diff options
Diffstat (limited to 'third_party/libwebrtc/p2p/base/port_unittest.cc')
-rw-r--r-- | third_party/libwebrtc/p2p/base/port_unittest.cc | 3844 |
1 files changed, 3844 insertions, 0 deletions
diff --git a/third_party/libwebrtc/p2p/base/port_unittest.cc b/third_party/libwebrtc/p2p/base/port_unittest.cc new file mode 100644 index 0000000000..3a0021699c --- /dev/null +++ b/third_party/libwebrtc/p2p/base/port_unittest.cc @@ -0,0 +1,3844 @@ +/* + * Copyright 2004 The WebRTC Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "p2p/base/port.h" + +#include <string.h> + +#include <cstdint> +#include <limits> +#include <list> +#include <memory> +#include <string> +#include <utility> +#include <vector> + +#include "absl/strings/string_view.h" +#include "absl/types/optional.h" +#include "api/candidate.h" +#include "api/packet_socket_factory.h" +#include "api/transport/stun.h" +#include "api/units/time_delta.h" +#include "p2p/base/basic_packet_socket_factory.h" +#include "p2p/base/p2p_constants.h" +#include "p2p/base/port_allocator.h" +#include "p2p/base/port_interface.h" +#include "p2p/base/stun_port.h" +#include "p2p/base/stun_server.h" +#include "p2p/base/tcp_port.h" +#include "p2p/base/test_stun_server.h" +#include "p2p/base/test_turn_server.h" +#include "p2p/base/transport_description.h" +#include "p2p/base/turn_port.h" +#include "p2p/base/turn_server.h" +#include "p2p/client/relay_port_factory_interface.h" +#include "rtc_base/arraysize.h" +#include "rtc_base/async_packet_socket.h" +#include "rtc_base/buffer.h" +#include "rtc_base/byte_buffer.h" +#include "rtc_base/checks.h" +#include "rtc_base/dscp.h" +#include "rtc_base/fake_clock.h" +#include "rtc_base/gunit.h" +#include "rtc_base/helpers.h" +#include "rtc_base/logging.h" +#include "rtc_base/nat_server.h" +#include "rtc_base/nat_socket_factory.h" +#include "rtc_base/nat_types.h" +#include "rtc_base/net_helper.h" +#include "rtc_base/network.h" +#include "rtc_base/network/sent_packet.h" +#include "rtc_base/network_constants.h" +#include "rtc_base/proxy_info.h" +#include "rtc_base/socket.h" +#include "rtc_base/socket_adapters.h" +#include "rtc_base/socket_address.h" +#include "rtc_base/third_party/sigslot/sigslot.h" +#include "rtc_base/thread.h" +#include "rtc_base/time_utils.h" +#include "rtc_base/virtual_socket_server.h" +#include "test/gtest.h" +#include "test/scoped_key_value_config.h" + +using rtc::AsyncListenSocket; +using rtc::AsyncPacketSocket; +using rtc::ByteBufferReader; +using rtc::ByteBufferWriter; +using rtc::NAT_ADDR_RESTRICTED; +using rtc::NAT_OPEN_CONE; +using rtc::NAT_PORT_RESTRICTED; +using rtc::NAT_SYMMETRIC; +using rtc::NATType; +using rtc::PacketSocketFactory; +using rtc::Socket; +using rtc::SocketAddress; + +namespace cricket { +namespace { + +constexpr int kDefaultTimeout = 3000; +constexpr int kShortTimeout = 1000; +constexpr int kMaxExpectedSimulatedRtt = 200; +const SocketAddress kLocalAddr1("192.168.1.2", 0); +const SocketAddress kLocalAddr2("192.168.1.3", 0); +const SocketAddress kLinkLocalIPv6Addr("fe80::aabb:ccff:fedd:eeff", 0); +const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT); +const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT); +const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT); +const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT); +const SocketAddress kTurnTcpIntAddr("99.99.99.4", 5010); +const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0); +const RelayCredentials kRelayCredentials("test", "test"); + +// TODO(?): Update these when RFC5245 is completely supported. +// Magic value of 30 is from RFC3484, for IPv4 addresses. +const uint32_t kDefaultPrflxPriority = ICE_TYPE_PREFERENCE_PRFLX << 24 | + 30 << 8 | + (256 - ICE_CANDIDATE_COMPONENT_DEFAULT); + +constexpr int kTiebreaker1 = 11111; +constexpr int kTiebreaker2 = 22222; +constexpr int kTiebreakerDefault = 44444; + +const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; + +Candidate GetCandidate(Port* port) { + RTC_DCHECK_GE(port->Candidates().size(), 1); + return port->Candidates()[0]; +} + +SocketAddress GetAddress(Port* port) { + return GetCandidate(port).address(); +} + +std::unique_ptr<IceMessage> CopyStunMessage(const IceMessage& src) { + auto dst = std::make_unique<IceMessage>(); + ByteBufferWriter buf; + src.Write(&buf); + ByteBufferReader read_buf(buf); + dst->Read(&read_buf); + return dst; +} + +bool WriteStunMessage(const StunMessage& msg, ByteBufferWriter* buf) { + buf->Resize(0); // clear out any existing buffer contents + return msg.Write(buf); +} + +} // namespace + +// Stub port class for testing STUN generation and processing. +class TestPort : public Port { + public: + TestPort(rtc::Thread* thread, + absl::string_view type, + rtc::PacketSocketFactory* factory, + const rtc::Network* network, + uint16_t min_port, + uint16_t max_port, + absl::string_view username_fragment, + absl::string_view password) + : Port(thread, + type, + factory, + network, + min_port, + max_port, + username_fragment, + password) {} + ~TestPort() {} + + // Expose GetStunMessage so that we can test it. + using cricket::Port::GetStunMessage; + + // The last StunMessage that was sent on this Port. + // TODO(?): Make these const; requires changes to SendXXXXResponse. + rtc::BufferT<uint8_t>* last_stun_buf() { return last_stun_buf_.get(); } + IceMessage* last_stun_msg() { return last_stun_msg_.get(); } + int last_stun_error_code() { + int code = 0; + if (last_stun_msg_) { + const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode(); + if (error_attr) { + code = error_attr->code(); + } + } + return code; + } + + virtual void PrepareAddress() { + // Act as if the socket was bound to the best IP on the network, to the + // first port in the allowed range. + rtc::SocketAddress addr(Network()->GetBestIP(), min_port()); + AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), + ICE_TYPE_PREFERENCE_HOST, 0, "", true); + } + + virtual bool SupportsProtocol(absl::string_view protocol) const { + return true; + } + + virtual ProtocolType GetProtocol() const { return PROTO_UDP; } + + // Exposed for testing candidate building. + void AddCandidateAddress(const rtc::SocketAddress& addr) { + AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(), + type_preference_, 0, "", false); + } + void AddCandidateAddress(const rtc::SocketAddress& addr, + const rtc::SocketAddress& base_address, + absl::string_view type, + int type_preference, + bool final) { + AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type, + type_preference, 0, "", final); + } + + virtual Connection* CreateConnection(const Candidate& remote_candidate, + CandidateOrigin origin) { + Connection* conn = new ProxyConnection(NewWeakPtr(), 0, remote_candidate); + AddOrReplaceConnection(conn); + // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute + // in STUN binding requests. + conn->set_use_candidate_attr(true); + return conn; + } + virtual int SendTo(const void* data, + size_t size, + const rtc::SocketAddress& addr, + const rtc::PacketOptions& options, + bool payload) { + if (!payload) { + auto msg = std::make_unique<IceMessage>(); + auto buf = std::make_unique<rtc::BufferT<uint8_t>>( + static_cast<const char*>(data), size); + ByteBufferReader read_buf(*buf); + if (!msg->Read(&read_buf)) { + return -1; + } + last_stun_buf_ = std::move(buf); + last_stun_msg_ = std::move(msg); + } + return static_cast<int>(size); + } + virtual int SetOption(rtc::Socket::Option opt, int value) { return 0; } + virtual int GetOption(rtc::Socket::Option opt, int* value) { return -1; } + virtual int GetError() { return 0; } + void Reset() { + last_stun_buf_.reset(); + last_stun_msg_.reset(); + } + void set_type_preference(int type_preference) { + type_preference_ = type_preference; + } + + private: + void OnSentPacket(rtc::AsyncPacketSocket* socket, + const rtc::SentPacket& sent_packet) { + PortInterface::SignalSentPacket(sent_packet); + } + std::unique_ptr<rtc::BufferT<uint8_t>> last_stun_buf_; + std::unique_ptr<IceMessage> last_stun_msg_; + int type_preference_ = 0; +}; + +static void SendPingAndReceiveResponse(Connection* lconn, + TestPort* lport, + Connection* rconn, + TestPort* rport, + rtc::ScopedFakeClock* clock, + int64_t ms) { + lconn->Ping(rtc::TimeMillis()); + ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(lport->last_stun_buf()); + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + clock->AdvanceTime(webrtc::TimeDelta::Millis(ms)); + ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(rport->last_stun_buf()); + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); +} + +class TestChannel : public sigslot::has_slots<> { + public: + // Takes ownership of `p1` (but not `p2`). + explicit TestChannel(std::unique_ptr<Port> p1) : port_(std::move(p1)) { + port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete); + port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress); + port_->SubscribePortDestroyed( + [this](PortInterface* port) { OnSrcPortDestroyed(port); }); + } + + ~TestChannel() { Stop(); } + + int complete_count() { return complete_count_; } + Connection* conn() { return conn_; } + const SocketAddress& remote_address() { return remote_address_; } + const std::string remote_fragment() { return remote_frag_; } + + void Start() { port_->PrepareAddress(); } + void CreateConnection(const Candidate& remote_candidate) { + RTC_DCHECK(!conn_); + conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE); + IceMode remote_ice_mode = + (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL; + conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL); + conn_->SignalStateChange.connect(this, + &TestChannel::OnConnectionStateChange); + conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); + conn_->SignalReadyToSend.connect(this, + &TestChannel::OnConnectionReadyToSend); + connection_ready_to_send_ = false; + } + + void OnConnectionStateChange(Connection* conn) { + if (conn->write_state() == Connection::STATE_WRITABLE) { + conn->set_use_candidate_attr(true); + nominated_ = true; + } + } + void AcceptConnection(const Candidate& remote_candidate) { + if (conn_) { + conn_->SignalDestroyed.disconnect(this); + conn_ = nullptr; + } + ASSERT_TRUE(remote_request_.get() != NULL); + Candidate c = remote_candidate; + c.set_address(remote_address_); + conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE); + conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed); + conn_->SendStunBindingResponse(remote_request_.get()); + remote_request_.reset(); + } + void Ping() { Ping(0); } + void Ping(int64_t now) { conn_->Ping(now); } + void Stop() { + if (conn_) { + port_->DestroyConnection(conn_); + conn_ = nullptr; + } + } + + void OnPortComplete(Port* port) { complete_count_++; } + void SetIceMode(IceMode ice_mode) { ice_mode_ = ice_mode; } + + int SendData(const char* data, size_t len) { + rtc::PacketOptions options; + return conn_->Send(data, len, options); + } + + void OnUnknownAddress(PortInterface* port, + const SocketAddress& addr, + ProtocolType proto, + IceMessage* msg, + const std::string& rf, + bool /*port_muxed*/) { + ASSERT_EQ(port_.get(), port); + if (!remote_address_.IsNil()) { + ASSERT_EQ(remote_address_, addr); + } + const cricket::StunUInt32Attribute* priority_attr = + msg->GetUInt32(STUN_ATTR_PRIORITY); + const cricket::StunByteStringAttribute* mi_attr = + msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); + const cricket::StunUInt32Attribute* fingerprint_attr = + msg->GetUInt32(STUN_ATTR_FINGERPRINT); + EXPECT_TRUE(priority_attr != NULL); + EXPECT_TRUE(mi_attr != NULL); + EXPECT_TRUE(fingerprint_attr != NULL); + remote_address_ = addr; + remote_request_ = CopyStunMessage(*msg); + remote_frag_ = rf; + } + + void OnDestroyed(Connection* conn) { + ASSERT_EQ(conn_, conn); + RTC_LOG(LS_INFO) << "OnDestroy connection " << conn << " deleted"; + conn_ = nullptr; + // When the connection is destroyed, also clear these fields so future + // connections are possible. + remote_request_.reset(); + remote_address_.Clear(); + } + + void OnSrcPortDestroyed(PortInterface* port) { + Port* destroyed_src = port_.release(); + ASSERT_EQ(destroyed_src, port); + } + + Port* port() { return port_.get(); } + + bool nominated() const { return nominated_; } + + void set_connection_ready_to_send(bool ready) { + connection_ready_to_send_ = ready; + } + bool connection_ready_to_send() const { return connection_ready_to_send_; } + + private: + // ReadyToSend will only issue after a Connection recovers from ENOTCONN + void OnConnectionReadyToSend(Connection* conn) { + ASSERT_EQ(conn, conn_); + connection_ready_to_send_ = true; + } + + IceMode ice_mode_ = ICEMODE_FULL; + std::unique_ptr<Port> port_; + + int complete_count_ = 0; + Connection* conn_ = nullptr; + SocketAddress remote_address_; + std::unique_ptr<StunMessage> remote_request_; + std::string remote_frag_; + bool nominated_ = false; + bool connection_ready_to_send_ = false; +}; + +class PortTest : public ::testing::Test, public sigslot::has_slots<> { + public: + PortTest() + : ss_(new rtc::VirtualSocketServer()), + main_(ss_.get()), + socket_factory_(ss_.get()), + nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()), + nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()), + nat_socket_factory1_(&nat_factory1_), + nat_socket_factory2_(&nat_factory2_), + stun_server_(TestStunServer::Create(ss_.get(), kStunAddr)), + turn_server_(&main_, ss_.get(), kTurnUdpIntAddr, kTurnUdpExtAddr), + username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)), + password_(rtc::CreateRandomString(ICE_PWD_LENGTH)), + role_conflict_(false), + ports_destroyed_(0) {} + + ~PortTest() { + // Workaround for tests that trigger async destruction of objects that we + // need to give an opportunity here to run, before proceeding with other + // teardown. + rtc::Thread::Current()->ProcessMessages(0); + } + + protected: + std::string password() { return password_; } + + void TestLocalToLocal() { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, + true, true, true); + } + void TestLocalToStun(NATType ntype) { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + nat_server2_ = CreateNatServer(kNatAddr2, ntype); + auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("udp", std::move(port1), StunName(ntype), std::move(port2), + ntype == NAT_OPEN_CONE, true, ntype != NAT_SYMMETRIC, + true); + } + void TestLocalToRelay(ProtocolType proto) { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("udp", std::move(port1), RelayName(proto), + std::move(port2), false, true, true, true); + } + void TestStunToLocal(NATType ntype) { + nat_server1_ = CreateNatServer(kNatAddr1, ntype); + auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity(StunName(ntype), std::move(port1), "udp", std::move(port2), + true, ntype != NAT_SYMMETRIC, true, true); + } + void TestStunToStun(NATType ntype1, NATType ntype2) { + nat_server1_ = CreateNatServer(kNatAddr1, ntype1); + auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + nat_server2_ = CreateNatServer(kNatAddr2, ntype2); + auto port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity(StunName(ntype1), std::move(port1), StunName(ntype2), + std::move(port2), ntype2 == NAT_OPEN_CONE, + ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC, + ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC)); + } + void TestStunToRelay(NATType ntype, ProtocolType proto) { + nat_server1_ = CreateNatServer(kNatAddr1, ntype); + auto port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_UDP); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity(StunName(ntype), std::move(port1), RelayName(proto), + std::move(port2), false, ntype != NAT_SYMMETRIC, true, + true); + } + void TestTcpToTcp() { + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateTcpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("tcp", std::move(port1), "tcp", std::move(port2), true, + false, true, true); + } + void TestTcpToRelay(ProtocolType proto) { + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_TCP); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("tcp", std::move(port1), RelayName(proto), + std::move(port2), false, false, true, true); + } + void TestSslTcpToRelay(ProtocolType proto) { + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateRelayPort(kLocalAddr2, proto, PROTO_SSLTCP); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + TestConnectivity("ssltcp", std::move(port1), RelayName(proto), + std::move(port2), false, false, true, true); + } + + rtc::Network* MakeNetwork(const SocketAddress& addr) { + networks_.emplace_back("unittest", "unittest", addr.ipaddr(), 32); + networks_.back().AddIP(addr.ipaddr()); + return &networks_.back(); + } + + rtc::Network* MakeNetworkMultipleAddrs( + const SocketAddress& global_addr, + const SocketAddress& link_local_addr, + const webrtc::FieldTrialsView* field_trials) { + networks_.emplace_back("unittest", "unittest", global_addr.ipaddr(), 32, + rtc::ADAPTER_TYPE_UNKNOWN, field_trials); + networks_.back().AddIP(link_local_addr.ipaddr()); + networks_.back().AddIP(global_addr.ipaddr()); + networks_.back().AddIP(link_local_addr.ipaddr()); + return &networks_.back(); + } + + // helpers for above functions + std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr) { + return CreateUdpPort(addr, &socket_factory_); + } + std::unique_ptr<UDPPort> CreateUdpPort(const SocketAddress& addr, + PacketSocketFactory* socket_factory) { + auto port = UDPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0, + username_, password_, true, absl::nullopt, + &field_trials_); + port->SetIceTiebreaker(kTiebreakerDefault); + return port; + } + + std::unique_ptr<UDPPort> CreateUdpPortMultipleAddrs( + const SocketAddress& global_addr, + const SocketAddress& link_local_addr, + PacketSocketFactory* socket_factory, + const webrtc::test::ScopedKeyValueConfig& field_trials) { + auto port = UDPPort::Create( + &main_, socket_factory, + MakeNetworkMultipleAddrs(global_addr, link_local_addr, &field_trials), + 0, 0, username_, password_, true, absl::nullopt, &field_trials); + port->SetIceTiebreaker(kTiebreakerDefault); + return port; + } + std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr) { + return CreateTcpPort(addr, &socket_factory_); + } + std::unique_ptr<TCPPort> CreateTcpPort(const SocketAddress& addr, + PacketSocketFactory* socket_factory) { + auto port = TCPPort::Create(&main_, socket_factory, MakeNetwork(addr), 0, 0, + username_, password_, true, &field_trials_); + port->SetIceTiebreaker(kTiebreakerDefault); + return port; + } + std::unique_ptr<StunPort> CreateStunPort(const SocketAddress& addr, + rtc::PacketSocketFactory* factory) { + ServerAddresses stun_servers; + stun_servers.insert(kStunAddr); + auto port = StunPort::Create(&main_, factory, MakeNetwork(addr), 0, 0, + username_, password_, stun_servers, + absl::nullopt, &field_trials_); + port->SetIceTiebreaker(kTiebreakerDefault); + return port; + } + std::unique_ptr<Port> CreateRelayPort(const SocketAddress& addr, + ProtocolType int_proto, + ProtocolType ext_proto) { + return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto); + } + std::unique_ptr<TurnPort> CreateTurnPort(const SocketAddress& addr, + PacketSocketFactory* socket_factory, + ProtocolType int_proto, + ProtocolType ext_proto) { + SocketAddress server_addr = + int_proto == PROTO_TCP ? kTurnTcpIntAddr : kTurnUdpIntAddr; + return CreateTurnPort(addr, socket_factory, int_proto, ext_proto, + server_addr); + } + std::unique_ptr<TurnPort> CreateTurnPort( + const SocketAddress& addr, + PacketSocketFactory* socket_factory, + ProtocolType int_proto, + ProtocolType ext_proto, + const rtc::SocketAddress& server_addr) { + RelayServerConfig config; + config.credentials = kRelayCredentials; + ProtocolAddress server_address(server_addr, int_proto); + CreateRelayPortArgs args; + args.network_thread = &main_; + args.socket_factory = socket_factory; + args.network = MakeNetwork(addr); + args.username = username_; + args.password = password_; + args.server_address = &server_address; + args.config = &config; + args.field_trials = &field_trials_; + + auto port = TurnPort::Create(args, 0, 0); + port->SetIceTiebreaker(kTiebreakerDefault); + return port; + } + + std::unique_ptr<rtc::NATServer> CreateNatServer(const SocketAddress& addr, + rtc::NATType type) { + return std::make_unique<rtc::NATServer>(type, ss_.get(), addr, addr, + ss_.get(), addr); + } + static const char* StunName(NATType type) { + switch (type) { + case NAT_OPEN_CONE: + return "stun(open cone)"; + case NAT_ADDR_RESTRICTED: + return "stun(addr restricted)"; + case NAT_PORT_RESTRICTED: + return "stun(port restricted)"; + case NAT_SYMMETRIC: + return "stun(symmetric)"; + default: + return "stun(?)"; + } + } + static const char* RelayName(ProtocolType proto) { + switch (proto) { + case PROTO_UDP: + return "turn(udp)"; + case PROTO_TCP: + return "turn(tcp)"; + case PROTO_SSLTCP: + return "turn(ssltcp)"; + case PROTO_TLS: + return "turn(tls)"; + default: + return "turn(?)"; + } + } + + void TestCrossFamilyPorts(int type); + + void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2); + + // This does all the work and then deletes `port1` and `port2`. + void TestConnectivity(absl::string_view name1, + std::unique_ptr<Port> port1, + absl::string_view name2, + std::unique_ptr<Port> port2, + bool accept, + bool same_addr1, + bool same_addr2, + bool possible); + + // This connects the provided channels which have already started. `ch1` + // should have its Connection created (either through CreateConnection() or + // TCP reconnecting mechanism before entering this function. + void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) { + ASSERT_TRUE(ch1->conn()); + EXPECT_TRUE_WAIT(ch1->conn()->connected(), + kDefaultTimeout); // for TCP connect + ch1->Ping(); + WAIT(!ch2->remote_address().IsNil(), kShortTimeout); + + // Send a ping from dst to src. + ch2->AcceptConnection(GetCandidate(ch1->port())); + ch2->Ping(); + EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(), + kDefaultTimeout); + } + + // This connects and disconnects the provided channels in the same sequence as + // TestConnectivity with all options set to `true`. It does not delete either + // channel. + void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) { + // Acquire addresses. + ch1->Start(); + ch2->Start(); + + ch1->CreateConnection(GetCandidate(ch2->port())); + ConnectStartedChannels(ch1, ch2); + + // Destroy the connections. + ch1->Stop(); + ch2->Stop(); + } + + // This disconnects both end's Connection and make sure ch2 ready for new + // connection. + void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) { + TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn()); + TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn()); + ASSERT_TRUE( + ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(), + tcp_conn2->socket()->GetLocalAddress())); + + // Wait for both OnClose are delivered. + EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kDefaultTimeout); + EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kDefaultTimeout); + + // Ensure redundant SignalClose events on TcpConnection won't break tcp + // reconnection. Chromium will fire SignalClose for all outstanding IPC + // packets during reconnection. + tcp_conn1->socket()->NotifyClosedForTest(0); + tcp_conn2->socket()->NotifyClosedForTest(0); + + // Speed up destroying ch2's connection such that the test is ready to + // accept a new connection from ch1 before ch1's connection destroys itself. + ch2->Stop(); + EXPECT_TRUE_WAIT(ch2->conn() == NULL, kDefaultTimeout); + } + + void TestTcpReconnect(bool ping_after_disconnected, + bool send_after_disconnected) { + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateTcpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + + port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + + // Set up channels and ensure both ports will be deleted. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + EXPECT_EQ(0, ch1.complete_count()); + EXPECT_EQ(0, ch2.complete_count()); + + ch1.Start(); + ch2.Start(); + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); + + // Initial connecting the channel, create connection on channel1. + ch1.CreateConnection(GetCandidate(ch2.port())); + ConnectStartedChannels(&ch1, &ch2); + + // Shorten the timeout period. + const int kTcpReconnectTimeout = kDefaultTimeout; + static_cast<TCPConnection*>(ch1.conn()) + ->set_reconnection_timeout(kTcpReconnectTimeout); + static_cast<TCPConnection*>(ch2.conn()) + ->set_reconnection_timeout(kTcpReconnectTimeout); + + EXPECT_FALSE(ch1.connection_ready_to_send()); + EXPECT_FALSE(ch2.connection_ready_to_send()); + + // Once connected, disconnect them. + DisconnectTcpTestChannels(&ch1, &ch2); + + if (send_after_disconnected || ping_after_disconnected) { + if (send_after_disconnected) { + // First SendData after disconnect should fail but will trigger + // reconnect. + EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data)))); + } + + if (ping_after_disconnected) { + // Ping should trigger reconnect. + ch1.Ping(); + } + + // Wait for channel's outgoing TCPConnection connected. + EXPECT_TRUE_WAIT(ch1.conn()->connected(), kDefaultTimeout); + + // Verify that we could still connect channels. + ConnectStartedChannels(&ch1, &ch2); + EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(), kTcpReconnectTimeout); + // Channel2 is the passive one so a new connection is created during + // reconnect. This new connection should never have issued ENOTCONN + // hence the connection_ready_to_send() should be false. + EXPECT_FALSE(ch2.connection_ready_to_send()); + } else { + EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE); + // Since the reconnection never happens, the connections should have been + // destroyed after the timeout. + EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kDefaultTimeout); + EXPECT_TRUE(!ch2.conn()); + } + + // Tear down and ensure that goes smoothly. + ch1.Stop(); + ch2.Stop(); + EXPECT_TRUE_WAIT(ch1.conn() == NULL, kDefaultTimeout); + EXPECT_TRUE_WAIT(ch2.conn() == NULL, kDefaultTimeout); + } + + std::unique_ptr<IceMessage> CreateStunMessage(StunMessageType type) { + auto msg = std::make_unique<IceMessage>(type, "TESTTESTTEST"); + return msg; + } + std::unique_ptr<IceMessage> CreateStunMessageWithUsername( + StunMessageType type, + absl::string_view username) { + std::unique_ptr<IceMessage> msg = CreateStunMessage(type); + msg->AddAttribute(std::make_unique<StunByteStringAttribute>( + STUN_ATTR_USERNAME, std::string(username))); + return msg; + } + std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr, + absl::string_view username, + absl::string_view password) { + auto port = + std::make_unique<TestPort>(&main_, "test", &socket_factory_, + MakeNetwork(addr), 0, 0, username, password); + port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); + return port; + } + std::unique_ptr<TestPort> CreateTestPort(const rtc::SocketAddress& addr, + absl::string_view username, + absl::string_view password, + cricket::IceRole role, + int tiebreaker) { + auto port = CreateTestPort(addr, username, password); + port->SetIceRole(role); + port->SetIceTiebreaker(tiebreaker); + return port; + } + // Overload to create a test port given an rtc::Network directly. + std::unique_ptr<TestPort> CreateTestPort(const rtc::Network* network, + absl::string_view username, + absl::string_view password) { + auto port = std::make_unique<TestPort>(&main_, "test", &socket_factory_, + network, 0, 0, username, password); + port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict); + return port; + } + + void OnRoleConflict(PortInterface* port) { role_conflict_ = true; } + bool role_conflict() const { return role_conflict_; } + + void ConnectToSignalDestroyed(PortInterface* port) { + port->SubscribePortDestroyed( + [this](PortInterface* port) { OnDestroyed(port); }); + } + + void OnDestroyed(PortInterface* port) { ++ports_destroyed_; } + int ports_destroyed() const { return ports_destroyed_; } + + rtc::BasicPacketSocketFactory* nat_socket_factory1() { + return &nat_socket_factory1_; + } + + rtc::VirtualSocketServer* vss() { return ss_.get(); } + + private: + // When a "create port" helper method is called with an IP, we create a + // Network with that IP and add it to this list. Using a list instead of a + // vector so that when it grows, pointers aren't invalidated. + std::list<rtc::Network> networks_; + std::unique_ptr<rtc::VirtualSocketServer> ss_; + rtc::AutoSocketServerThread main_; + rtc::BasicPacketSocketFactory socket_factory_; + std::unique_ptr<rtc::NATServer> nat_server1_; + std::unique_ptr<rtc::NATServer> nat_server2_; + rtc::NATSocketFactory nat_factory1_; + rtc::NATSocketFactory nat_factory2_; + rtc::BasicPacketSocketFactory nat_socket_factory1_; + rtc::BasicPacketSocketFactory nat_socket_factory2_; + std::unique_ptr<TestStunServer> stun_server_; + TestTurnServer turn_server_; + std::string username_; + std::string password_; + bool role_conflict_; + int ports_destroyed_; + webrtc::test::ScopedKeyValueConfig field_trials_; +}; + +void PortTest::TestConnectivity(absl::string_view name1, + std::unique_ptr<Port> port1, + absl::string_view name2, + std::unique_ptr<Port> port2, + bool accept, + bool same_addr1, + bool same_addr2, + bool possible) { + rtc::ScopedFakeClock clock; + RTC_LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": "; + port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + + // Set up channels and ensure both ports will be deleted. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + EXPECT_EQ(0, ch1.complete_count()); + EXPECT_EQ(0, ch2.complete_count()); + + // Acquire addresses. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); + ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); + + // Send a ping from src to dst. This may or may not make it. + ch1.CreateConnection(GetCandidate(ch2.port())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, + clock); // for TCP connect + ch1.Ping(); + SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); + + if (accept) { + // We are able to send a ping from src to dst. This is the case when + // sending to UDP ports and cone NATs. + EXPECT_TRUE(ch1.remote_address().IsNil()); + EXPECT_EQ(ch2.remote_fragment(), ch1.port()->username_fragment()); + + // Ensure the ping came from the same address used for src. + // This is the case unless the source NAT was symmetric. + if (same_addr1) + EXPECT_EQ(ch2.remote_address(), GetAddress(ch1.port())); + EXPECT_TRUE(same_addr2); + + // Send a ping from dst to src. + ch2.AcceptConnection(GetCandidate(ch1.port())); + ASSERT_TRUE(ch2.conn() != NULL); + ch2.Ping(); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch2.conn()->write_state(), kDefaultTimeout, clock); + } else { + // We can't send a ping from src to dst, so flip it around. This will happen + // when the destination NAT is addr/port restricted or symmetric. + EXPECT_TRUE(ch1.remote_address().IsNil()); + EXPECT_TRUE(ch2.remote_address().IsNil()); + + // Send a ping from dst to src. Again, this may or may not make it. + ch2.CreateConnection(GetCandidate(ch1.port())); + ASSERT_TRUE(ch2.conn() != NULL); + ch2.Ping(); + SIMULATED_WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, + kShortTimeout, clock); + + if (same_addr1 && same_addr2) { + // The new ping got back to the source. + EXPECT_TRUE(ch1.conn()->receiving()); + EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); + + // First connection may not be writable if the first ping did not get + // through. So we will have to do another. + if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) { + ch1.Ping(); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch1.conn()->write_state(), kDefaultTimeout, + clock); + } + } else if (!same_addr1 && possible) { + // The new ping went to the candidate address, but that address was bad. + // This will happen when the source NAT is symmetric. + EXPECT_TRUE(ch1.remote_address().IsNil()); + EXPECT_TRUE(ch2.remote_address().IsNil()); + + // However, since we have now sent a ping to the source IP, we should be + // able to get a ping from it. This gives us the real source address. + ch1.Ping(); + EXPECT_TRUE_SIMULATED_WAIT(!ch2.remote_address().IsNil(), kDefaultTimeout, + clock); + EXPECT_FALSE(ch2.conn()->receiving()); + EXPECT_TRUE(ch1.remote_address().IsNil()); + + // Pick up the actual address and establish the connection. + ch2.AcceptConnection(GetCandidate(ch1.port())); + ASSERT_TRUE(ch2.conn() != NULL); + ch2.Ping(); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch2.conn()->write_state(), kDefaultTimeout, + clock); + } else if (!same_addr2 && possible) { + // The new ping came in, but from an unexpected address. This will happen + // when the destination NAT is symmetric. + EXPECT_FALSE(ch1.remote_address().IsNil()); + EXPECT_FALSE(ch1.conn()->receiving()); + + // Update our address and complete the connection. + ch1.AcceptConnection(GetCandidate(ch2.port())); + ch1.Ping(); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch1.conn()->write_state(), kDefaultTimeout, + clock); + } else { // (!possible) + // There should be s no way for the pings to reach each other. Check it. + EXPECT_TRUE(ch1.remote_address().IsNil()); + EXPECT_TRUE(ch2.remote_address().IsNil()); + ch1.Ping(); + SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); + EXPECT_TRUE(ch1.remote_address().IsNil()); + EXPECT_TRUE(ch2.remote_address().IsNil()); + } + } + + // Everything should be good, unless we know the situation is impossible. + ASSERT_TRUE(ch1.conn() != NULL); + ASSERT_TRUE(ch2.conn() != NULL); + if (possible) { + EXPECT_TRUE(ch1.conn()->receiving()); + EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); + EXPECT_TRUE(ch2.conn()->receiving()); + EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state()); + } else { + EXPECT_FALSE(ch1.conn()->receiving()); + EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state()); + EXPECT_FALSE(ch2.conn()->receiving()); + EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state()); + } + + // Tear down and ensure that goes smoothly. + ch1.Stop(); + ch2.Stop(); + EXPECT_TRUE_SIMULATED_WAIT(ch1.conn() == NULL, kDefaultTimeout, clock); + EXPECT_TRUE_SIMULATED_WAIT(ch2.conn() == NULL, kDefaultTimeout, clock); +} + +class FakePacketSocketFactory : public rtc::PacketSocketFactory { + public: + FakePacketSocketFactory() + : next_udp_socket_(NULL), next_server_tcp_socket_(NULL) {} + ~FakePacketSocketFactory() override {} + + AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address, + uint16_t min_port, + uint16_t max_port) override { + EXPECT_TRUE(next_udp_socket_ != NULL); + AsyncPacketSocket* result = next_udp_socket_; + next_udp_socket_ = NULL; + return result; + } + + AsyncListenSocket* CreateServerTcpSocket(const SocketAddress& local_address, + uint16_t min_port, + uint16_t max_port, + int opts) override { + EXPECT_TRUE(next_server_tcp_socket_ != NULL); + AsyncListenSocket* result = next_server_tcp_socket_; + next_server_tcp_socket_ = NULL; + return result; + } + + AsyncPacketSocket* CreateClientTcpSocket( + const SocketAddress& local_address, + const SocketAddress& remote_address, + const rtc::ProxyInfo& proxy_info, + const std::string& user_agent, + const rtc::PacketSocketTcpOptions& opts) override { + EXPECT_TRUE(next_client_tcp_socket_.has_value()); + AsyncPacketSocket* result = *next_client_tcp_socket_; + next_client_tcp_socket_ = nullptr; + return result; + } + + void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) { + next_udp_socket_ = next_udp_socket; + } + void set_next_server_tcp_socket(AsyncListenSocket* next_server_tcp_socket) { + next_server_tcp_socket_ = next_server_tcp_socket; + } + void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) { + next_client_tcp_socket_ = next_client_tcp_socket; + } + std::unique_ptr<webrtc::AsyncDnsResolverInterface> CreateAsyncDnsResolver() + override { + return nullptr; + } + + private: + AsyncPacketSocket* next_udp_socket_; + AsyncListenSocket* next_server_tcp_socket_; + absl::optional<AsyncPacketSocket*> next_client_tcp_socket_; +}; + +class FakeAsyncPacketSocket : public AsyncPacketSocket { + public: + // Returns current local address. Address may be set to NULL if the + // socket is not bound yet (GetState() returns STATE_BINDING). + virtual SocketAddress GetLocalAddress() const { return local_address_; } + + // Returns remote address. Returns zeroes if this is not a client TCP socket. + virtual SocketAddress GetRemoteAddress() const { return remote_address_; } + + // Send a packet. + virtual int Send(const void* pv, + size_t cb, + const rtc::PacketOptions& options) { + if (error_ == 0) { + return static_cast<int>(cb); + } else { + return -1; + } + } + virtual int SendTo(const void* pv, + size_t cb, + const SocketAddress& addr, + const rtc::PacketOptions& options) { + if (error_ == 0) { + return static_cast<int>(cb); + } else { + return -1; + } + } + virtual int Close() { return 0; } + + virtual State GetState() const { return state_; } + virtual int GetOption(Socket::Option opt, int* value) { return 0; } + virtual int SetOption(Socket::Option opt, int value) { return 0; } + virtual int GetError() const { return 0; } + virtual void SetError(int error) { error_ = error; } + + void set_state(State state) { state_ = state; } + + SocketAddress local_address_; + SocketAddress remote_address_; + + private: + int error_ = 0; + State state_; +}; + +class FakeAsyncListenSocket : public AsyncListenSocket { + public: + // Returns current local address. Address may be set to NULL if the + // socket is not bound yet (GetState() returns STATE_BINDING). + virtual SocketAddress GetLocalAddress() const { return local_address_; } + void Bind(const SocketAddress& address) { + local_address_ = address; + state_ = State::kBound; + } + virtual int GetOption(Socket::Option opt, int* value) { return 0; } + virtual int SetOption(Socket::Option opt, int value) { return 0; } + virtual State GetState() const { return state_; } + + private: + SocketAddress local_address_; + State state_ = State::kClosed; +}; + +// Local -> XXXX +TEST_F(PortTest, TestLocalToLocal) { + TestLocalToLocal(); +} + +TEST_F(PortTest, TestLocalToConeNat) { + TestLocalToStun(NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestLocalToARNat) { + TestLocalToStun(NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestLocalToPRNat) { + TestLocalToStun(NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestLocalToSymNat) { + TestLocalToStun(NAT_SYMMETRIC); +} + +// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316. +TEST_F(PortTest, DISABLED_TestLocalToTurn) { + TestLocalToRelay(PROTO_UDP); +} + +// Cone NAT -> XXXX +TEST_F(PortTest, TestConeNatToLocal) { + TestStunToLocal(NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestConeNatToConeNat) { + TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestConeNatToARNat) { + TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestConeNatToPRNat) { + TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestConeNatToSymNat) { + TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC); +} + +TEST_F(PortTest, TestConeNatToTurn) { + TestStunToRelay(NAT_OPEN_CONE, PROTO_UDP); +} + +// Address-restricted NAT -> XXXX +TEST_F(PortTest, TestARNatToLocal) { + TestStunToLocal(NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestARNatToConeNat) { + TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestARNatToARNat) { + TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestARNatToPRNat) { + TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestARNatToSymNat) { + TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC); +} + +TEST_F(PortTest, TestARNatToTurn) { + TestStunToRelay(NAT_ADDR_RESTRICTED, PROTO_UDP); +} + +// Port-restricted NAT -> XXXX +TEST_F(PortTest, TestPRNatToLocal) { + TestStunToLocal(NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestPRNatToConeNat) { + TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestPRNatToARNat) { + TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestPRNatToPRNat) { + TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestPRNatToSymNat) { + // Will "fail" + TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC); +} + +TEST_F(PortTest, TestPRNatToTurn) { + TestStunToRelay(NAT_PORT_RESTRICTED, PROTO_UDP); +} + +// Symmetric NAT -> XXXX +TEST_F(PortTest, TestSymNatToLocal) { + TestStunToLocal(NAT_SYMMETRIC); +} + +TEST_F(PortTest, TestSymNatToConeNat) { + TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE); +} + +TEST_F(PortTest, TestSymNatToARNat) { + TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED); +} + +TEST_F(PortTest, TestSymNatToPRNat) { + // Will "fail" + TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED); +} + +TEST_F(PortTest, TestSymNatToSymNat) { + // Will "fail" + TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC); +} + +TEST_F(PortTest, TestSymNatToTurn) { + TestStunToRelay(NAT_SYMMETRIC, PROTO_UDP); +} + +// Outbound TCP -> XXXX +TEST_F(PortTest, TestTcpToTcp) { + TestTcpToTcp(); +} + +TEST_F(PortTest, TestTcpReconnectOnSendPacket) { + TestTcpReconnect(false /* ping */, true /* send */); +} + +TEST_F(PortTest, TestTcpReconnectOnPing) { + TestTcpReconnect(true /* ping */, false /* send */); +} + +TEST_F(PortTest, TestTcpReconnectTimeout) { + TestTcpReconnect(false /* ping */, false /* send */); +} + +// Test when TcpConnection never connects, the OnClose() will be called to +// destroy the connection. +TEST_F(PortTest, TestTcpNeverConnect) { + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + + // Set up a channel and ensure the port will be deleted. + TestChannel ch1(std::move(port1)); + EXPECT_EQ(0, ch1.complete_count()); + + ch1.Start(); + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + + std::unique_ptr<rtc::Socket> server( + vss()->CreateSocket(kLocalAddr2.family(), SOCK_STREAM)); + // Bind but not listen. + EXPECT_EQ(0, server->Bind(kLocalAddr2)); + + Candidate c = GetCandidate(ch1.port()); + c.set_address(server->GetLocalAddress()); + + ch1.CreateConnection(c); + EXPECT_TRUE(ch1.conn()); + EXPECT_TRUE_WAIT(!ch1.conn(), kDefaultTimeout); // for TCP connect +} + +/* TODO(?): Enable these once testrelayserver can accept external TCP. +TEST_F(PortTest, TestTcpToTcpRelay) { + TestTcpToRelay(PROTO_TCP); +} + +TEST_F(PortTest, TestTcpToSslTcpRelay) { + TestTcpToRelay(PROTO_SSLTCP); +} +*/ + +// Outbound SSLTCP -> XXXX +/* TODO(?): Enable these once testrelayserver can accept external SSL. +TEST_F(PortTest, TestSslTcpToTcpRelay) { + TestSslTcpToRelay(PROTO_TCP); +} + +TEST_F(PortTest, TestSslTcpToSslTcpRelay) { + TestSslTcpToRelay(PROTO_SSLTCP); +} +*/ + +// Test that a connection will be dead and deleted if +// i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds +// since it was created, or +// ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT +// milliseconds since last receiving. +TEST_F(PortTest, TestConnectionDead) { + TestChannel ch1(CreateUdpPort(kLocalAddr1)); + TestChannel ch2(CreateUdpPort(kLocalAddr2)); + // Acquire address. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); + + // Test case that the connection has never received anything. + int64_t before_created = rtc::TimeMillis(); + ch1.CreateConnection(GetCandidate(ch2.port())); + int64_t after_created = rtc::TimeMillis(); + Connection* conn = ch1.conn(); + ASSERT_NE(conn, nullptr); + // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned. + conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); + rtc::Thread::Current()->ProcessMessages(0); + EXPECT_TRUE(ch1.conn() != nullptr); + // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned. + conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1); + conn->Prune(); + rtc::Thread::Current()->ProcessMessages(0); + EXPECT_TRUE(ch1.conn() != nullptr); + // It will be dead after MIN_CONNECTION_LIFETIME and pruned. + conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1); + EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); + + // Test case that the connection has received something. + // Create a connection again and receive a ping. + ch1.CreateConnection(GetCandidate(ch2.port())); + conn = ch1.conn(); + ASSERT_NE(conn, nullptr); + int64_t before_last_receiving = rtc::TimeMillis(); + conn->ReceivedPing(); + int64_t after_last_receiving = rtc::TimeMillis(); + // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT + conn->UpdateState(before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT - + 1); + rtc::Thread::Current()->ProcessMessages(100); + EXPECT_TRUE(ch1.conn() != nullptr); + conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1); + EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); +} + +TEST_F(PortTest, TestConnectionDeadWithDeadConnectionTimeout) { + TestChannel ch1(CreateUdpPort(kLocalAddr1)); + TestChannel ch2(CreateUdpPort(kLocalAddr2)); + // Acquire address. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); + + // Note: set field trials manually since they are parsed by + // P2PTransportChannel but P2PTransportChannel is not used in this test. + IceFieldTrials field_trials; + field_trials.dead_connection_timeout_ms = 90000; + + // Create a connection again and receive a ping. + ch1.CreateConnection(GetCandidate(ch2.port())); + auto conn = ch1.conn(); + conn->SetIceFieldTrials(&field_trials); + + ASSERT_NE(conn, nullptr); + int64_t before_last_receiving = rtc::TimeMillis(); + conn->ReceivedPing(); + int64_t after_last_receiving = rtc::TimeMillis(); + // The connection will be dead after 90s + conn->UpdateState(before_last_receiving + 90000 - 1); + rtc::Thread::Current()->ProcessMessages(100); + EXPECT_TRUE(ch1.conn() != nullptr); + conn->UpdateState(after_last_receiving + 90000 + 1); + EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); +} + +TEST_F(PortTest, TestConnectionDeadOutstandingPing) { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->SetIceTiebreaker(kTiebreaker1); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + port2->SetIceTiebreaker(kTiebreaker2); + + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + // Acquire address. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_EQ_WAIT(1, ch2.complete_count(), kDefaultTimeout); + + // Note: set field trials manually since they are parsed by + // P2PTransportChannel but P2PTransportChannel is not used in this test. + IceFieldTrials field_trials; + field_trials.dead_connection_timeout_ms = 360000; + + // Create a connection again and receive a ping and then send + // a ping and keep it outstanding. + ch1.CreateConnection(GetCandidate(ch2.port())); + auto conn = ch1.conn(); + conn->SetIceFieldTrials(&field_trials); + + ASSERT_NE(conn, nullptr); + conn->ReceivedPing(); + int64_t send_ping_timestamp = rtc::TimeMillis(); + conn->Ping(send_ping_timestamp); + + // The connection will be dead 30s after the ping was sent. + conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1); + rtc::Thread::Current()->ProcessMessages(100); + EXPECT_TRUE(ch1.conn() != nullptr); + conn->UpdateState(send_ping_timestamp + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1); + EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kDefaultTimeout); +} + +// This test case verifies standard ICE features in STUN messages. Currently it +// verifies Message Integrity attribute in STUN messages and username in STUN +// binding request will have colon (":") between remote and local username. +TEST_F(PortTest, TestLocalToLocalStandard) { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->SetIceTiebreaker(kTiebreaker1); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + port2->SetIceTiebreaker(kTiebreaker2); + // Same parameters as TestLocalToLocal above. + TestConnectivity("udp", std::move(port1), "udp", std::move(port2), true, true, + true, true); +} + +// This test is trying to validate a successful and failure scenario in a +// loopback test when protocol is RFC5245. For success IceTiebreaker, username +// should remain equal to the request generated by the port and role of port +// must be in controlling. +TEST_F(PortTest, TestLoopbackCall) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + lport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + Connection* conn = + lport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + conn->Ping(0); + + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + conn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); + + // If the tiebreaker value is different from port, we expect a error + // response. + lport->Reset(); + lport->AddCandidateAddress(kLocalAddr2); + // Creating a different connection as `conn` is receiving. + Connection* conn1 = + lport->CreateConnection(lport->Candidates()[1], Port::ORIGIN_MESSAGE); + conn1->Ping(0); + + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + std::unique_ptr<IceMessage> modified_req( + CreateStunMessage(STUN_BINDING_REQUEST)); + const StunByteStringAttribute* username_attr = + msg->GetByteString(STUN_ATTR_USERNAME); + modified_req->AddAttribute(std::make_unique<StunByteStringAttribute>( + STUN_ATTR_USERNAME, username_attr->string_view())); + // To make sure we receive error response, adding tiebreaker less than + // what's present in request. + modified_req->AddAttribute(std::make_unique<StunUInt64Attribute>( + STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1)); + modified_req->AddMessageIntegrity("lpass"); + modified_req->AddFingerprint(); + + lport->Reset(); + auto buf = std::make_unique<ByteBufferWriter>(); + WriteStunMessage(*modified_req, buf.get()); + conn1->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); +} + +// This test verifies role conflict signal is received when there is +// conflict in the role. In this case both ports are in controlling and +// `rport` has higher tiebreaker value than `lport`. Since `lport` has lower +// value of tiebreaker, when it receives ping request from `rport` it will +// send role conflict signal. +TEST_F(PortTest, TestIceRoleConflict) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + rport->SetIceRole(cricket::ICEROLE_CONTROLLING); + rport->SetIceTiebreaker(kTiebreaker2); + + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + rconn->Ping(0); + + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = rport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + // Send rport binding request to lport. + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); + + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); + EXPECT_TRUE(role_conflict()); +} + +TEST_F(PortTest, TestTcpNoDelay) { + rtc::ScopedFakeClock clock; + auto port1 = CreateTcpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + int option_value = -1; + int success = port1->GetOption(rtc::Socket::OPT_NODELAY, &option_value); + ASSERT_EQ(0, success); // GetOption() should complete successfully w/ 0 + EXPECT_EQ(1, option_value); + + auto port2 = CreateTcpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + + // Set up a connection, and verify that option is set on connected sockets at + // both ends. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + // Acquire addresses. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); + ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); + // Connect and send a ping from src to dst. + ch1.CreateConnection(GetCandidate(ch2.port())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, + clock); // for TCP connect + ch1.Ping(); + SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); + + // Accept the connection. + ch2.AcceptConnection(GetCandidate(ch1.port())); + ASSERT_TRUE(ch2.conn() != NULL); + + option_value = -1; + success = static_cast<TCPConnection*>(ch1.conn()) + ->socket() + ->GetOption(rtc::Socket::OPT_NODELAY, &option_value); + ASSERT_EQ(0, success); + EXPECT_EQ(1, option_value); + + option_value = -1; + success = static_cast<TCPConnection*>(ch2.conn()) + ->socket() + ->GetOption(rtc::Socket::OPT_NODELAY, &option_value); + ASSERT_EQ(0, success); + EXPECT_EQ(1, option_value); +} + +TEST_F(PortTest, TestDelayedBindingUdp) { + FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); + FakePacketSocketFactory socket_factory; + + socket_factory.set_next_udp_socket(socket); + auto port = CreateUdpPort(kLocalAddr1, &socket_factory); + + socket->set_state(AsyncPacketSocket::STATE_BINDING); + port->PrepareAddress(); + + EXPECT_EQ(0U, port->Candidates().size()); + socket->SignalAddressReady(socket, kLocalAddr2); + + EXPECT_EQ(1U, port->Candidates().size()); +} + +TEST_F(PortTest, TestDisableInterfaceOfTcpPort) { + FakeAsyncListenSocket* lsocket = new FakeAsyncListenSocket(); + FakeAsyncListenSocket* rsocket = new FakeAsyncListenSocket(); + FakePacketSocketFactory socket_factory; + + socket_factory.set_next_server_tcp_socket(lsocket); + auto lport = CreateTcpPort(kLocalAddr1, &socket_factory); + + socket_factory.set_next_server_tcp_socket(rsocket); + auto rport = CreateTcpPort(kLocalAddr2, &socket_factory); + + lsocket->Bind(kLocalAddr1); + rsocket->Bind(kLocalAddr2); + + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(rport->Candidates().empty()); + + // A client socket. + FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); + socket->local_address_ = kLocalAddr1; + socket->remote_address_ = kLocalAddr2; + socket_factory.set_next_client_tcp_socket(socket); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + ASSERT_NE(lconn, nullptr); + socket->SignalConnect(socket); + lconn->Ping(0); + + // Now disconnect the client socket... + socket->NotifyClosedForTest(1); + + // And prevent new sockets from being created. + socket_factory.set_next_client_tcp_socket(nullptr); + + // Test that Ping() does not cause SEGV. + lconn->Ping(0); +} + +void PortTest::TestCrossFamilyPorts(int type) { + FakePacketSocketFactory factory; + std::unique_ptr<Port> ports[4]; + SocketAddress addresses[4] = { + SocketAddress("192.168.1.3", 0), SocketAddress("192.168.1.4", 0), + SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0)}; + for (int i = 0; i < 4; i++) { + if (type == SOCK_DGRAM) { + FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); + factory.set_next_udp_socket(socket); + ports[i] = CreateUdpPort(addresses[i], &factory); + socket->set_state(AsyncPacketSocket::STATE_BINDING); + socket->SignalAddressReady(socket, addresses[i]); + } else if (type == SOCK_STREAM) { + FakeAsyncListenSocket* socket = new FakeAsyncListenSocket(); + factory.set_next_server_tcp_socket(socket); + ports[i] = CreateTcpPort(addresses[i], &factory); + socket->Bind(addresses[i]); + } + ports[i]->PrepareAddress(); + } + + // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate. + if (type == SOCK_STREAM) { + FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); + factory.set_next_client_tcp_socket(clientsocket); + } + Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()), + Port::ORIGIN_MESSAGE); + EXPECT_TRUE(NULL == c); + EXPECT_EQ(0U, ports[0]->connections().size()); + c = ports[0]->CreateConnection(GetCandidate(ports[1].get()), + Port::ORIGIN_MESSAGE); + EXPECT_FALSE(NULL == c); + EXPECT_EQ(1U, ports[0]->connections().size()); + + // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate. + if (type == SOCK_STREAM) { + FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket(); + factory.set_next_client_tcp_socket(clientsocket); + } + c = ports[2]->CreateConnection(GetCandidate(ports[0].get()), + Port::ORIGIN_MESSAGE); + EXPECT_TRUE(NULL == c); + EXPECT_EQ(0U, ports[2]->connections().size()); + c = ports[2]->CreateConnection(GetCandidate(ports[3].get()), + Port::ORIGIN_MESSAGE); + EXPECT_FALSE(NULL == c); + EXPECT_EQ(1U, ports[2]->connections().size()); +} + +TEST_F(PortTest, TestSkipCrossFamilyTcp) { + TestCrossFamilyPorts(SOCK_STREAM); +} + +TEST_F(PortTest, TestSkipCrossFamilyUdp) { + TestCrossFamilyPorts(SOCK_DGRAM); +} + +void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) { + Connection* c = p1->CreateConnection(GetCandidate(p2), Port::ORIGIN_MESSAGE); + if (can_connect) { + EXPECT_FALSE(NULL == c); + EXPECT_EQ(1U, p1->connections().size()); + } else { + EXPECT_TRUE(NULL == c); + EXPECT_EQ(0U, p1->connections().size()); + } +} + +TEST_F(PortTest, TestUdpSingleAddressV6CrossTypePorts) { + FakePacketSocketFactory factory; + std::unique_ptr<Port> ports[4]; + SocketAddress addresses[4] = { + SocketAddress("2001:db8::1", 0), SocketAddress("fe80::1", 0), + SocketAddress("fe80::2", 0), SocketAddress("::1", 0)}; + for (int i = 0; i < 4; i++) { + FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); + factory.set_next_udp_socket(socket); + ports[i] = CreateUdpPort(addresses[i], &factory); + socket->set_state(AsyncPacketSocket::STATE_BINDING); + socket->SignalAddressReady(socket, addresses[i]); + ports[i]->PrepareAddress(); + } + + Port* standard = ports[0].get(); + Port* link_local1 = ports[1].get(); + Port* link_local2 = ports[2].get(); + Port* localhost = ports[3].get(); + + ExpectPortsCanConnect(false, link_local1, standard); + ExpectPortsCanConnect(false, standard, link_local1); + ExpectPortsCanConnect(false, link_local1, localhost); + ExpectPortsCanConnect(false, localhost, link_local1); + + ExpectPortsCanConnect(true, link_local1, link_local2); + ExpectPortsCanConnect(true, localhost, standard); + ExpectPortsCanConnect(true, standard, localhost); +} + +TEST_F(PortTest, TestUdpMultipleAddressesV6CrossTypePorts) { + webrtc::test::ScopedKeyValueConfig field_trials( + "WebRTC-IPv6NetworkResolutionFixes/" + "Enabled,PreferGlobalIPv6Address:true/"); + FakePacketSocketFactory factory; + std::unique_ptr<Port> ports[5]; + SocketAddress addresses[5] = { + SocketAddress("2001:db8::1", 0), SocketAddress("2001:db8::2", 0), + SocketAddress("fe80::1", 0), SocketAddress("fe80::2", 0), + SocketAddress("::1", 0)}; + for (int i = 0; i < 5; i++) { + FakeAsyncPacketSocket* socket = new FakeAsyncPacketSocket(); + factory.set_next_udp_socket(socket); + ports[i] = CreateUdpPortMultipleAddrs(addresses[i], kLinkLocalIPv6Addr, + &factory, field_trials); + ports[i]->SetIceTiebreaker(kTiebreakerDefault); + socket->set_state(AsyncPacketSocket::STATE_BINDING); + socket->SignalAddressReady(socket, addresses[i]); + ports[i]->PrepareAddress(); + } + + Port* standard1 = ports[0].get(); + Port* standard2 = ports[1].get(); + Port* link_local1 = ports[2].get(); + Port* link_local2 = ports[3].get(); + Port* localhost = ports[4].get(); + + ExpectPortsCanConnect(false, link_local1, standard1); + ExpectPortsCanConnect(false, standard1, link_local1); + ExpectPortsCanConnect(false, link_local1, localhost); + ExpectPortsCanConnect(false, localhost, link_local1); + + ExpectPortsCanConnect(true, link_local1, link_local2); + ExpectPortsCanConnect(true, localhost, standard1); + ExpectPortsCanConnect(true, standard1, localhost); + ExpectPortsCanConnect(true, standard2, standard1); +} + +// This test verifies DSCP value set through SetOption interface can be +// get through DefaultDscpValue. +TEST_F(PortTest, TestDefaultDscpValue) { + int dscp; + auto udpport = CreateUdpPort(kLocalAddr1); + EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); + EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); + auto tcpport = CreateTcpPort(kLocalAddr1); + EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF31)); + EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); + EXPECT_EQ(rtc::DSCP_AF31, dscp); + auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); + EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_AF41)); + EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp)); + EXPECT_EQ(rtc::DSCP_AF41, dscp); + auto turnport1 = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + // Socket is created in PrepareAddress. + turnport1->PrepareAddress(); + EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS7)); + EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp)); + EXPECT_EQ(rtc::DSCP_CS7, dscp); + // This will verify correct value returned without the socket. + auto turnport2 = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP, rtc::DSCP_CS6)); + EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp)); + EXPECT_EQ(rtc::DSCP_CS6, dscp); +} + +// Test sending STUN messages. +TEST_F(PortTest, TestSendStunMessage) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + // Send a fake ping from lport to rport. + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + lconn->Ping(0); + + // Check that it's a proper BINDING-REQUEST. + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + EXPECT_FALSE(msg->IsLegacy()); + const StunByteStringAttribute* username_attr = + msg->GetByteString(STUN_ATTR_USERNAME); + ASSERT_TRUE(username_attr != NULL); + const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY); + ASSERT_TRUE(priority_attr != NULL); + EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value()); + EXPECT_EQ("rfrag:lfrag", username_attr->string_view()); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); + EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk, + msg->ValidateMessageIntegrity("rpass")); + const StunUInt64Attribute* ice_controlling_attr = + msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); + ASSERT_TRUE(ice_controlling_attr != NULL); + EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value()); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); + EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); + EXPECT_TRUE(StunMessage::ValidateFingerprint( + lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); + + // Request should not include ping count. + ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); + + // Save a copy of the BINDING-REQUEST for use below. + std::unique_ptr<IceMessage> request = CopyStunMessage(*msg); + + // Receive the BINDING-REQUEST and respond with BINDING-RESPONSE. + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + msg = rport->last_stun_msg(); + ASSERT_TRUE(msg != NULL); + EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type()); + // Received a BINDING-RESPONSE. + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); + // Verify the STUN Stats. + EXPECT_EQ(1U, lconn->stats().sent_ping_requests_total); + EXPECT_EQ(1U, lconn->stats().sent_ping_requests_before_first_response); + EXPECT_EQ(1U, lconn->stats().recv_ping_responses); + EXPECT_EQ(1U, rconn->stats().recv_ping_requests); + EXPECT_EQ(1U, rconn->stats().sent_ping_responses); + + EXPECT_FALSE(msg->IsLegacy()); + const StunAddressAttribute* addr_attr = + msg->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); + ASSERT_TRUE(addr_attr != NULL); + EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress()); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); + EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk, + msg->ValidateMessageIntegrity("rpass")); + EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); + EXPECT_TRUE(StunMessage::ValidateFingerprint( + lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); + // No USERNAME or PRIORITY in ICE responses. + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); + + // Response should not include ping count. + ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL); + + // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life, + // but we can do it here. + rport->SendBindingErrorResponse( + request.get(), lport->Candidates()[0].address(), STUN_ERROR_SERVER_ERROR, + STUN_ERROR_REASON_SERVER_ERROR); + msg = rport->last_stun_msg(); + ASSERT_TRUE(msg != NULL); + EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type()); + EXPECT_FALSE(msg->IsLegacy()); + const StunErrorCodeAttribute* error_attr = msg->GetErrorCode(); + ASSERT_TRUE(error_attr != NULL); + EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code()); + EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason()); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); + EXPECT_EQ(StunMessage::IntegrityStatus::kIntegrityOk, + msg->ValidateMessageIntegrity("rpass")); + EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); + EXPECT_TRUE(StunMessage::ValidateFingerprint( + lport->last_stun_buf()->data<char>(), lport->last_stun_buf()->size())); + // No USERNAME with ICE. + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL); + + // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED + // and (incremented) RETRANSMIT_COUNT attributes. + rport->Reset(); + rport->set_send_retransmit_count_attribute(true); + rconn->Ping(0); + rconn->Ping(0); + rconn->Ping(0); + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + msg = rport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + const StunUInt64Attribute* ice_controlled_attr = + msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); + ASSERT_TRUE(ice_controlled_attr != NULL); + EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value()); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); + + // Request should include ping count. + const StunUInt32Attribute* retransmit_attr = + msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); + ASSERT_TRUE(retransmit_attr != NULL); + EXPECT_EQ(2U, retransmit_attr->value()); + + // Respond with a BINDING-RESPONSE. + request = CopyStunMessage(*msg); + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); + msg = lport->last_stun_msg(); + // Receive the BINDING-RESPONSE. + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + + // Verify the Stun ping stats. + EXPECT_EQ(3U, rconn->stats().sent_ping_requests_total); + EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); + EXPECT_EQ(1U, rconn->stats().recv_ping_responses); + EXPECT_EQ(1U, lconn->stats().sent_ping_responses); + EXPECT_EQ(1U, lconn->stats().recv_ping_requests); + // Ping after receiver the first response + rconn->Ping(0); + rconn->Ping(0); + EXPECT_EQ(5U, rconn->stats().sent_ping_requests_total); + EXPECT_EQ(3U, rconn->stats().sent_ping_requests_before_first_response); + + // Response should include same ping count. + retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); + ASSERT_TRUE(retransmit_attr != NULL); + EXPECT_EQ(2U, retransmit_attr->value()); +} + +TEST_F(PortTest, TestNomination) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + + // `lconn` is controlling, `rconn` is controlled. + uint32_t nomination = 1234; + lconn->set_nomination(nomination); + + EXPECT_FALSE(lconn->nominated()); + EXPECT_FALSE(rconn->nominated()); + EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); + EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); + + // Send ping (including the nomination value) from `lconn` to `rconn`. This + // should set the remote nomination of `rconn`. + lconn->Ping(0); + ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(lport->last_stun_buf()); + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + EXPECT_EQ(nomination, rconn->remote_nomination()); + EXPECT_FALSE(lconn->nominated()); + EXPECT_TRUE(rconn->nominated()); + EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); + EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); + + // This should result in an acknowledgment sent back from `rconn` to `lconn`, + // updating the acknowledged nomination of `lconn`. + ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(rport->last_stun_buf()); + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); + EXPECT_EQ(nomination, lconn->acked_nomination()); + EXPECT_TRUE(lconn->nominated()); + EXPECT_TRUE(rconn->nominated()); + EXPECT_EQ(lconn->nominated(), lconn->stats().nominated); + EXPECT_EQ(rconn->nominated(), rconn->stats().nominated); +} + +TEST_F(PortTest, TestRoundTripTime) { + rtc::ScopedFakeClock clock; + + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + + EXPECT_EQ(0u, lconn->stats().total_round_trip_time_ms); + EXPECT_FALSE(lconn->stats().current_round_trip_time_ms); + + SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, + 10); + EXPECT_EQ(10u, lconn->stats().total_round_trip_time_ms); + ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); + EXPECT_EQ(10u, *lconn->stats().current_round_trip_time_ms); + + SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, + 20); + EXPECT_EQ(30u, lconn->stats().total_round_trip_time_ms); + ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); + EXPECT_EQ(20u, *lconn->stats().current_round_trip_time_ms); + + SendPingAndReceiveResponse(lconn, lport.get(), rconn, rport.get(), &clock, + 30); + EXPECT_EQ(60u, lconn->stats().total_round_trip_time_ms); + ASSERT_TRUE(lconn->stats().current_round_trip_time_ms); + EXPECT_EQ(30u, *lconn->stats().current_round_trip_time_ms); +} + +TEST_F(PortTest, TestUseCandidateAttribute) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + // Send a fake ping from lport to rport. + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + lconn->Ping(0); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = lport->last_stun_msg(); + const StunUInt64Attribute* ice_controlling_attr = + msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); + ASSERT_TRUE(ice_controlling_attr != NULL); + const StunByteStringAttribute* use_candidate_attr = + msg->GetByteString(STUN_ATTR_USE_CANDIDATE); + ASSERT_TRUE(use_candidate_attr != NULL); +} + +// Tests that when the network type changes, the network cost of the port will +// change, the network cost of the local candidates will change. Also tests that +// the remote network costs are updated with the stun binding requests. +TEST_F(PortTest, TestNetworkCostChange) { + rtc::Network* test_network = MakeNetwork(kLocalAddr1); + auto lport = CreateTestPort(test_network, "lfrag", "lpass"); + auto rport = CreateTestPort(test_network, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + lport->PrepareAddress(); + rport->PrepareAddress(); + + // Default local port cost is rtc::kNetworkCostUnknown. + EXPECT_EQ(rtc::kNetworkCostUnknown, lport->network_cost()); + ASSERT_TRUE(!lport->Candidates().empty()); + for (const cricket::Candidate& candidate : lport->Candidates()) { + EXPECT_EQ(rtc::kNetworkCostUnknown, candidate.network_cost()); + } + + // Change the network type to wifi. + test_network->set_type(rtc::ADAPTER_TYPE_WIFI); + EXPECT_EQ(rtc::kNetworkCostLow, lport->network_cost()); + for (const cricket::Candidate& candidate : lport->Candidates()) { + EXPECT_EQ(rtc::kNetworkCostLow, candidate.network_cost()); + } + + // Add a connection and then change the network type. + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + // Change the network type to cellular. + test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); + EXPECT_EQ(rtc::kNetworkCostHigh, lport->network_cost()); + for (const cricket::Candidate& candidate : lport->Candidates()) { + EXPECT_EQ(rtc::kNetworkCostHigh, candidate.network_cost()); + } + + test_network->set_type(rtc::ADAPTER_TYPE_WIFI); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); + lconn->Ping(0); + // The rconn's remote candidate cost is rtc::kNetworkCostLow, but the ping + // contains an attribute of network cost of rtc::kNetworkCostHigh. Once the + // message is handled in rconn, The rconn's remote candidate will have cost + // rtc::kNetworkCostHigh; + EXPECT_EQ(rtc::kNetworkCostLow, rconn->remote_candidate().network_cost()); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = lport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + // Pass the binding request to rport. + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + // Wait until rport sends the response and then check the remote network cost. + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + EXPECT_EQ(rtc::kNetworkCostHigh, rconn->remote_candidate().network_cost()); +} + +TEST_F(PortTest, TestNetworkInfoAttribute) { + rtc::Network* test_network = MakeNetwork(kLocalAddr1); + auto lport = CreateTestPort(test_network, "lfrag", "lpass"); + auto rport = CreateTestPort(test_network, "rfrag", "rpass"); + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport->SetIceTiebreaker(kTiebreaker1); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + uint16_t lnetwork_id = 9; + test_network->set_id(lnetwork_id); + // Send a fake ping from lport to rport. + lport->PrepareAddress(); + rport->PrepareAddress(); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + lconn->Ping(0); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = lport->last_stun_msg(); + const StunUInt32Attribute* network_info_attr = + msg->GetUInt32(STUN_ATTR_GOOG_NETWORK_INFO); + ASSERT_TRUE(network_info_attr != NULL); + uint32_t network_info = network_info_attr->value(); + EXPECT_EQ(lnetwork_id, network_info >> 16); + // Default network has unknown type and cost kNetworkCostUnknown. + EXPECT_EQ(rtc::kNetworkCostUnknown, network_info & 0xFFFF); + + // Set the network type to be cellular so its cost will be kNetworkCostHigh. + // Send a fake ping from rport to lport. + test_network->set_type(rtc::ADAPTER_TYPE_CELLULAR); + uint16_t rnetwork_id = 8; + test_network->set_id(rnetwork_id); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + rconn->Ping(0); + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + msg = rport->last_stun_msg(); + network_info_attr = msg->GetUInt32(STUN_ATTR_GOOG_NETWORK_INFO); + ASSERT_TRUE(network_info_attr != NULL); + network_info = network_info_attr->value(); + EXPECT_EQ(rnetwork_id, network_info >> 16); + EXPECT_EQ(rtc::kNetworkCostHigh, network_info & 0xFFFF); +} + +// Test handling STUN messages. +TEST_F(PortTest, TestHandleStunMessage) { + // Our port will act as the "remote" port. + auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + + std::unique_ptr<IceMessage> in_msg, out_msg; + auto buf = std::make_unique<ByteBufferWriter>(); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + // BINDING-REQUEST from local to remote with valid ICE username, + // MESSAGE-INTEGRITY, and FINGERPRINT. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() != NULL); + EXPECT_EQ("lfrag", username); + + // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT. + in_msg = CreateStunMessage(STUN_BINDING_RESPONSE); + in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>( + STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() != NULL); + EXPECT_EQ("", username); + + // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT. + in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE); + in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>( + STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, + STUN_ERROR_REASON_SERVER_ERROR)); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() != NULL); + EXPECT_EQ("", username); + ASSERT_TRUE(out_msg->GetErrorCode() != NULL); + EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code()); + EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), + out_msg->GetErrorCode()->reason()); +} + +// Tests handling of ICE binding requests with missing or incorrect usernames. +TEST_F(PortTest, TestHandleStunMessageBadUsername) { + auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + + std::unique_ptr<IceMessage> in_msg, out_msg; + auto buf = std::make_unique<ByteBufferWriter>(); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + // BINDING-REQUEST with no username. + in_msg = CreateStunMessage(STUN_BINDING_REQUEST); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); + + // BINDING-REQUEST with empty username. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); + + // BINDING-REQUEST with too-short username. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); + + // BINDING-REQUEST with reversed username. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "lfrag:rfrag"); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); + + // BINDING-REQUEST with garbage username. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "abcd:efgh"); + in_msg->AddMessageIntegrity("rpass"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); +} + +// Test handling STUN messages with missing or malformed M-I. +TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) { + // Our port will act as the "remote" port. + auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + + std::unique_ptr<IceMessage> in_msg, out_msg; + auto buf = std::make_unique<ByteBufferWriter>(); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + // BINDING-REQUEST from local to remote with valid ICE username and + // FINGERPRINT, but no MESSAGE-INTEGRITY. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code()); + + // BINDING-REQUEST from local to remote with valid ICE username and + // FINGERPRINT, but invalid MESSAGE-INTEGRITY. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); + in_msg->AddMessageIntegrity("invalid"); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() == NULL); + EXPECT_EQ("", username); + EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code()); + + // TODO(?): BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked + // by the Connection, not the Port, since they require the remote username. + // Change this test to pass in data via Connection::OnReadPacket instead. +} + +// Test handling STUN messages with missing or malformed FINGERPRINT. +TEST_F(PortTest, TestHandleStunMessageBadFingerprint) { + // Our port will act as the "remote" port. + auto port = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + + std::unique_ptr<IceMessage> in_msg, out_msg; + auto buf = std::make_unique<ByteBufferWriter>(); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + // BINDING-REQUEST from local to remote with valid ICE username and + // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); + in_msg->AddMessageIntegrity("rpass"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); + + // Now, add a fingerprint, but munge the message so it's not valid. + in_msg->AddFingerprint(); + in_msg->SetTransactionIdForTesting("TESTTESTBADD"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); + + // Valid BINDING-RESPONSE, except no FINGERPRINT. + in_msg = CreateStunMessage(STUN_BINDING_RESPONSE); + in_msg->AddAttribute(std::make_unique<StunXorAddressAttribute>( + STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2)); + in_msg->AddMessageIntegrity("rpass"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); + + // Now, add a fingerprint, but munge the message so it's not valid. + in_msg->AddFingerprint(); + in_msg->SetTransactionIdForTesting("TESTTESTBADD"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); + + // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT. + in_msg = CreateStunMessage(STUN_BINDING_ERROR_RESPONSE); + in_msg->AddAttribute(std::make_unique<StunErrorCodeAttribute>( + STUN_ATTR_ERROR_CODE, STUN_ERROR_SERVER_ERROR, + STUN_ERROR_REASON_SERVER_ERROR)); + in_msg->AddMessageIntegrity("rpass"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); + + // Now, add a fingerprint, but munge the message so it's not valid. + in_msg->AddFingerprint(); + in_msg->SetTransactionIdForTesting("TESTTESTBADD"); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_EQ(0, port->last_stun_error_code()); +} + +// Test handling a STUN message with unknown attributes in the +// "comprehension-required" range. Should respond with an error with the +// unknown attributes' IDs. +TEST_F(PortTest, + TestHandleStunRequestWithUnknownComprehensionRequiredAttribute) { + // Our port will act as the "remote" port. + std::unique_ptr<TestPort> port(CreateTestPort(kLocalAddr2, "rfrag", "rpass")); + + std::unique_ptr<IceMessage> in_msg, out_msg; + auto buf = std::make_unique<ByteBufferWriter>(); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + // Build ordinary message with valid ufrag/pass. + in_msg = CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfrag:lfrag"); + in_msg->AddMessageIntegrity("rpass"); + // Add a couple attributes with ID in comprehension-required range. + in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777)); + in_msg->AddAttribute(StunAttribute::CreateUInt32(0x4567)); + // ... And one outside the range. + in_msg->AddAttribute(StunAttribute::CreateUInt32(0xdead)); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + ASSERT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + IceMessage* error_response = port->last_stun_msg(); + ASSERT_NE(nullptr, error_response); + + // Verify that the "unknown attribute" error response has the right error + // code, and includes an attribute that lists out the unrecognized attribute + // types. + EXPECT_EQ(STUN_ERROR_UNKNOWN_ATTRIBUTE, error_response->GetErrorCodeValue()); + const StunUInt16ListAttribute* unknown_attributes = + error_response->GetUnknownAttributes(); + ASSERT_NE(nullptr, unknown_attributes); + ASSERT_EQ(2u, unknown_attributes->Size()); + EXPECT_EQ(0x7777, unknown_attributes->GetType(0)); + EXPECT_EQ(0x4567, unknown_attributes->GetType(1)); +} + +// Similar to the above, but with a response instead of a request. In this +// case the response should just be ignored and transaction treated is failed. +TEST_F(PortTest, + TestHandleStunResponseWithUnknownComprehensionRequiredAttribute) { + // Generic setup. + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreakerDefault); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreakerDefault); + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + + // Send request. + lconn->Ping(0); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), /* packet_time_us */ -1); + + // Intercept request and add comprehension required attribute. + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + auto modified_response = rport->last_stun_msg()->Clone(); + modified_response->AddAttribute(StunAttribute::CreateUInt32(0x7777)); + modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT); + modified_response->AddFingerprint(); + ByteBufferWriter buf; + WriteStunMessage(*modified_response, &buf); + lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1); + // Response should have been ignored, leaving us unwritable still. + EXPECT_FALSE(lconn->writable()); +} + +// Similar to the above, but with an indication. As with a response, it should +// just be ignored. +TEST_F(PortTest, + TestHandleStunIndicationWithUnknownComprehensionRequiredAttribute) { + // Generic set up. + auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreakerDefault); + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreakerDefault); + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + + // Generate indication with comprehension required attribute and verify it + // doesn't update last_ping_received. + auto in_msg = CreateStunMessage(STUN_BINDING_INDICATION); + in_msg->AddAttribute(StunAttribute::CreateUInt32(0x7777)); + in_msg->AddFingerprint(); + ByteBufferWriter buf; + WriteStunMessage(*in_msg, &buf); + lconn->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1); + EXPECT_EQ(0u, lconn->last_ping_received()); +} + +// Test handling of STUN binding indication messages . STUN binding +// indications are allowed only to the connection which is in read mode. +TEST_F(PortTest, TestHandleStunBindingIndication) { + auto lport = CreateTestPort(kLocalAddr2, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + + // Verifying encoding and decoding STUN indication message. + std::unique_ptr<IceMessage> in_msg, out_msg; + std::unique_ptr<ByteBufferWriter> buf(new ByteBufferWriter()); + rtc::SocketAddress addr(kLocalAddr1); + std::string username; + + in_msg = CreateStunMessage(STUN_BINDING_INDICATION); + in_msg->AddFingerprint(); + WriteStunMessage(*in_msg, buf.get()); + EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr, &out_msg, + &username)); + EXPECT_TRUE(out_msg.get() != NULL); + EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION); + EXPECT_EQ("", username); + + // Verify connection can handle STUN indication and updates + // last_ping_received. + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceTiebreaker(kTiebreaker2); + + lport->PrepareAddress(); + rport->PrepareAddress(); + ASSERT_FALSE(lport->Candidates().empty()); + ASSERT_FALSE(rport->Candidates().empty()); + + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); + rconn->Ping(0); + + ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = rport->last_stun_msg(); + EXPECT_EQ(STUN_BINDING_REQUEST, msg->type()); + // Send rport binding request to lport. + lconn->OnReadPacket(rport->last_stun_buf()->data<char>(), + rport->last_stun_buf()->size(), /* packet_time_us */ -1); + ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, kDefaultTimeout); + EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type()); + int64_t last_ping_received1 = lconn->last_ping_received(); + + // Adding a delay of 100ms. + rtc::Thread::Current()->ProcessMessages(100); + // Pinging lconn using stun indication message. + lconn->OnReadPacket(buf->Data(), buf->Length(), /* packet_time_us */ -1); + int64_t last_ping_received2 = lconn->last_ping_received(); + EXPECT_GT(last_ping_received2, last_ping_received1); +} + +TEST_F(PortTest, TestComputeCandidatePriority) { + auto port = CreateTestPort(kLocalAddr1, "name", "pass"); + port->SetIceTiebreaker(kTiebreakerDefault); + port->set_type_preference(90); + port->set_component(177); + port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); + port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234)); + port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234)); + port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234)); + port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234)); + port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234)); + port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234)); + port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234)); + port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234)); + // These should all be: + // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177) + uint32_t expected_priority_v4 = 1509957199U; + uint32_t expected_priority_v6 = 1509959759U; + uint32_t expected_priority_ula = 1509962319U; + uint32_t expected_priority_v4mapped = expected_priority_v4; + uint32_t expected_priority_v4compat = 1509949775U; + uint32_t expected_priority_6to4 = 1509954639U; + uint32_t expected_priority_teredo = 1509952079U; + uint32_t expected_priority_sitelocal = 1509949775U; + uint32_t expected_priority_6bone = 1509949775U; + ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority()); + ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority()); + ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority()); + ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority()); + ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority()); + ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority()); + ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority()); + ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority()); + ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority()); +} + +// In the case of shared socket, one port may be shared by local and stun. +// Test that candidates with different types will have different foundation. +TEST_F(PortTest, TestFoundation) { + auto testport = CreateTestPort(kLocalAddr1, "name", "pass"); + testport->SetIceTiebreaker(kTiebreakerDefault); + testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1, LOCAL_PORT_TYPE, + cricket::ICE_TYPE_PREFERENCE_HOST, false); + testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1, STUN_PORT_TYPE, + cricket::ICE_TYPE_PREFERENCE_SRFLX, true); + EXPECT_NE(testport->Candidates()[0].foundation(), + testport->Candidates()[1].foundation()); +} + +// This test verifies the foundation of different types of ICE candidates. +TEST_F(PortTest, TestCandidateFoundation) { + std::unique_ptr<rtc::NATServer> nat_server( + CreateNatServer(kNatAddr1, NAT_OPEN_CONE)); + auto udpport1 = CreateUdpPort(kLocalAddr1); + udpport1->PrepareAddress(); + auto udpport2 = CreateUdpPort(kLocalAddr1); + udpport2->PrepareAddress(); + EXPECT_EQ(udpport1->Candidates()[0].foundation(), + udpport2->Candidates()[0].foundation()); + auto tcpport1 = CreateTcpPort(kLocalAddr1); + tcpport1->PrepareAddress(); + auto tcpport2 = CreateTcpPort(kLocalAddr1); + tcpport2->PrepareAddress(); + EXPECT_EQ(tcpport1->Candidates()[0].foundation(), + tcpport2->Candidates()[0].foundation()); + auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); + stunport->PrepareAddress(); + ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout); + EXPECT_NE(tcpport1->Candidates()[0].foundation(), + stunport->Candidates()[0].foundation()); + EXPECT_NE(tcpport2->Candidates()[0].foundation(), + stunport->Candidates()[0].foundation()); + EXPECT_NE(udpport1->Candidates()[0].foundation(), + stunport->Candidates()[0].foundation()); + EXPECT_NE(udpport2->Candidates()[0].foundation(), + stunport->Candidates()[0].foundation()); + // Verifying TURN candidate foundation. + auto turnport1 = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + turnport1->PrepareAddress(); + ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kDefaultTimeout); + EXPECT_NE(udpport1->Candidates()[0].foundation(), + turnport1->Candidates()[0].foundation()); + EXPECT_NE(udpport2->Candidates()[0].foundation(), + turnport1->Candidates()[0].foundation()); + EXPECT_NE(stunport->Candidates()[0].foundation(), + turnport1->Candidates()[0].foundation()); + auto turnport2 = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + turnport2->PrepareAddress(); + ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kDefaultTimeout); + EXPECT_EQ(turnport1->Candidates()[0].foundation(), + turnport2->Candidates()[0].foundation()); + + // Running a second turn server, to get different base IP address. + SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT); + SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0); + TestTurnServer turn_server2(rtc::Thread::Current(), vss(), kTurnUdpIntAddr2, + kTurnUdpExtAddr2); + auto turnport3 = CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, + PROTO_UDP, kTurnUdpIntAddr2); + turnport3->PrepareAddress(); + ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kDefaultTimeout); + EXPECT_NE(turnport3->Candidates()[0].foundation(), + turnport2->Candidates()[0].foundation()); + + // Start a TCP turn server, and check that two turn candidates have + // different foundations if their relay protocols are different. + TestTurnServer turn_server3(rtc::Thread::Current(), vss(), kTurnTcpIntAddr, + kTurnUdpExtAddr, PROTO_TCP); + auto turnport4 = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_TCP, PROTO_UDP); + turnport4->PrepareAddress(); + ASSERT_EQ_WAIT(1U, turnport4->Candidates().size(), kDefaultTimeout); + EXPECT_NE(turnport2->Candidates()[0].foundation(), + turnport4->Candidates()[0].foundation()); +} + +// This test verifies the related addresses of different types of +// ICE candidates. +TEST_F(PortTest, TestCandidateRelatedAddress) { + auto nat_server = CreateNatServer(kNatAddr1, NAT_OPEN_CONE); + auto udpport = CreateUdpPort(kLocalAddr1); + udpport->PrepareAddress(); + // For UDPPort, related address will be empty. + EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil()); + // Testing related address for stun candidates. + // For stun candidate related address must be equal to the base + // socket address. + auto stunport = CreateStunPort(kLocalAddr1, nat_socket_factory1()); + stunport->PrepareAddress(); + ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kDefaultTimeout); + // Check STUN candidate address. + EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(), kNatAddr1.ipaddr()); + // Check STUN candidate related address. + EXPECT_EQ(stunport->Candidates()[0].related_address(), + stunport->GetLocalAddress()); + // Verifying the related address for TURN candidate. + // For TURN related address must be equal to the mapped address. + auto turnport = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + turnport->PrepareAddress(); + ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kDefaultTimeout); + EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), + turnport->Candidates()[0].address().ipaddr()); + EXPECT_EQ(kNatAddr1.ipaddr(), + turnport->Candidates()[0].related_address().ipaddr()); +} + +// Test priority value overflow handling when preference is set to 3. +TEST_F(PortTest, TestCandidatePriority) { + cricket::Candidate cand1; + cand1.set_priority(3); + cricket::Candidate cand2; + cand2.set_priority(1); + EXPECT_TRUE(cand1.priority() > cand2.priority()); +} + +// Test the Connection priority is calculated correctly. +TEST_F(PortTest, TestConnectionPriority) { + auto lport = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + lport->SetIceTiebreaker(kTiebreakerDefault); + lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST); + + auto rport = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + rport->SetIceTiebreaker(kTiebreakerDefault); + rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY_UDP); + lport->set_component(123); + lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234)); + rport->set_component(23); + rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234)); + + EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority()); + EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority()); + + // RFC 5245 + // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) + lport->SetIceRole(cricket::ICEROLE_CONTROLLING); + rport->SetIceRole(cricket::ICEROLE_CONTROLLED); + Connection* lconn = + lport->CreateConnection(rport->Candidates()[0], Port::ORIGIN_MESSAGE); +#if defined(WEBRTC_WIN) + EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority()); +#else + EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority()); +#endif + + lport->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport->SetIceRole(cricket::ICEROLE_CONTROLLING); + Connection* rconn = + rport->CreateConnection(lport->Candidates()[0], Port::ORIGIN_MESSAGE); +#if defined(WEBRTC_WIN) + EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority()); +#else + EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority()); +#endif +} + +// Note that UpdateState takes into account the estimated RTT, and the +// correctness of using `kMaxExpectedSimulatedRtt` as an upper bound of RTT in +// the following tests depends on the link rate and the delay distriubtion +// configured in VirtualSocketServer::AddPacketToNetwork. The tests below use +// the default setup where the RTT is deterministically one, which generates an +// estimate given by `MINIMUM_RTT` = 100. +TEST_F(PortTest, TestWritableState) { + rtc::ScopedFakeClock clock; + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + + // Set up channels. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + + // Acquire addresses. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); + ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); + + // Send a ping from src to dst. + ch1.CreateConnection(GetCandidate(ch2.port())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + // for TCP connect + EXPECT_TRUE_SIMULATED_WAIT(ch1.conn()->connected(), kDefaultTimeout, clock); + ch1.Ping(); + SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); + + // Data should be sendable before the connection is accepted. + char data[] = "abcd"; + int data_size = arraysize(data); + rtc::PacketOptions options; + EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); + + // Accept the connection to return the binding response, transition to + // writable, and allow data to be sent. + ch2.AcceptConnection(GetCandidate(ch1.port())); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch1.conn()->write_state(), kDefaultTimeout, clock); + EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); + + // Ask the connection to update state as if enough time has passed to lose + // full writability and 5 pings went unresponded to. We'll accomplish the + // latter by sending pings but not pumping messages. + for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { + ch1.Ping(i); + } + int unreliable_timeout_delay = + CONNECTION_WRITE_CONNECT_TIMEOUT + kMaxExpectedSimulatedRtt; + ch1.conn()->UpdateState(unreliable_timeout_delay); + EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); + + // Data should be able to be sent in this state. + EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); + + // And now allow the other side to process the pings and send binding + // responses. + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch1.conn()->write_state(), kDefaultTimeout, clock); + // Wait long enough for a full timeout (past however long we've already + // waited). + for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { + ch1.Ping(unreliable_timeout_delay + i); + } + ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT + + kMaxExpectedSimulatedRtt); + EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); + + // Even if the connection has timed out, the Connection shouldn't block + // the sending of data. + EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options)); + + ch1.Stop(); + ch2.Stop(); +} + +// Test writability states using the configured threshold value to replace +// the default value given by `CONNECTION_WRITE_CONNECT_TIMEOUT` and +// `CONNECTION_WRITE_CONNECT_FAILURES`. +TEST_F(PortTest, TestWritableStateWithConfiguredThreshold) { + rtc::ScopedFakeClock clock; + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + + // Set up channels. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + + // Acquire addresses. + ch1.Start(); + ch2.Start(); + ASSERT_EQ_SIMULATED_WAIT(1, ch1.complete_count(), kDefaultTimeout, clock); + ASSERT_EQ_SIMULATED_WAIT(1, ch2.complete_count(), kDefaultTimeout, clock); + + // Send a ping from src to dst. + ch1.CreateConnection(GetCandidate(ch2.port())); + ASSERT_TRUE(ch1.conn() != NULL); + ch1.Ping(); + SIMULATED_WAIT(!ch2.remote_address().IsNil(), kShortTimeout, clock); + + // Accept the connection to return the binding response, transition to + // writable, and allow data to be sent. + ch2.AcceptConnection(GetCandidate(ch1.port())); + EXPECT_EQ_SIMULATED_WAIT(Connection::STATE_WRITABLE, + ch1.conn()->write_state(), kDefaultTimeout, clock); + + ch1.conn()->set_unwritable_timeout(1000); + ch1.conn()->set_unwritable_min_checks(3); + // Send two checks. + ch1.Ping(1); + ch1.Ping(2); + // We have not reached the timeout nor have we sent the minimum number of + // checks to change the state to Unreliable. + ch1.conn()->UpdateState(999); + EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); + // We have not sent the minimum number of checks without responses. + ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt); + EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); + // Last ping after which the candidate pair should become Unreliable after + // timeout. + ch1.Ping(3); + // We have not reached the timeout. + ch1.conn()->UpdateState(999); + EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state()); + // We should be in the state Unreliable now. + ch1.conn()->UpdateState(1000 + kMaxExpectedSimulatedRtt); + EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state()); + + ch1.Stop(); + ch2.Stop(); +} + +TEST_F(PortTest, TestTimeoutForNeverWritable) { + auto port1 = CreateUdpPort(kLocalAddr1); + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + auto port2 = CreateUdpPort(kLocalAddr2); + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + + // Set up channels. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + + // Acquire addresses. + ch1.Start(); + ch2.Start(); + + ch1.CreateConnection(GetCandidate(ch2.port())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + + // Attempt to go directly to write timeout. + for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) { + ch1.Ping(i); + } + ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + kMaxExpectedSimulatedRtt); + EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state()); +} + +// This test verifies the connection setup between ICEMODE_FULL +// and ICEMODE_LITE. +// In this test `ch1` behaves like FULL mode client and we have created +// port which responds to the ping message just like LITE client. +TEST_F(PortTest, TestIceLiteConnectivity) { + auto ice_full_port = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* ice_full_port_ptr = ice_full_port.get(); + + auto ice_lite_port = CreateTestPort( + kLocalAddr2, "rfrag", "rpass", cricket::ICEROLE_CONTROLLED, kTiebreaker2); + // Setup TestChannel. This behaves like FULL mode client. + TestChannel ch1(std::move(ice_full_port)); + ch1.SetIceMode(ICEMODE_FULL); + + // Start gathering candidates. + ch1.Start(); + ice_lite_port->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(ice_lite_port->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(ice_lite_port.get())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + + // Send ping from full mode client. + // This ping must not have USE_CANDIDATE_ATTR. + ch1.Ping(); + + // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly + // from port. + ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout); + IceMessage* msg = ice_full_port_ptr->last_stun_msg(); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL); + + // Respond with a BINDING-RESPONSE from litemode client. + // NOTE: Ideally we should't create connection at this stage from lite + // port, as it should be done only after receiving ping with USE_CANDIDATE. + // But we need a connection to send a response message. + auto* con = ice_lite_port->CreateConnection( + ice_full_port_ptr->Candidates()[0], cricket::Port::ORIGIN_MESSAGE); + std::unique_ptr<IceMessage> request = CopyStunMessage(*msg); + con->SendStunBindingResponse(request.get()); + + // Feeding the respone message from litemode to the full mode connection. + ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->data<char>(), + ice_lite_port->last_stun_buf()->size(), + /* packet_time_us */ -1); + // Verifying full mode connection becomes writable from the response. + EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(), + kDefaultTimeout); + EXPECT_TRUE_WAIT(ch1.nominated(), kDefaultTimeout); + + // Clear existing stun messsages. Otherwise we will process old stun + // message right after we send ping. + ice_full_port_ptr->Reset(); + // Send ping. This must have USE_CANDIDATE_ATTR. + ch1.Ping(); + ASSERT_TRUE_WAIT(ice_full_port_ptr->last_stun_msg() != NULL, kDefaultTimeout); + msg = ice_full_port_ptr->last_stun_msg(); + EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL); + ch1.Stop(); +} + +namespace { + +// Utility function for testing goog ping. +absl::optional<int> GetSupportedGoogPingVersion(const StunMessage* msg) { + auto goog_misc = msg->GetUInt16List(STUN_ATTR_GOOG_MISC_INFO); + if (goog_misc == nullptr) { + return absl::nullopt; + } + + if (msg->type() == STUN_BINDING_REQUEST) { + if (goog_misc->Size() < + static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex:: + SUPPORT_GOOG_PING_VERSION)) { + return absl::nullopt; + } + + return goog_misc->GetType( + static_cast<int>(cricket::IceGoogMiscInfoBindingRequestAttributeIndex:: + SUPPORT_GOOG_PING_VERSION)); + } + + if (msg->type() == STUN_BINDING_RESPONSE) { + if (goog_misc->Size() < + static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex:: + SUPPORT_GOOG_PING_VERSION)) { + return absl::nullopt; + } + + return goog_misc->GetType( + static_cast<int>(cricket::IceGoogMiscInfoBindingResponseAttributeIndex:: + SUPPORT_GOOG_PING_VERSION)); + } + return absl::nullopt; +} + +} // namespace + +class GoogPingTest + : public PortTest, + public ::testing::WithParamInterface<std::pair<bool, bool>> {}; + +// This test verifies the announce/enable on/off behavior +TEST_P(GoogPingTest, TestGoogPingAnnounceEnable) { + IceFieldTrials trials; + trials.announce_goog_ping = GetParam().first; + trials.enable_goog_ping = GetParam().second; + RTC_LOG(LS_INFO) << "Testing combination: " + " announce: " + << trials.announce_goog_ping + << " enable:" << trials.enable_goog_ping; + + auto port1_unique = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* port1 = port1_unique.get(); + auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreaker2); + + TestChannel ch1(std::move(port1_unique)); + // Block usage of STUN_ATTR_USE_CANDIDATE so that + // ch1.conn() will sent GOOG_PING_REQUEST directly. + // This only makes test a bit shorter... + ch1.SetIceMode(ICEMODE_LITE); + // Start gathering candidates. + ch1.Start(); + port2->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(port2->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(port2.get())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + ch1.conn()->SetIceFieldTrials(&trials); + + // Send ping. + ch1.Ping(); + + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* request1 = port1->last_stun_msg(); + + ASSERT_EQ(trials.enable_goog_ping, + GetSupportedGoogPingVersion(request1) && + GetSupportedGoogPingVersion(request1) >= kGoogPingVersion); + + auto* con = port2->CreateConnection(port1->Candidates()[0], + cricket::Port::ORIGIN_MESSAGE); + con->SetIceFieldTrials(&trials); + + con->SendStunBindingResponse(request1); + + // Then check the response matches the settings. + const auto* response = port2->last_stun_msg(); + EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE); + EXPECT_EQ(trials.enable_goog_ping && trials.announce_goog_ping, + GetSupportedGoogPingVersion(response) && + GetSupportedGoogPingVersion(response) >= kGoogPingVersion); + + // Feeding the respone message back. + ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(), + port2->last_stun_buf()->size(), + /* packet_time_us */ -1); + + port1->Reset(); + port2->Reset(); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* request2 = port1->last_stun_msg(); + + // It should be a GOOG_PING if both of these are TRUE + if (trials.announce_goog_ping && trials.enable_goog_ping) { + ASSERT_EQ(request2->type(), GOOG_PING_REQUEST); + con->SendGoogPingResponse(request2); + } else { + ASSERT_EQ(request2->type(), STUN_BINDING_REQUEST); + // If we sent a BINDING with enable, and we got a reply that + // didn't contain announce, the next ping should not contain + // the enable again. + ASSERT_FALSE(GetSupportedGoogPingVersion(request2).has_value()); + con->SendStunBindingResponse(request2); + } + + const auto* response2 = port2->last_stun_msg(); + ASSERT_TRUE(response2 != nullptr); + + // It should be a GOOG_PING_RESPONSE if both of these are TRUE + if (trials.announce_goog_ping && trials.enable_goog_ping) { + ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE); + } else { + ASSERT_EQ(response2->type(), STUN_BINDING_RESPONSE); + } + + ch1.Stop(); +} + +// This test if a someone send a STUN_BINDING with unsupported version +// (kGoogPingVersion == 0) +TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBinding) { + IceFieldTrials trials; + trials.announce_goog_ping = true; + trials.enable_goog_ping = true; + + auto port1_unique = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* port1 = port1_unique.get(); + auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreaker2); + + TestChannel ch1(std::move(port1_unique)); + // Block usage of STUN_ATTR_USE_CANDIDATE so that + // ch1.conn() will sent GOOG_PING_REQUEST directly. + // This only makes test a bit shorter... + ch1.SetIceMode(ICEMODE_LITE); + // Start gathering candidates. + ch1.Start(); + port2->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(port2->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(port2.get())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + ch1.conn()->SetIceFieldTrials(&trials); + + // Send ping. + ch1.Ping(); + + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* request1 = port1->last_stun_msg(); + + ASSERT_TRUE(GetSupportedGoogPingVersion(request1) && + GetSupportedGoogPingVersion(request1) >= kGoogPingVersion); + + // Modify the STUN message request1 to send GetSupportedGoogPingVersion == 0 + auto modified_request1 = request1->Clone(); + ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) != + nullptr); + ASSERT_TRUE(modified_request1->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) != + nullptr); + { + auto list = + StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO); + list->AddTypeAtIndex( + static_cast<uint16_t>( + cricket::IceGoogMiscInfoBindingRequestAttributeIndex:: + SUPPORT_GOOG_PING_VERSION), + /* version */ 0); + modified_request1->AddAttribute(std::move(list)); + modified_request1->AddMessageIntegrity("rpass"); + } + auto* con = port2->CreateConnection(port1->Candidates()[0], + cricket::Port::ORIGIN_MESSAGE); + con->SetIceFieldTrials(&trials); + + con->SendStunBindingResponse(modified_request1.get()); + + // Then check the response matches the settings. + const auto* response = port2->last_stun_msg(); + EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE); + EXPECT_FALSE(GetSupportedGoogPingVersion(response)); + + ch1.Stop(); +} + +// This test if a someone send a STUN_BINDING_RESPONSE with unsupported version +// (kGoogPingVersion == 0) +TEST_F(PortTest, TestGoogPingUnsupportedVersionInStunBindingResponse) { + IceFieldTrials trials; + trials.announce_goog_ping = true; + trials.enable_goog_ping = true; + + auto port1_unique = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* port1 = port1_unique.get(); + auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreaker2); + + TestChannel ch1(std::move(port1_unique)); + // Block usage of STUN_ATTR_USE_CANDIDATE so that + // ch1.conn() will sent GOOG_PING_REQUEST directly. + // This only makes test a bit shorter... + ch1.SetIceMode(ICEMODE_LITE); + // Start gathering candidates. + ch1.Start(); + port2->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(port2->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(port2.get())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + ch1.conn()->SetIceFieldTrials(&trials); + + // Send ping. + ch1.Ping(); + + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* request1 = port1->last_stun_msg(); + + ASSERT_TRUE(GetSupportedGoogPingVersion(request1) && + GetSupportedGoogPingVersion(request1) >= kGoogPingVersion); + + auto* con = port2->CreateConnection(port1->Candidates()[0], + cricket::Port::ORIGIN_MESSAGE); + con->SetIceFieldTrials(&trials); + + con->SendStunBindingResponse(request1); + + // Then check the response matches the settings. + const auto* response = port2->last_stun_msg(); + EXPECT_EQ(response->type(), STUN_BINDING_RESPONSE); + EXPECT_TRUE(GetSupportedGoogPingVersion(response)); + + // Modify the STUN message response to contain GetSupportedGoogPingVersion == + // 0 + auto modified_response = response->Clone(); + ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_GOOG_MISC_INFO) != + nullptr); + ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_MESSAGE_INTEGRITY) != + nullptr); + ASSERT_TRUE(modified_response->RemoveAttribute(STUN_ATTR_FINGERPRINT) != + nullptr); + { + auto list = + StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO); + list->AddTypeAtIndex( + static_cast<uint16_t>( + cricket::IceGoogMiscInfoBindingResponseAttributeIndex:: + SUPPORT_GOOG_PING_VERSION), + /* version */ 0); + modified_response->AddAttribute(std::move(list)); + modified_response->AddMessageIntegrity("rpass"); + modified_response->AddFingerprint(); + } + + rtc::ByteBufferWriter buf; + modified_response->Write(&buf); + + // Feeding the modified respone message back. + ch1.conn()->OnReadPacket(buf.Data(), buf.Length(), /* packet_time_us */ -1); + + port1->Reset(); + port2->Reset(); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + + // This should now be a STUN_BINDING...without a kGoogPingVersion + const IceMessage* request2 = port1->last_stun_msg(); + EXPECT_EQ(request2->type(), STUN_BINDING_REQUEST); + EXPECT_FALSE(GetSupportedGoogPingVersion(request2)); + + ch1.Stop(); +} + +INSTANTIATE_TEST_SUITE_P(GoogPingTest, + GoogPingTest, + // test all combinations of <announce, enable> pairs. + ::testing::Values(std::make_pair(false, false), + std::make_pair(true, false), + std::make_pair(false, true), + std::make_pair(true, true))); + +// This test checks that a change in attributes falls back to STUN_BINDING +TEST_F(PortTest, TestChangeInAttributeMakesGoogPingFallsbackToStunBinding) { + IceFieldTrials trials; + trials.announce_goog_ping = true; + trials.enable_goog_ping = true; + + auto port1_unique = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* port1 = port1_unique.get(); + auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreaker2); + + TestChannel ch1(std::move(port1_unique)); + // Block usage of STUN_ATTR_USE_CANDIDATE so that + // ch1.conn() will sent GOOG_PING_REQUEST directly. + // This only makes test a bit shorter... + ch1.SetIceMode(ICEMODE_LITE); + // Start gathering candidates. + ch1.Start(); + port2->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(port2->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(port2.get())); + ASSERT_TRUE(ch1.conn() != nullptr); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + ch1.conn()->SetIceFieldTrials(&trials); + + // Send ping. + ch1.Ping(); + + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg = port1->last_stun_msg(); + auto* con = port2->CreateConnection(port1->Candidates()[0], + cricket::Port::ORIGIN_MESSAGE); + con->SetIceFieldTrials(&trials); + + // Feed the message into the connection. + con->SendStunBindingResponse(msg); + + // The check reply wrt to settings. + const auto* response = port2->last_stun_msg(); + ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE); + ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion); + + // Feeding the respone message back. + ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(), + port2->last_stun_buf()->size(), + /* packet_time_us */ -1); + + port1->Reset(); + port2->Reset(); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg2 = port1->last_stun_msg(); + + // It should be a GOOG_PING if both of these are TRUE + ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST); + con->SendGoogPingResponse(msg2); + + const auto* response2 = port2->last_stun_msg(); + ASSERT_TRUE(response2 != nullptr); + + // It should be a GOOG_PING_RESPONSE. + ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE); + + // And now the third ping. + port1->Reset(); + port2->Reset(); + + // Modify the message to be sent. + ch1.conn()->set_use_candidate_attr(!ch1.conn()->use_candidate_attr()); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg3 = port1->last_stun_msg(); + + // It should be a STUN_BINDING_REQUEST + ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST); + + ch1.Stop(); +} + +// This test that an error response fall back to STUN_BINDING. +TEST_F(PortTest, TestErrorResponseMakesGoogPingFallBackToStunBinding) { + IceFieldTrials trials; + trials.announce_goog_ping = true; + trials.enable_goog_ping = true; + + auto port1_unique = + CreateTestPort(kLocalAddr1, "lfrag", "lpass", + cricket::ICEROLE_CONTROLLING, kTiebreaker1); + auto* port1 = port1_unique.get(); + auto port2 = CreateTestPort(kLocalAddr2, "rfrag", "rpass", + cricket::ICEROLE_CONTROLLED, kTiebreaker2); + + TestChannel ch1(std::move(port1_unique)); + // Block usage of STUN_ATTR_USE_CANDIDATE so that + // ch1.conn() will sent GOOG_PING_REQUEST directly. + // This only makes test a bit shorter... + ch1.SetIceMode(ICEMODE_LITE); + // Start gathering candidates. + ch1.Start(); + port2->PrepareAddress(); + + ASSERT_EQ_WAIT(1, ch1.complete_count(), kDefaultTimeout); + ASSERT_FALSE(port2->Candidates().empty()); + + ch1.CreateConnection(GetCandidate(port2.get())); + ASSERT_TRUE(ch1.conn() != NULL); + EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state()); + ch1.conn()->SetIceFieldTrials(&trials); + + // Send ping. + ch1.Ping(); + + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg = port1->last_stun_msg(); + auto* con = port2->CreateConnection(port1->Candidates()[0], + cricket::Port::ORIGIN_MESSAGE); + con->SetIceFieldTrials(&trials); + + // Feed the message into the connection. + con->SendStunBindingResponse(msg); + + // The check reply wrt to settings. + const auto* response = port2->last_stun_msg(); + ASSERT_EQ(response->type(), STUN_BINDING_RESPONSE); + ASSERT_TRUE(GetSupportedGoogPingVersion(response) >= kGoogPingVersion); + + // Feeding the respone message back. + ch1.conn()->OnReadPacket(port2->last_stun_buf()->data<char>(), + port2->last_stun_buf()->size(), + /* packet_time_us */ -1); + + port1->Reset(); + port2->Reset(); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg2 = port1->last_stun_msg(); + + // It should be a GOOG_PING. + ASSERT_EQ(msg2->type(), GOOG_PING_REQUEST); + con->SendGoogPingResponse(msg2); + + const auto* response2 = port2->last_stun_msg(); + ASSERT_TRUE(response2 != nullptr); + + // It should be a GOOG_PING_RESPONSE. + ASSERT_EQ(response2->type(), GOOG_PING_RESPONSE); + + // But rather than the RESPONSE...feedback an error. + StunMessage error_response(GOOG_PING_ERROR_RESPONSE); + error_response.SetTransactionIdForTesting(response2->transaction_id()); + error_response.AddMessageIntegrity32("rpass"); + rtc::ByteBufferWriter buf; + error_response.Write(&buf); + + ch1.conn()->OnReadPacket(buf.Data(), buf.Length(), + /* packet_time_us */ -1); + + // And now the third ping...this should be a binding. + port1->Reset(); + port2->Reset(); + + ch1.Ping(); + ASSERT_TRUE_WAIT(port1->last_stun_msg() != NULL, kDefaultTimeout); + const IceMessage* msg3 = port1->last_stun_msg(); + + // It should be a STUN_BINDING_REQUEST + ASSERT_EQ(msg3->type(), STUN_BINDING_REQUEST); + + ch1.Stop(); +} + +// This test case verifies that both the controlling port and the controlled +// port will time out after connectivity is lost, if they are not marked as +// "keep alive until pruned." +TEST_F(PortTest, TestPortTimeoutIfNotKeptAlive) { + rtc::ScopedFakeClock clock; + int timeout_delay = 100; + auto port1 = CreateUdpPort(kLocalAddr1); + ConnectToSignalDestroyed(port1.get()); + port1->set_timeout_delay(timeout_delay); // milliseconds + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->SetIceTiebreaker(kTiebreaker1); + + auto port2 = CreateUdpPort(kLocalAddr2); + ConnectToSignalDestroyed(port2.get()); + port2->set_timeout_delay(timeout_delay); // milliseconds + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + port2->SetIceTiebreaker(kTiebreaker2); + + // Set up channels and ensure both ports will be deleted. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + + // Simulate a connection that succeeds, and then is destroyed. + StartConnectAndStopChannels(&ch1, &ch2); + // After the connection is destroyed, the port will be destroyed because + // none of them is marked as "keep alive until pruned. + EXPECT_EQ_SIMULATED_WAIT(2, ports_destroyed(), 110, clock); +} + +// Test that if after all connection are destroyed, new connections are created +// and destroyed again, ports won't be destroyed until a timeout period passes +// after the last set of connections are all destroyed. +TEST_F(PortTest, TestPortTimeoutAfterNewConnectionCreatedAndDestroyed) { + rtc::ScopedFakeClock clock; + int timeout_delay = 100; + auto port1 = CreateUdpPort(kLocalAddr1); + ConnectToSignalDestroyed(port1.get()); + port1->set_timeout_delay(timeout_delay); // milliseconds + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->SetIceTiebreaker(kTiebreaker1); + + auto port2 = CreateUdpPort(kLocalAddr2); + ConnectToSignalDestroyed(port2.get()); + port2->set_timeout_delay(timeout_delay); // milliseconds + + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + port2->SetIceTiebreaker(kTiebreaker2); + + // Set up channels and ensure both ports will be deleted. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + + // Simulate a connection that succeeds, and then is destroyed. + StartConnectAndStopChannels(&ch1, &ch2); + SIMULATED_WAIT(ports_destroyed() > 0, 80, clock); + EXPECT_EQ(0, ports_destroyed()); + + // Start the second set of connection and destroy them. + ch1.CreateConnection(GetCandidate(ch2.port())); + ch2.CreateConnection(GetCandidate(ch1.port())); + ch1.Stop(); + ch2.Stop(); + + SIMULATED_WAIT(ports_destroyed() > 0, 80, clock); + EXPECT_EQ(0, ports_destroyed()); + + // The ports on both sides should be destroyed after timeout. + EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 30, clock); +} + +// This test case verifies that neither the controlling port nor the controlled +// port will time out after connectivity is lost if they are marked as "keep +// alive until pruned". They will time out after they are pruned. +TEST_F(PortTest, TestPortNotTimeoutUntilPruned) { + rtc::ScopedFakeClock clock; + int timeout_delay = 100; + auto port1 = CreateUdpPort(kLocalAddr1); + ConnectToSignalDestroyed(port1.get()); + port1->set_timeout_delay(timeout_delay); // milliseconds + port1->SetIceRole(cricket::ICEROLE_CONTROLLING); + port1->SetIceTiebreaker(kTiebreaker1); + + auto port2 = CreateUdpPort(kLocalAddr2); + ConnectToSignalDestroyed(port2.get()); + port2->set_timeout_delay(timeout_delay); // milliseconds + port2->SetIceRole(cricket::ICEROLE_CONTROLLED); + port2->SetIceTiebreaker(kTiebreaker2); + // The connection must not be destroyed before a connection is attempted. + EXPECT_EQ(0, ports_destroyed()); + + port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT); + + // Set up channels and keep the port alive. + TestChannel ch1(std::move(port1)); + TestChannel ch2(std::move(port2)); + // Simulate a connection that succeeds, and then is destroyed. But ports + // are kept alive. Ports won't be destroyed. + StartConnectAndStopChannels(&ch1, &ch2); + ch1.port()->KeepAliveUntilPruned(); + ch2.port()->KeepAliveUntilPruned(); + SIMULATED_WAIT(ports_destroyed() > 0, 150, clock); + EXPECT_EQ(0, ports_destroyed()); + + // If they are pruned now, they will be destroyed right away. + ch1.port()->Prune(); + ch2.port()->Prune(); + // The ports on both sides should be destroyed after timeout. + EXPECT_TRUE_SIMULATED_WAIT(ports_destroyed() == 2, 1, clock); +} + +TEST_F(PortTest, TestSupportsProtocol) { + auto udp_port = CreateUdpPort(kLocalAddr1); + EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); + EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); + + auto stun_port = CreateStunPort(kLocalAddr1, nat_socket_factory1()); + EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME)); + EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME)); + + auto tcp_port = CreateTcpPort(kLocalAddr1); + EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME)); + EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME)); + EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME)); + + auto turn_port = + CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP); + EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME)); + EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME)); +} + +// Test that SetIceParameters updates the component, ufrag and password +// on both the port itself and its candidates. +TEST_F(PortTest, TestSetIceParameters) { + auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1"); + port->SetIceTiebreaker(kTiebreakerDefault); + port->PrepareAddress(); + EXPECT_EQ(1UL, port->Candidates().size()); + port->SetIceParameters(1, "ufrag2", "password2"); + EXPECT_EQ(1, port->component()); + EXPECT_EQ("ufrag2", port->username_fragment()); + EXPECT_EQ("password2", port->password()); + const Candidate& candidate = port->Candidates()[0]; + EXPECT_EQ(1, candidate.component()); + EXPECT_EQ("ufrag2", candidate.username()); + EXPECT_EQ("password2", candidate.password()); +} + +TEST_F(PortTest, TestAddConnectionWithSameAddress) { + auto port = CreateTestPort(kLocalAddr1, "ufrag1", "password1"); + port->SetIceTiebreaker(kTiebreakerDefault); + port->PrepareAddress(); + EXPECT_EQ(1u, port->Candidates().size()); + rtc::SocketAddress address("1.1.1.1", 5000); + cricket::Candidate candidate(1, "udp", address, 0, "", "", "relay", 0, ""); + cricket::Connection* conn1 = + port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); + cricket::Connection* conn_in_use = port->GetConnection(address); + EXPECT_EQ(conn1, conn_in_use); + EXPECT_EQ(0u, conn_in_use->remote_candidate().generation()); + + // Creating with a candidate with the same address again will get us a + // different connection with the new candidate. + candidate.set_generation(2); + cricket::Connection* conn2 = + port->CreateConnection(candidate, Port::ORIGIN_MESSAGE); + EXPECT_NE(conn1, conn2); + conn_in_use = port->GetConnection(address); + EXPECT_EQ(conn2, conn_in_use); + EXPECT_EQ(2u, conn_in_use->remote_candidate().generation()); + + // Make sure the new connection was not deleted. + rtc::Thread::Current()->ProcessMessages(300); + EXPECT_TRUE(port->GetConnection(address) != nullptr); +} + +// TODO(webrtc:11463) : Move Connection tests into separate unit test +// splitting out shared test code as needed. + +class ConnectionTest : public PortTest { + public: + ConnectionTest() { + lport_ = CreateTestPort(kLocalAddr1, "lfrag", "lpass"); + rport_ = CreateTestPort(kLocalAddr2, "rfrag", "rpass"); + lport_->SetIceRole(cricket::ICEROLE_CONTROLLING); + lport_->SetIceTiebreaker(kTiebreaker1); + rport_->SetIceRole(cricket::ICEROLE_CONTROLLED); + rport_->SetIceTiebreaker(kTiebreaker2); + + lport_->PrepareAddress(); + rport_->PrepareAddress(); + } + + rtc::ScopedFakeClock clock_; + int num_state_changes_ = 0; + + Connection* CreateConnection(IceRole role) { + Connection* conn; + if (role == cricket::ICEROLE_CONTROLLING) { + conn = lport_->CreateConnection(rport_->Candidates()[0], + Port::ORIGIN_MESSAGE); + } else { + conn = rport_->CreateConnection(lport_->Candidates()[0], + Port::ORIGIN_MESSAGE); + } + conn->SignalStateChange.connect(this, + &ConnectionTest::OnConnectionStateChange); + return conn; + } + + void SendPingAndCaptureReply(Connection* lconn, + Connection* rconn, + int64_t ms, + rtc::BufferT<uint8_t>* reply) { + TestPort* lport = + lconn->PortForTest() == lport_.get() ? lport_.get() : rport_.get(); + TestPort* rport = + rconn->PortForTest() == rport_.get() ? rport_.get() : lport_.get(); + lconn->Ping(rtc::TimeMillis()); + ASSERT_TRUE_WAIT(lport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(lport->last_stun_buf()); + rconn->OnReadPacket(lport->last_stun_buf()->data<char>(), + lport->last_stun_buf()->size(), + /* packet_time_us */ -1); + clock_.AdvanceTime(webrtc::TimeDelta::Millis(ms)); + ASSERT_TRUE_WAIT(rport->last_stun_msg(), kDefaultTimeout); + ASSERT_TRUE(rport->last_stun_buf()); + *reply = std::move(*rport->last_stun_buf()); + } + + void SendPingAndReceiveResponse(Connection* lconn, + Connection* rconn, + int64_t ms) { + rtc::BufferT<uint8_t> reply; + SendPingAndCaptureReply(lconn, rconn, ms, &reply); + lconn->OnReadPacket(reply.data<char>(), reply.size(), + /* packet_time_us */ -1); + } + + void OnConnectionStateChange(Connection* connection) { num_state_changes_++; } + + private: + std::unique_ptr<TestPort> lport_; + std::unique_ptr<TestPort> rport_; +}; + +TEST_F(ConnectionTest, ConnectionForgetLearnedState) { + Connection* lconn = CreateConnection(ICEROLE_CONTROLLING); + Connection* rconn = CreateConnection(ICEROLE_CONTROLLED); + + EXPECT_FALSE(lconn->writable()); + EXPECT_FALSE(lconn->receiving()); + EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage())); + EXPECT_EQ(lconn->GetRttEstimate().GetVariance(), + std::numeric_limits<double>::infinity()); + + SendPingAndReceiveResponse(lconn, rconn, 10); + + EXPECT_TRUE(lconn->writable()); + EXPECT_TRUE(lconn->receiving()); + EXPECT_EQ(lconn->GetRttEstimate().GetAverage(), 10); + EXPECT_EQ(lconn->GetRttEstimate().GetVariance(), + std::numeric_limits<double>::infinity()); + + SendPingAndReceiveResponse(lconn, rconn, 11); + + EXPECT_TRUE(lconn->writable()); + EXPECT_TRUE(lconn->receiving()); + EXPECT_NEAR(lconn->GetRttEstimate().GetAverage(), 10, 0.5); + EXPECT_LT(lconn->GetRttEstimate().GetVariance(), + std::numeric_limits<double>::infinity()); + + lconn->ForgetLearnedState(); + + EXPECT_FALSE(lconn->writable()); + EXPECT_FALSE(lconn->receiving()); + EXPECT_TRUE(std::isnan(lconn->GetRttEstimate().GetAverage())); + EXPECT_EQ(lconn->GetRttEstimate().GetVariance(), + std::numeric_limits<double>::infinity()); +} + +TEST_F(ConnectionTest, ConnectionForgetLearnedStateDiscardsPendingPings) { + Connection* lconn = CreateConnection(ICEROLE_CONTROLLING); + Connection* rconn = CreateConnection(ICEROLE_CONTROLLED); + + SendPingAndReceiveResponse(lconn, rconn, 10); + + EXPECT_TRUE(lconn->writable()); + EXPECT_TRUE(lconn->receiving()); + + rtc::BufferT<uint8_t> reply; + SendPingAndCaptureReply(lconn, rconn, 10, &reply); + + lconn->ForgetLearnedState(); + + EXPECT_FALSE(lconn->writable()); + EXPECT_FALSE(lconn->receiving()); + + lconn->OnReadPacket(reply.data<char>(), reply.size(), + /* packet_time_us */ -1); + + // That reply was discarded due to the ForgetLearnedState() while it was + // outstanding. + EXPECT_FALSE(lconn->writable()); + EXPECT_FALSE(lconn->receiving()); + + // But sending a new ping and getting a reply works. + SendPingAndReceiveResponse(lconn, rconn, 11); + EXPECT_TRUE(lconn->writable()); + EXPECT_TRUE(lconn->receiving()); +} + +TEST_F(ConnectionTest, ConnectionForgetLearnedStateDoesNotTriggerStateChange) { + Connection* lconn = CreateConnection(ICEROLE_CONTROLLING); + Connection* rconn = CreateConnection(ICEROLE_CONTROLLED); + + EXPECT_EQ(num_state_changes_, 0); + SendPingAndReceiveResponse(lconn, rconn, 10); + + EXPECT_TRUE(lconn->writable()); + EXPECT_TRUE(lconn->receiving()); + EXPECT_EQ(num_state_changes_, 2); + + lconn->ForgetLearnedState(); + + EXPECT_FALSE(lconn->writable()); + EXPECT_FALSE(lconn->receiving()); + EXPECT_EQ(num_state_changes_, 2); +} + +} // namespace cricket |