(R[2] >> 8); \
+ output[6] = (PRUint8)(R[3]); \
+ output[7] = (PRUint8)(R[3] >> 8);
+#define STORE_EASY(R) \
+ ((PRUint16 *)output)[0] = R[0]; \
+ ((PRUint16 *)output)[1] = R[1]; \
+ ((PRUint16 *)output)[2] = R[2]; \
+ ((PRUint16 *)output)[3] = R[3];
+
+#if defined(NSS_X86_OR_X64)
+#define LOAD(R) LOAD_EASY(R)
+#define STORE(R) STORE_EASY(R)
+#elif !defined(IS_LITTLE_ENDIAN)
+#define LOAD(R) LOAD_HARD(R)
+#define STORE(R) STORE_HARD(R)
+#else
+#define LOAD(R) \
+ if ((ptrdiff_t)input & 1) { \
+ LOAD_HARD(R) \
+ } else { \
+ LOAD_EASY(R) \
+ }
+#define STORE(R) \
+ if ((ptrdiff_t)input & 1) { \
+ STORE_HARD(R) \
+ } else { \
+ STORE_EASY(R) \
+ }
+#endif
+
+static const PRUint8 S[256] = {
+ 0331, 0170, 0371, 0304, 0031, 0335, 0265, 0355, 0050, 0351, 0375, 0171, 0112, 0240, 0330, 0235,
+ 0306, 0176, 0067, 0203, 0053, 0166, 0123, 0216, 0142, 0114, 0144, 0210, 0104, 0213, 0373, 0242,
+ 0027, 0232, 0131, 0365, 0207, 0263, 0117, 0023, 0141, 0105, 0155, 0215, 0011, 0201, 0175, 0062,
+ 0275, 0217, 0100, 0353, 0206, 0267, 0173, 0013, 0360, 0225, 0041, 0042, 0134, 0153, 0116, 0202,
+ 0124, 0326, 0145, 0223, 0316, 0140, 0262, 0034, 0163, 0126, 0300, 0024, 0247, 0214, 0361, 0334,
+ 0022, 0165, 0312, 0037, 0073, 0276, 0344, 0321, 0102, 0075, 0324, 0060, 0243, 0074, 0266, 0046,
+ 0157, 0277, 0016, 0332, 0106, 0151, 0007, 0127, 0047, 0362, 0035, 0233, 0274, 0224, 0103, 0003,
+ 0370, 0021, 0307, 0366, 0220, 0357, 0076, 0347, 0006, 0303, 0325, 0057, 0310, 0146, 0036, 0327,
+ 0010, 0350, 0352, 0336, 0200, 0122, 0356, 0367, 0204, 0252, 0162, 0254, 0065, 0115, 0152, 0052,
+ 0226, 0032, 0322, 0161, 0132, 0025, 0111, 0164, 0113, 0237, 0320, 0136, 0004, 0030, 0244, 0354,
+ 0302, 0340, 0101, 0156, 0017, 0121, 0313, 0314, 0044, 0221, 0257, 0120, 0241, 0364, 0160, 0071,
+ 0231, 0174, 0072, 0205, 0043, 0270, 0264, 0172, 0374, 0002, 0066, 0133, 0045, 0125, 0227, 0061,
+ 0055, 0135, 0372, 0230, 0343, 0212, 0222, 0256, 0005, 0337, 0051, 0020, 0147, 0154, 0272, 0311,
+ 0323, 0000, 0346, 0317, 0341, 0236, 0250, 0054, 0143, 0026, 0001, 0077, 0130, 0342, 0211, 0251,
+ 0015, 0070, 0064, 0033, 0253, 0063, 0377, 0260, 0273, 0110, 0014, 0137, 0271, 0261, 0315, 0056,
+ 0305, 0363, 0333, 0107, 0345, 0245, 0234, 0167, 0012, 0246, 0040, 0150, 0376, 0177, 0301, 0255
+};
+
+RC2Context *
+RC2_AllocateContext(void)
+{
+ return PORT_ZNew(RC2Context);
+}
+SECStatus
+RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
+ const unsigned char *input, int mode, unsigned int efLen8,
+ unsigned int unused)
+{
+ PRUint8 *L, *L2;
+ int i;
+#if !defined(IS_LITTLE_ENDIAN)
+ PRUint16 tmpS;
+#endif
+ PRUint8 tmpB;
+
+ if (!key || !cx || !len || len > (sizeof cx->B) ||
+ efLen8 > (sizeof cx->B)) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ if (mode == NSS_RC2) {
+ /* groovy */
+ } else if (mode == NSS_RC2_CBC) {
+ if (!input) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ } else {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+
+ if (mode == NSS_RC2_CBC) {
+ cx->enc = &rc2_EncryptCBC;
+ cx->dec = &rc2_DecryptCBC;
+ LOAD(cx->iv.s);
+ } else {
+ cx->enc = &rc2_EncryptECB;
+ cx->dec = &rc2_DecryptECB;
+ }
+
+ /* Step 0. Copy key into table. */
+ memcpy(cx->B, key, len);
+
+ /* Step 1. Compute all values to the right of the key. */
+ L2 = cx->B;
+ L = L2 + len;
+ tmpB = L[-1];
+ for (i = (sizeof cx->B) - len; i > 0; --i) {
+ *L++ = tmpB = S[(PRUint8)(tmpB + *L2++)];
+ }
+
+ /* step 2. Adjust left most byte of effective key. */
+ i = (sizeof cx->B) - efLen8;
+ L = cx->B + i;
+ *L = tmpB = S[*L]; /* mask is always 0xff */
+
+ /* step 3. Recompute all values to the left of effective key. */
+ L2 = --L + efLen8;
+ while (L >= cx->B) {
+ *L-- = tmpB = S[tmpB ^ *L2--];
+ }
+
+#if !defined(IS_LITTLE_ENDIAN)
+ for (i = 63; i >= 0; --i) {
+ SWAPK(i); /* candidate for unrolling */
+ }
+#endif
+ return SECSuccess;
+}
+
+/*
+** Create a new RC2 context suitable for RC2 encryption/decryption.
+** "key" raw key data
+** "len" the number of bytes of key data
+** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
+** "mode" one of NSS_RC2 or NSS_RC2_CBC
+** "effectiveKeyLen" in bytes, not bits.
+**
+** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
+** chaining" mode.
+*/
+RC2Context *
+RC2_CreateContext(const unsigned char *key, unsigned int len,
+ const unsigned char *iv, int mode, unsigned efLen8)
+{
+ RC2Context *cx = PORT_ZNew(RC2Context);
+ if (cx) {
+ SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
+ if (rv != SECSuccess) {
+ RC2_DestroyContext(cx, PR_TRUE);
+ cx = NULL;
+ }
+ }
+ return cx;
+}
+
+/*
+** Destroy an RC2 encryption/decryption context.
+** "cx" the context
+** "freeit" if PR_TRUE then free the object as well as its sub-objects
+*/
+void
+RC2_DestroyContext(RC2Context *cx, PRBool freeit)
+{
+ if (cx) {
+ memset(cx, 0, sizeof *cx);
+ if (freeit) {
+ PORT_Free(cx);
+ }
+ }
+}
+
+#define ROL(x, k) (x << k | x >> (16 - k))
+#define MIX(j) \
+ R0 = R0 + cx->K[4 * j + 0] + (R3 & R2) + (~R3 & R1); \
+ R0 = ROL(R0, 1); \
+ R1 = R1 + cx->K[4 * j + 1] + (R0 & R3) + (~R0 & R2); \
+ R1 = ROL(R1, 2); \
+ R2 = R2 + cx->K[4 * j + 2] + (R1 & R0) + (~R1 & R3); \
+ R2 = ROL(R2, 3); \
+ R3 = R3 + cx->K[4 * j + 3] + (R2 & R1) + (~R2 & R0); \
+ R3 = ROL(R3, 5)
+#define MASH \
+ R0 = R0 + cx->K[R3 & 63]; \
+ R1 = R1 + cx->K[R0 & 63]; \
+ R2 = R2 + cx->K[R1 & 63]; \
+ R3 = R3 + cx->K[R2 & 63]
+
+/* Encrypt one block */
+static void
+rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
+{
+ register PRUint16 R0, R1, R2, R3;
+
+ /* step 1. Initialize input. */
+ R0 = input->s[0];
+ R1 = input->s[1];
+ R2 = input->s[2];
+ R3 = input->s[3];
+
+ /* step 2. Expand Key (already done, in context) */
+ /* step 3. j = 0 */
+ /* step 4. Perform 5 mixing rounds. */
+
+ MIX(0);
+ MIX(1);
+ MIX(2);
+ MIX(3);
+ MIX(4);
+
+ /* step 5. Perform 1 mashing round. */
+ MASH;
+
+ /* step 6. Perform 6 mixing rounds. */
+
+ MIX(5);
+ MIX(6);
+ MIX(7);
+ MIX(8);
+ MIX(9);
+ MIX(10);
+
+ /* step 7. Perform 1 mashing round. */
+ MASH;
+
+ /* step 8. Perform 5 mixing rounds. */
+
+ MIX(11);
+ MIX(12);
+ MIX(13);
+ MIX(14);
+ MIX(15);
+
+ /* output results */
+ output->s[0] = R0;
+ output->s[1] = R1;
+ output->s[2] = R2;
+ output->s[3] = R3;
+}
+
+#define ROR(x, k) (x >> k | x << (16 - k))
+#define R_MIX(j) \
+ R3 = ROR(R3, 5); \
+ R3 = R3 - cx->K[4 * j + 3] - (R2 & R1) - (~R2 & R0); \
+ R2 = ROR(R2, 3); \
+ R2 = R2 - cx->K[4 * j + 2] - (R1 & R0) - (~R1 & R3); \
+ R1 = ROR(R1, 2); \
+ R1 = R1 - cx->K[4 * j + 1] - (R0 & R3) - (~R0 & R2); \
+ R0 = ROR(R0, 1); \
+ R0 = R0 - cx->K[4 * j + 0] - (R3 & R2) - (~R3 & R1)
+#define R_MASH \
+ R3 = R3 - cx->K[R2 & 63]; \
+ R2 = R2 - cx->K[R1 & 63]; \
+ R1 = R1 - cx->K[R0 & 63]; \
+ R0 = R0 - cx->K[R3 & 63]
+
+/* Encrypt one block */
+static void
+rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
+{
+ register PRUint16 R0, R1, R2, R3;
+
+ /* step 1. Initialize input. */
+ R0 = input->s[0];
+ R1 = input->s[1];
+ R2 = input->s[2];
+ R3 = input->s[3];
+
+ /* step 2. Expand Key (already done, in context) */
+ /* step 3. j = 63 */
+ /* step 4. Perform 5 r_mixing rounds. */
+ R_MIX(15);
+ R_MIX(14);
+ R_MIX(13);
+ R_MIX(12);
+ R_MIX(11);
+
+ /* step 5. Perform 1 r_mashing round. */
+ R_MASH;
+
+ /* step 6. Perform 6 r_mixing rounds. */
+ R_MIX(10);
+ R_MIX(9);
+ R_MIX(8);
+ R_MIX(7);
+ R_MIX(6);
+ R_MIX(5);
+
+ /* step 7. Perform 1 r_mashing round. */
+ R_MASH;
+
+ /* step 8. Perform 5 r_mixing rounds. */
+ R_MIX(4);
+ R_MIX(3);
+ R_MIX(2);
+ R_MIX(1);
+ R_MIX(0);
+
+ /* output results */
+ output->s[0] = R0;
+ output->s[1] = R1;
+ output->s[2] = R2;
+ output->s[3] = R3;
+}
+
+static SECStatus NO_SANITIZE_ALIGNMENT
+rc2_EncryptECB(RC2Context *cx, unsigned char *output,
+ const unsigned char *input, unsigned int inputLen)
+{
+ RC2Block iBlock;
+
+ while (inputLen > 0) {
+ LOAD(iBlock.s)
+ rc2_Encrypt1Block(cx, &iBlock, &iBlock);
+ STORE(iBlock.s)
+ output += RC2_BLOCK_SIZE;
+ input += RC2_BLOCK_SIZE;
+ inputLen -= RC2_BLOCK_SIZE;
+ }
+ return SECSuccess;
+}
+
+static SECStatus NO_SANITIZE_ALIGNMENT
+rc2_DecryptECB(RC2Context *cx, unsigned char *output,
+ const unsigned char *input, unsigned int inputLen)
+{
+ RC2Block iBlock;
+
+ while (inputLen > 0) {
+ LOAD(iBlock.s)
+ rc2_Decrypt1Block(cx, &iBlock, &iBlock);
+ STORE(iBlock.s)
+ output += RC2_BLOCK_SIZE;
+ input += RC2_BLOCK_SIZE;
+ inputLen -= RC2_BLOCK_SIZE;
+ }
+ return SECSuccess;
+}
+
+static SECStatus NO_SANITIZE_ALIGNMENT
+rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
+ const unsigned char *input, unsigned int inputLen)
+{
+ RC2Block iBlock;
+
+ while (inputLen > 0) {
+
+ LOAD(iBlock.s)
+ iBlock.l[0] ^= cx->iv.l[0];
+ iBlock.l[1] ^= cx->iv.l[1];
+ rc2_Encrypt1Block(cx, &iBlock, &iBlock);
+ cx->iv = iBlock;
+ STORE(iBlock.s)
+ output += RC2_BLOCK_SIZE;
+ input += RC2_BLOCK_SIZE;
+ inputLen -= RC2_BLOCK_SIZE;
+ }
+ return SECSuccess;
+}
+
+static SECStatus NO_SANITIZE_ALIGNMENT
+rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
+ const unsigned char *input, unsigned int inputLen)
+{
+ RC2Block iBlock;
+ RC2Block oBlock;
+
+ while (inputLen > 0) {
+ LOAD(iBlock.s)
+ rc2_Decrypt1Block(cx, &oBlock, &iBlock);
+ oBlock.l[0] ^= cx->iv.l[0];
+ oBlock.l[1] ^= cx->iv.l[1];
+ cx->iv = iBlock;
+ STORE(oBlock.s)
+ output += RC2_BLOCK_SIZE;
+ input += RC2_BLOCK_SIZE;
+ inputLen -= RC2_BLOCK_SIZE;
+ }
+ return SECSuccess;
+}
+
+/*
+** Perform RC2 encryption.
+** "cx" the context
+** "output" the output buffer to store the encrypted data.
+** "outputLen" how much data is stored in "output". Set by the routine
+** after some data is stored in output.
+** "maxOutputLen" the maximum amount of data that can ever be
+** stored in "output"
+** "input" the input data
+** "inputLen" the amount of input data
+*/
+SECStatus
+RC2_Encrypt(RC2Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ SECStatus rv = SECSuccess;
+ if (inputLen) {
+ if (inputLen % RC2_BLOCK_SIZE) {
+ PORT_SetError(SEC_ERROR_INPUT_LEN);
+ return SECFailure;
+ }
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+ rv = (*cx->enc)(cx, output, input, inputLen);
+ }
+ if (rv == SECSuccess) {
+ *outputLen = inputLen;
+ }
+ return rv;
+}
+
+/*
+** Perform RC2 decryption.
+** "cx" the context
+** "output" the output buffer to store the decrypted data.
+** "outputLen" how much data is stored in "output". Set by the routine
+** after some data is stored in output.
+** "maxOutputLen" the maximum amount of data that can ever be
+** stored in "output"
+** "input" the input data
+** "inputLen" the amount of input data
+*/
+SECStatus
+RC2_Decrypt(RC2Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ SECStatus rv = SECSuccess;
+ if (inputLen) {
+ if (inputLen % RC2_BLOCK_SIZE) {
+ PORT_SetError(SEC_ERROR_INPUT_LEN);
+ return SECFailure;
+ }
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+ rv = (*cx->dec)(cx, output, input, inputLen);
+ }
+ if (rv == SECSuccess) {
+ *outputLen = inputLen;
+ }
+ return rv;
+}