diff options
Diffstat (limited to 'testing/web-platform/tests/shape-detection/detected-postMessage.https.html')
-rw-r--r-- | testing/web-platform/tests/shape-detection/detected-postMessage.https.html | 90 |
1 files changed, 90 insertions, 0 deletions
diff --git a/testing/web-platform/tests/shape-detection/detected-postMessage.https.html b/testing/web-platform/tests/shape-detection/detected-postMessage.https.html new file mode 100644 index 0000000000..8066984b26 --- /dev/null +++ b/testing/web-platform/tests/shape-detection/detected-postMessage.https.html @@ -0,0 +1,90 @@ +<!DOCTYPE html> +<script src="/resources/testharness.js"></script> +<script src="/resources/testharnessreport.js"></script> +<script src="resources/shapedetection-helpers.js"></script> +<script> + +// These tests verify that Detected{Face, Barcode, Text} can be passed to +// postMessage(). +const postMessageTests = + [ + { + createDetector: () => { return new FaceDetector(); }, + mockTestName: "FaceDetectionTest", + detectionResultTest: FaceDetectorDetectionResultTest, + name: "Face - DetectedFace can be passed to postMessage()" + }, + { + createDetector: () => { return new BarcodeDetector(); }, + mockTestName: "BarcodeDetectionTest", + detectionResultTest: BarcodeDetectorDetectionResultTest, + name: "Barcode - DetectedBarcode can be passed to postMessage()" + }, + { + createDetector: () => { return new TextDetector(); }, + mockTestName: "TextDetectionTest", + detectionResultTest: TextDetectorDetectionResultTest, + name: "Text - DetectedText can be passed to postMessage()", + }, + ]; + +for (let postMessageTest of postMessageTests) { + detection_test(postMessageTest.mockTestName, async t => { + const img = new Image(); + const imgWatcher = new EventWatcher(t, img, ["load", "error"]); + img.src = "/images/green-16x16.png"; + await imgWatcher.wait_for("load"); + + const canvas = document.createElement("canvas"); + canvas.getContext("2d").drawImage(img, 0, 0); + + const detector = postMessageTest.createDetector(); + const detectionResult = await detector.detect(canvas.getContext("2d") + .getImageData(0, 0, canvas.width, canvas.height)); + + const msgWatcher = new EventWatcher(t, window, ['message']); + window.postMessage(detectionResult); + const evt = await msgWatcher.wait_for('message'); + postMessageTest.detectionResultTest(evt.data) + }, postMessageTest.name); +} + +function FaceDetectorDetectionResultTest(detectionResult) { + assert_equals(detectionResult.length, 3, "Number of faces"); + assert_equals(detectionResult[0].landmarks.length, 2, "Number of landmarks"); + assert_object_equals(detectionResult[0].landmarks[0], + {type : 'eye', locations : [{x : 4.0, y : 5.0}]}, + "landmark #1"); + assert_equals(detectionResult[0].landmarks[1].locations.length, 8, + "Number of locations along eye"); + assert_object_equals(detectionResult[1].landmarks[0], + {type : 'nose', locations : [{x : 100.0, y : 50.0}]}, + "landmark #2"); + assert_equals(detectionResult[1].landmarks[1].locations.length, 9, + "Number of locations along nose"); +} + +function BarcodeDetectorDetectionResultTest(detectionResult) { + assert_equals(detectionResult.length, 2, "Number of barcodes"); + assert_equals(detectionResult[0].rawValue, "cats", "barcode 1"); + assert_equals(detectionResult[0].format, "qr_code", "barcode 1 format"); + assert_equals(detectionResult[1].rawValue, "dogs", "barcode 2"); + assert_equals(detectionResult[1].format, "code_128", "barcode 2 format"); +} + +function TextDetectorDetectionResultTest(detectionResult) { + assert_equals(detectionResult.length, 2, "Number of textBlocks"); + assert_equals(detectionResult[0].rawValue, "cats", "textBlock 1"); + assert_equals(detectionResult[1].rawValue, "dogs", "textBlock 2"); + for (let i = 0; i < detectionResult.length; i++) { + assert_equals(detectionResult[i].boundingBox.x, detectionResult[i].cornerPoints[0].x); + assert_equals(detectionResult[i].boundingBox.y, detectionResult[i].cornerPoints[0].y); + assert_equals(detectionResult[i].boundingBox.width, + detectionResult[i].cornerPoints[2].x - detectionResult[i].cornerPoints[3].x); + assert_equals(detectionResult[i].boundingBox.height, + detectionResult[i].cornerPoints[2].y - detectionResult[i].cornerPoints[1].y); + } + +} + +</script> |