summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/ecl/ecp_jac.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/ecl/ecp_jac.c')
-rw-r--r--security/nss/lib/freebl/ecl/ecp_jac.c513
1 files changed, 513 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/ecl/ecp_jac.c b/security/nss/lib/freebl/ecl/ecp_jac.c
new file mode 100644
index 0000000000..535e75903f
--- /dev/null
+++ b/security/nss/lib/freebl/ecl/ecp_jac.c
@@ -0,0 +1,513 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "ecp.h"
+#include "mplogic.h"
+#include <stdlib.h>
+#ifdef ECL_DEBUG
+#include <assert.h>
+#endif
+
+/* Converts a point P(px, py) from affine coordinates to Jacobian
+ * projective coordinates R(rx, ry, rz). Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+mp_err
+ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+
+ if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ } else {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ MP_CHECKOK(mp_set_int(rz, 1));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
+ }
+ }
+CLEANUP:
+ return res;
+}
+
+/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
+ * affine coordinates R(rx, ry). P and R can share x and y coordinates.
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded. */
+mp_err
+ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int z1, z2, z3;
+
+ MP_DIGITS(&z1) = 0;
+ MP_DIGITS(&z2) = 0;
+ MP_DIGITS(&z3) = 0;
+ MP_CHECKOK(mp_init(&z1));
+ MP_CHECKOK(mp_init(&z2));
+ MP_CHECKOK(mp_init(&z3));
+
+ /* if point at infinity, then set point at infinity and exit */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
+ goto CLEANUP;
+ }
+
+ /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
+ if (mp_cmp_d(pz, 1) == 0) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ } else {
+ MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
+ MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
+ MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
+ }
+
+CLEANUP:
+ mp_clear(&z1);
+ mp_clear(&z2);
+ mp_clear(&z3);
+ return res;
+}
+
+/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
+{
+ return mp_cmp_z(pz);
+}
+
+/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
+{
+ mp_zero(pz);
+ return MP_OKAY;
+}
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
+ * Uses mixed Jacobian-affine coordinates. Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
+ * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
+ * Fields. */
+mp_err
+ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int A, B, C, D, C2, C3;
+
+ MP_DIGITS(&A) = 0;
+ MP_DIGITS(&B) = 0;
+ MP_DIGITS(&C) = 0;
+ MP_DIGITS(&D) = 0;
+ MP_DIGITS(&C2) = 0;
+ MP_DIGITS(&C3) = 0;
+ MP_CHECKOK(mp_init(&A));
+ MP_CHECKOK(mp_init(&B));
+ MP_CHECKOK(mp_init(&C));
+ MP_CHECKOK(mp_init(&D));
+ MP_CHECKOK(mp_init(&C2));
+ MP_CHECKOK(mp_init(&C3));
+
+ /* If either P or Q is the point at infinity, then return the other
+ * point */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+ MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
+ goto CLEANUP;
+ }
+ if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
+ MP_CHECKOK(mp_copy(px, rx));
+ MP_CHECKOK(mp_copy(py, ry));
+ MP_CHECKOK(mp_copy(pz, rz));
+ goto CLEANUP;
+ }
+
+ /* A = qx * pz^2, B = qy * pz^3 */
+ MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
+
+ /* C = A - px, D = B - py */
+ MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
+
+ if (mp_cmp_z(&C) == 0) {
+ /* P == Q or P == -Q */
+ if (mp_cmp_z(&D) == 0) {
+ /* P == Q */
+ /* It is cheaper to double (qx, qy, 1) than (px, py, pz). */
+ MP_DIGIT(&D, 0) = 1; /* Set D to 1. */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(qx, qy, &D, rx, ry, rz, group));
+ } else {
+ /* P == -Q */
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ }
+ goto CLEANUP;
+ }
+
+ /* C2 = C^2, C3 = C^3 */
+ MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
+
+ /* rz = pz * C */
+ MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
+
+ /* C = px * C^2 */
+ MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
+ /* A = D^2 */
+ MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
+
+ /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
+ MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
+ MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
+
+ /* C3 = py * C^3 */
+ MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
+
+ /* ry = D * (px * C^2 - rx) - py * C^3 */
+ MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
+ MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
+
+CLEANUP:
+ mp_clear(&A);
+ mp_clear(&B);
+ mp_clear(&C);
+ mp_clear(&D);
+ mp_clear(&C2);
+ mp_clear(&C3);
+ return res;
+}
+
+/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
+ * Jacobian coordinates.
+ *
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded.
+ *
+ * This routine implements Point Doubling in the Jacobian Projective
+ * space as described in the paper "Efficient elliptic curve exponentiation
+ * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
+ */
+mp_err
+ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
+ mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int t0, t1, M, S;
+
+ MP_DIGITS(&t0) = 0;
+ MP_DIGITS(&t1) = 0;
+ MP_DIGITS(&M) = 0;
+ MP_DIGITS(&S) = 0;
+ MP_CHECKOK(mp_init(&t0));
+ MP_CHECKOK(mp_init(&t1));
+ MP_CHECKOK(mp_init(&M));
+ MP_CHECKOK(mp_init(&S));
+
+ /* P == inf or P == -P */
+ if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES || mp_cmp_z(py) == 0) {
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+ goto CLEANUP;
+ }
+
+ if (mp_cmp_d(pz, 1) == 0) {
+ /* M = 3 * px^2 + a */
+ MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &group->curvea, &M, group->meth));
+ } else if (MP_SIGN(&group->curvea) == MP_NEG &&
+ MP_USED(&group->curvea) == 1 &&
+ MP_DIGIT(&group->curvea, 0) == 3) {
+ /* M = 3 * (px + pz^2) * (px - pz^2) */
+ MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
+ } else {
+ /* M = 3 * (px^2) + a * (pz^4) */
+ MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&M, &group->curvea, &M, group->meth));
+ MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
+ }
+
+ /* rz = 2 * py * pz */
+ /* t0 = 4 * py^2 */
+ if (mp_cmp_d(pz, 1) == 0) {
+ MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
+ } else {
+ MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
+ }
+
+ /* S = 4 * px * py^2 = px * (2 * py)^2 */
+ MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
+
+ /* rx = M^2 - 2 * S */
+ MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
+ MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
+ MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
+
+ /* ry = M * (S - rx) - 8 * py^4 */
+ MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
+ if (mp_isodd(&t1)) {
+ MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
+ }
+ MP_CHECKOK(mp_div_2(&t1, &t1));
+ MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
+ MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
+ MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
+
+CLEANUP:
+ mp_clear(&t0);
+ mp_clear(&t1);
+ mp_clear(&M);
+ mp_clear(&S);
+ return res;
+}
+
+/* by default, this routine is unused and thus doesn't need to be compiled */
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp. Elliptic curve points P and R can be
+ * identical. Uses mixed Jacobian-affine coordinates. Assumes input is
+ * already field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses 4-bit window method. */
+mp_err
+ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
+ mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[16][2], rz;
+ int i, ni, d;
+
+ MP_DIGITS(&rz) = 0;
+ for (i = 0; i < 16; i++) {
+ MP_DIGITS(&precomp[i][0]) = 0;
+ MP_DIGITS(&precomp[i][1]) = 0;
+ }
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
+
+ /* initialize precomputation table */
+ for (i = 0; i < 16; i++) {
+ MP_CHECKOK(mp_init(&precomp[i][0]));
+ MP_CHECKOK(mp_init(&precomp[i][1]));
+ }
+
+ /* fill precomputation table */
+ mp_zero(&precomp[0][0]);
+ mp_zero(&precomp[0][1]);
+ MP_CHECKOK(mp_copy(px, &precomp[1][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[1][1]));
+ for (i = 2; i < 16; i++) {
+ MP_CHECKOK(group->point_add(&precomp[1][0], &precomp[1][1],
+ &precomp[i - 1][0], &precomp[i - 1][1],
+ &precomp[i][0], &precomp[i][1], group));
+ }
+
+ d = (mpl_significant_bits(n) + 3) / 4;
+
+ /* R = inf */
+ MP_CHECKOK(mp_init(&rz));
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+ for (i = d - 1; i >= 0; i--) {
+ /* compute window ni */
+ ni = MP_GET_BIT(n, 4 * i + 3);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i + 2);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i + 1);
+ ni <<= 1;
+ ni |= MP_GET_BIT(n, 4 * i);
+ /* R = 2^4 * R */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ /* R = R + (ni * P) */
+ MP_CHECKOK(ec_GFp_pt_add_jac_aff(rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
+ &rz, group));
+ }
+
+ /* convert result S to affine coordinates */
+ MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+CLEANUP:
+ mp_clear(&rz);
+ for (i = 0; i < 16; i++) {
+ mp_clear(&precomp[i][0]);
+ mp_clear(&precomp[i][1]);
+ }
+ return res;
+}
+#endif
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Uses mixed Jacobian-affine coordinates. Input and output values are
+ * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
+ * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
+ * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
+mp_err
+ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group)
+{
+ mp_err res = MP_OKAY;
+ mp_int precomp[4][4][2];
+ mp_int rz;
+ const mp_int *a, *b;
+ unsigned int i, j;
+ int ai, bi, d;
+
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_DIGITS(&precomp[i][j][0]) = 0;
+ MP_DIGITS(&precomp[i][j][1]) = 0;
+ }
+ }
+ MP_DIGITS(&rz) = 0;
+
+ ARGCHK(group != NULL, MP_BADARG);
+ ARGCHK(!((k1 == NULL) && ((k2 == NULL) || (px == NULL) || (py == NULL))), MP_BADARG);
+
+ /* if some arguments are not defined used ECPoint_mul */
+ if (k1 == NULL) {
+ return ECPoint_mul(group, k2, px, py, rx, ry);
+ } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+ return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+ }
+
+ /* initialize precomputation table */
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ MP_CHECKOK(mp_init(&precomp[i][j][0]));
+ MP_CHECKOK(mp_init(&precomp[i][j][1]));
+ }
+ }
+
+ /* fill precomputation table */
+ /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
+ if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
+ a = k2;
+ b = k1;
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[1][0][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[1][0][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
+ }
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
+ } else {
+ a = k1;
+ b = k2;
+ MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
+ MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
+ if (group->meth->field_enc) {
+ MP_CHECKOK(group->meth->field_enc(px, &precomp[0][1][0], group->meth));
+ MP_CHECKOK(group->meth->field_enc(py, &precomp[0][1][1], group->meth));
+ } else {
+ MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
+ MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
+ }
+ }
+ /* precompute [*][0][*] */
+ mp_zero(&precomp[0][0][0]);
+ mp_zero(&precomp[0][0][1]);
+ MP_CHECKOK(group->point_dbl(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1], group));
+ MP_CHECKOK(group->point_add(&precomp[1][0][0], &precomp[1][0][1],
+ &precomp[2][0][0], &precomp[2][0][1],
+ &precomp[3][0][0], &precomp[3][0][1], group));
+ /* precompute [*][1][*] */
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][1][0], &precomp[i][1][1], group));
+ }
+ /* precompute [*][2][*] */
+ MP_CHECKOK(group->point_dbl(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][2][0], &precomp[0][2][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][2][0], &precomp[i][2][1], group));
+ }
+ /* precompute [*][3][*] */
+ MP_CHECKOK(group->point_add(&precomp[0][1][0], &precomp[0][1][1],
+ &precomp[0][2][0], &precomp[0][2][1],
+ &precomp[0][3][0], &precomp[0][3][1], group));
+ for (i = 1; i < 4; i++) {
+ MP_CHECKOK(group->point_add(&precomp[0][3][0], &precomp[0][3][1],
+ &precomp[i][0][0], &precomp[i][0][1],
+ &precomp[i][3][0], &precomp[i][3][1], group));
+ }
+
+ d = (mpl_significant_bits(a) + 1) / 2;
+
+ /* R = inf */
+ MP_CHECKOK(mp_init(&rz));
+ MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+ for (i = d; i-- > 0;) {
+ ai = MP_GET_BIT(a, 2 * i + 1);
+ ai <<= 1;
+ ai |= MP_GET_BIT(a, 2 * i);
+ bi = MP_GET_BIT(b, 2 * i + 1);
+ bi <<= 1;
+ bi |= MP_GET_BIT(b, 2 * i);
+ /* R = 2^2 * R */
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+ /* R = R + (ai * A + bi * B) */
+ MP_CHECKOK(ec_GFp_pt_add_jac_aff(rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
+ rx, ry, &rz, group));
+ }
+
+ MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+ if (group->meth->field_dec) {
+ MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+ MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+ }
+
+CLEANUP:
+ mp_clear(&rz);
+ for (i = 0; i < 4; i++) {
+ for (j = 0; j < 4; j++) {
+ mp_clear(&precomp[i][j][0]);
+ mp_clear(&precomp[i][j][1]);
+ }
+ }
+ return res;
+}