summaryrefslogtreecommitdiffstats
path: root/third_party/rust/base64/src/write
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/base64/src/write')
-rw-r--r--third_party/rust/base64/src/write/encoder.rs407
-rw-r--r--third_party/rust/base64/src/write/encoder_string_writer.rs178
-rw-r--r--third_party/rust/base64/src/write/encoder_tests.rs554
-rw-r--r--third_party/rust/base64/src/write/mod.rs11
4 files changed, 1150 insertions, 0 deletions
diff --git a/third_party/rust/base64/src/write/encoder.rs b/third_party/rust/base64/src/write/encoder.rs
new file mode 100644
index 0000000000..1c19bb42ab
--- /dev/null
+++ b/third_party/rust/base64/src/write/encoder.rs
@@ -0,0 +1,407 @@
+use crate::engine::Engine;
+use std::{
+ cmp, fmt, io,
+ io::{ErrorKind, Result},
+};
+
+pub(crate) const BUF_SIZE: usize = 1024;
+/// The most bytes whose encoding will fit in `BUF_SIZE`
+const MAX_INPUT_LEN: usize = BUF_SIZE / 4 * 3;
+// 3 bytes of input = 4 bytes of base64, always (because we don't allow line wrapping)
+const MIN_ENCODE_CHUNK_SIZE: usize = 3;
+
+/// A `Write` implementation that base64 encodes data before delegating to the wrapped writer.
+///
+/// Because base64 has special handling for the end of the input data (padding, etc), there's a
+/// `finish()` method on this type that encodes any leftover input bytes and adds padding if
+/// appropriate. It's called automatically when deallocated (see the `Drop` implementation), but
+/// any error that occurs when invoking the underlying writer will be suppressed. If you want to
+/// handle such errors, call `finish()` yourself.
+///
+/// # Examples
+///
+/// ```
+/// use std::io::Write;
+/// use base64::engine::general_purpose;
+///
+/// // use a vec as the simplest possible `Write` -- in real code this is probably a file, etc.
+/// let mut enc = base64::write::EncoderWriter::new(Vec::new(), &general_purpose::STANDARD);
+///
+/// // handle errors as you normally would
+/// enc.write_all(b"asdf").unwrap();
+///
+/// // could leave this out to be called by Drop, if you don't care
+/// // about handling errors or getting the delegate writer back
+/// let delegate = enc.finish().unwrap();
+///
+/// // base64 was written to the writer
+/// assert_eq!(b"YXNkZg==", &delegate[..]);
+///
+/// ```
+///
+/// # Panics
+///
+/// Calling `write()` (or related methods) or `finish()` after `finish()` has completed without
+/// error is invalid and will panic.
+///
+/// # Errors
+///
+/// Base64 encoding itself does not generate errors, but errors from the wrapped writer will be
+/// returned as per the contract of `Write`.
+///
+/// # Performance
+///
+/// It has some minor performance loss compared to encoding slices (a couple percent).
+/// It does not do any heap allocation.
+///
+/// # Limitations
+///
+/// Owing to the specification of the `write` and `flush` methods on the `Write` trait and their
+/// implications for a buffering implementation, these methods may not behave as expected. In
+/// particular, calling `write_all` on this interface may fail with `io::ErrorKind::WriteZero`.
+/// See the documentation of the `Write` trait implementation for further details.
+pub struct EncoderWriter<'e, E: Engine, W: io::Write> {
+ engine: &'e E,
+ /// Where encoded data is written to. It's an Option as it's None immediately before Drop is
+ /// called so that finish() can return the underlying writer. None implies that finish() has
+ /// been called successfully.
+ delegate: Option<W>,
+ /// Holds a partial chunk, if any, after the last `write()`, so that we may then fill the chunk
+ /// with the next `write()`, encode it, then proceed with the rest of the input normally.
+ extra_input: [u8; MIN_ENCODE_CHUNK_SIZE],
+ /// How much of `extra` is occupied, in `[0, MIN_ENCODE_CHUNK_SIZE]`.
+ extra_input_occupied_len: usize,
+ /// Buffer to encode into. May hold leftover encoded bytes from a previous write call that the underlying writer
+ /// did not write last time.
+ output: [u8; BUF_SIZE],
+ /// How much of `output` is occupied with encoded data that couldn't be written last time
+ output_occupied_len: usize,
+ /// panic safety: don't write again in destructor if writer panicked while we were writing to it
+ panicked: bool,
+}
+
+impl<'e, E: Engine, W: io::Write> fmt::Debug for EncoderWriter<'e, E, W> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(
+ f,
+ "extra_input: {:?} extra_input_occupied_len:{:?} output[..5]: {:?} output_occupied_len: {:?}",
+ self.extra_input,
+ self.extra_input_occupied_len,
+ &self.output[0..5],
+ self.output_occupied_len
+ )
+ }
+}
+
+impl<'e, E: Engine, W: io::Write> EncoderWriter<'e, E, W> {
+ /// Create a new encoder that will write to the provided delegate writer.
+ pub fn new(delegate: W, engine: &'e E) -> EncoderWriter<'e, E, W> {
+ EncoderWriter {
+ engine,
+ delegate: Some(delegate),
+ extra_input: [0u8; MIN_ENCODE_CHUNK_SIZE],
+ extra_input_occupied_len: 0,
+ output: [0u8; BUF_SIZE],
+ output_occupied_len: 0,
+ panicked: false,
+ }
+ }
+
+ /// Encode all remaining buffered data and write it, including any trailing incomplete input
+ /// triples and associated padding.
+ ///
+ /// Once this succeeds, no further writes or calls to this method are allowed.
+ ///
+ /// This may write to the delegate writer multiple times if the delegate writer does not accept
+ /// all input provided to its `write` each invocation.
+ ///
+ /// If you don't care about error handling, it is not necessary to call this function, as the
+ /// equivalent finalization is done by the Drop impl.
+ ///
+ /// Returns the writer that this was constructed around.
+ ///
+ /// # Errors
+ ///
+ /// The first error that is not of `ErrorKind::Interrupted` will be returned.
+ pub fn finish(&mut self) -> Result<W> {
+ // If we could consume self in finish(), we wouldn't have to worry about this case, but
+ // finish() is retryable in the face of I/O errors, so we can't consume here.
+ if self.delegate.is_none() {
+ panic!("Encoder has already had finish() called");
+ };
+
+ self.write_final_leftovers()?;
+
+ let writer = self.delegate.take().expect("Writer must be present");
+
+ Ok(writer)
+ }
+
+ /// Write any remaining buffered data to the delegate writer.
+ fn write_final_leftovers(&mut self) -> Result<()> {
+ if self.delegate.is_none() {
+ // finish() has already successfully called this, and we are now in drop() with a None
+ // writer, so just no-op
+ return Ok(());
+ }
+
+ self.write_all_encoded_output()?;
+
+ if self.extra_input_occupied_len > 0 {
+ let encoded_len = self
+ .engine
+ .encode_slice(
+ &self.extra_input[..self.extra_input_occupied_len],
+ &mut self.output[..],
+ )
+ .expect("buffer is large enough");
+
+ self.output_occupied_len = encoded_len;
+
+ self.write_all_encoded_output()?;
+
+ // write succeeded, do not write the encoding of extra again if finish() is retried
+ self.extra_input_occupied_len = 0;
+ }
+
+ Ok(())
+ }
+
+ /// Write as much of the encoded output to the delegate writer as it will accept, and store the
+ /// leftovers to be attempted at the next write() call. Updates `self.output_occupied_len`.
+ ///
+ /// # Errors
+ ///
+ /// Errors from the delegate writer are returned. In the case of an error,
+ /// `self.output_occupied_len` will not be updated, as errors from `write` are specified to mean
+ /// that no write took place.
+ fn write_to_delegate(&mut self, current_output_len: usize) -> Result<()> {
+ self.panicked = true;
+ let res = self
+ .delegate
+ .as_mut()
+ .expect("Writer must be present")
+ .write(&self.output[..current_output_len]);
+ self.panicked = false;
+
+ res.map(|consumed| {
+ debug_assert!(consumed <= current_output_len);
+
+ if consumed < current_output_len {
+ self.output_occupied_len = current_output_len.checked_sub(consumed).unwrap();
+ // If we're blocking on I/O, the minor inefficiency of copying bytes to the
+ // start of the buffer is the least of our concerns...
+ // TODO Rotate moves more than we need to; copy_within now stable.
+ self.output.rotate_left(consumed);
+ } else {
+ self.output_occupied_len = 0;
+ }
+ })
+ }
+
+ /// Write all buffered encoded output. If this returns `Ok`, `self.output_occupied_len` is `0`.
+ ///
+ /// This is basically write_all for the remaining buffered data but without the undesirable
+ /// abort-on-`Ok(0)` behavior.
+ ///
+ /// # Errors
+ ///
+ /// Any error emitted by the delegate writer abort the write loop and is returned, unless it's
+ /// `Interrupted`, in which case the error is ignored and writes will continue.
+ fn write_all_encoded_output(&mut self) -> Result<()> {
+ while self.output_occupied_len > 0 {
+ let remaining_len = self.output_occupied_len;
+ match self.write_to_delegate(remaining_len) {
+ // try again on interrupts ala write_all
+ Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
+ // other errors return
+ Err(e) => return Err(e),
+ // success no-ops because remaining length is already updated
+ Ok(_) => {}
+ };
+ }
+
+ debug_assert_eq!(0, self.output_occupied_len);
+ Ok(())
+ }
+
+ /// Unwraps this `EncoderWriter`, returning the base writer it writes base64 encoded output
+ /// to.
+ ///
+ /// Normally this method should not be needed, since `finish()` returns the inner writer if
+ /// it completes successfully. That will also ensure all data has been flushed, which the
+ /// `into_inner()` function does *not* do.
+ ///
+ /// Calling this method after `finish()` has completed successfully will panic, since the
+ /// writer has already been returned.
+ ///
+ /// This method may be useful if the writer implements additional APIs beyond the `Write`
+ /// trait. Note that the inner writer might be in an error state or have an incomplete
+ /// base64 string written to it.
+ pub fn into_inner(mut self) -> W {
+ self.delegate
+ .take()
+ .expect("Encoder has already had finish() called")
+ }
+}
+
+impl<'e, E: Engine, W: io::Write> io::Write for EncoderWriter<'e, E, W> {
+ /// Encode input and then write to the delegate writer.
+ ///
+ /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
+ /// of `input` consumed. The value may be `0`, which interacts poorly with `write_all`, which
+ /// interprets `Ok(0)` as an error, despite it being allowed by the contract of `write`. See
+ /// <https://github.com/rust-lang/rust/issues/56889> for more on that.
+ ///
+ /// If the previous call to `write` provided more (encoded) data than the delegate writer could
+ /// accept in a single call to its `write`, the remaining data is buffered. As long as buffered
+ /// data is present, subsequent calls to `write` will try to write the remaining buffered data
+ /// to the delegate and return either `Ok(0)` -- and therefore not consume any of `input` -- or
+ /// an error.
+ ///
+ /// # Errors
+ ///
+ /// Any errors emitted by the delegate writer are returned.
+ fn write(&mut self, input: &[u8]) -> Result<usize> {
+ if self.delegate.is_none() {
+ panic!("Cannot write more after calling finish()");
+ }
+
+ if input.is_empty() {
+ return Ok(0);
+ }
+
+ // The contract of `Write::write` places some constraints on this implementation:
+ // - a call to `write()` represents at most one call to a wrapped `Write`, so we can't
+ // iterate over the input and encode multiple chunks.
+ // - Errors mean that "no bytes were written to this writer", so we need to reset the
+ // internal state to what it was before the error occurred
+
+ // before reading any input, write any leftover encoded output from last time
+ if self.output_occupied_len > 0 {
+ let current_len = self.output_occupied_len;
+ return self
+ .write_to_delegate(current_len)
+ // did not read any input
+ .map(|_| 0);
+ }
+
+ debug_assert_eq!(0, self.output_occupied_len);
+
+ // how many bytes, if any, were read into `extra` to create a triple to encode
+ let mut extra_input_read_len = 0;
+ let mut input = input;
+
+ let orig_extra_len = self.extra_input_occupied_len;
+
+ let mut encoded_size = 0;
+ // always a multiple of MIN_ENCODE_CHUNK_SIZE
+ let mut max_input_len = MAX_INPUT_LEN;
+
+ // process leftover un-encoded input from last write
+ if self.extra_input_occupied_len > 0 {
+ debug_assert!(self.extra_input_occupied_len < 3);
+ if input.len() + self.extra_input_occupied_len >= MIN_ENCODE_CHUNK_SIZE {
+ // Fill up `extra`, encode that into `output`, and consume as much of the rest of
+ // `input` as possible.
+ // We could write just the encoding of `extra` by itself but then we'd have to
+ // return after writing only 4 bytes, which is inefficient if the underlying writer
+ // would make a syscall.
+ extra_input_read_len = MIN_ENCODE_CHUNK_SIZE - self.extra_input_occupied_len;
+ debug_assert!(extra_input_read_len > 0);
+ // overwrite only bytes that weren't already used. If we need to rollback extra_len
+ // (when the subsequent write errors), the old leading bytes will still be there.
+ self.extra_input[self.extra_input_occupied_len..MIN_ENCODE_CHUNK_SIZE]
+ .copy_from_slice(&input[0..extra_input_read_len]);
+
+ let len = self.engine.internal_encode(
+ &self.extra_input[0..MIN_ENCODE_CHUNK_SIZE],
+ &mut self.output[..],
+ );
+ debug_assert_eq!(4, len);
+
+ input = &input[extra_input_read_len..];
+
+ // consider extra to be used up, since we encoded it
+ self.extra_input_occupied_len = 0;
+ // don't clobber where we just encoded to
+ encoded_size = 4;
+ // and don't read more than can be encoded
+ max_input_len = MAX_INPUT_LEN - MIN_ENCODE_CHUNK_SIZE;
+
+ // fall through to normal encoding
+ } else {
+ // `extra` and `input` are non empty, but `|extra| + |input| < 3`, so there must be
+ // 1 byte in each.
+ debug_assert_eq!(1, input.len());
+ debug_assert_eq!(1, self.extra_input_occupied_len);
+
+ self.extra_input[self.extra_input_occupied_len] = input[0];
+ self.extra_input_occupied_len += 1;
+ return Ok(1);
+ };
+ } else if input.len() < MIN_ENCODE_CHUNK_SIZE {
+ // `extra` is empty, and `input` fits inside it
+ self.extra_input[0..input.len()].copy_from_slice(input);
+ self.extra_input_occupied_len = input.len();
+ return Ok(input.len());
+ };
+
+ // either 0 or 1 complete chunks encoded from extra
+ debug_assert!(encoded_size == 0 || encoded_size == 4);
+ debug_assert!(
+ // didn't encode extra input
+ MAX_INPUT_LEN == max_input_len
+ // encoded one triple
+ || MAX_INPUT_LEN == max_input_len + MIN_ENCODE_CHUNK_SIZE
+ );
+
+ // encode complete triples only
+ let input_complete_chunks_len = input.len() - (input.len() % MIN_ENCODE_CHUNK_SIZE);
+ let input_chunks_to_encode_len = cmp::min(input_complete_chunks_len, max_input_len);
+ debug_assert_eq!(0, max_input_len % MIN_ENCODE_CHUNK_SIZE);
+ debug_assert_eq!(0, input_chunks_to_encode_len % MIN_ENCODE_CHUNK_SIZE);
+
+ encoded_size += self.engine.internal_encode(
+ &input[..(input_chunks_to_encode_len)],
+ &mut self.output[encoded_size..],
+ );
+
+ // not updating `self.output_occupied_len` here because if the below write fails, it should
+ // "never take place" -- the buffer contents we encoded are ignored and perhaps retried
+ // later, if the consumer chooses.
+
+ self.write_to_delegate(encoded_size)
+ // no matter whether we wrote the full encoded buffer or not, we consumed the same
+ // input
+ .map(|_| extra_input_read_len + input_chunks_to_encode_len)
+ .map_err(|e| {
+ // in case we filled and encoded `extra`, reset extra_len
+ self.extra_input_occupied_len = orig_extra_len;
+
+ e
+ })
+ }
+
+ /// Because this is usually treated as OK to call multiple times, it will *not* flush any
+ /// incomplete chunks of input or write padding.
+ /// # Errors
+ ///
+ /// The first error that is not of [`ErrorKind::Interrupted`] will be returned.
+ fn flush(&mut self) -> Result<()> {
+ self.write_all_encoded_output()?;
+ self.delegate
+ .as_mut()
+ .expect("Writer must be present")
+ .flush()
+ }
+}
+
+impl<'e, E: Engine, W: io::Write> Drop for EncoderWriter<'e, E, W> {
+ fn drop(&mut self) {
+ if !self.panicked {
+ // like `BufWriter`, ignore errors during drop
+ let _ = self.write_final_leftovers();
+ }
+ }
+}
diff --git a/third_party/rust/base64/src/write/encoder_string_writer.rs b/third_party/rust/base64/src/write/encoder_string_writer.rs
new file mode 100644
index 0000000000..9394dc9bf7
--- /dev/null
+++ b/third_party/rust/base64/src/write/encoder_string_writer.rs
@@ -0,0 +1,178 @@
+use super::encoder::EncoderWriter;
+use crate::engine::Engine;
+use std::io;
+
+/// A `Write` implementation that base64-encodes data using the provided config and accumulates the
+/// resulting base64 utf8 `&str` in a [StrConsumer] implementation (typically `String`), which is
+/// then exposed via `into_inner()`.
+///
+/// # Examples
+///
+/// Buffer base64 in a new String:
+///
+/// ```
+/// use std::io::Write;
+/// use base64::engine::general_purpose;
+///
+/// let mut enc = base64::write::EncoderStringWriter::new(&general_purpose::STANDARD);
+///
+/// enc.write_all(b"asdf").unwrap();
+///
+/// // get the resulting String
+/// let b64_string = enc.into_inner();
+///
+/// assert_eq!("YXNkZg==", &b64_string);
+/// ```
+///
+/// Or, append to an existing `String`, which implements `StrConsumer`:
+///
+/// ```
+/// use std::io::Write;
+/// use base64::engine::general_purpose;
+///
+/// let mut buf = String::from("base64: ");
+///
+/// let mut enc = base64::write::EncoderStringWriter::from_consumer(
+/// &mut buf,
+/// &general_purpose::STANDARD);
+///
+/// enc.write_all(b"asdf").unwrap();
+///
+/// // release the &mut reference on buf
+/// let _ = enc.into_inner();
+///
+/// assert_eq!("base64: YXNkZg==", &buf);
+/// ```
+///
+/// # Panics
+///
+/// Calling `write()` (or related methods) or `finish()` after `finish()` has completed without
+/// error is invalid and will panic.
+///
+/// # Performance
+///
+/// Because it has to validate that the base64 is UTF-8, it is about 80% as fast as writing plain
+/// bytes to a `io::Write`.
+pub struct EncoderStringWriter<'e, E: Engine, S: StrConsumer> {
+ encoder: EncoderWriter<'e, E, Utf8SingleCodeUnitWriter<S>>,
+}
+
+impl<'e, E: Engine, S: StrConsumer> EncoderStringWriter<'e, E, S> {
+ /// Create a EncoderStringWriter that will append to the provided `StrConsumer`.
+ pub fn from_consumer(str_consumer: S, engine: &'e E) -> Self {
+ EncoderStringWriter {
+ encoder: EncoderWriter::new(Utf8SingleCodeUnitWriter { str_consumer }, engine),
+ }
+ }
+
+ /// Encode all remaining buffered data, including any trailing incomplete input triples and
+ /// associated padding.
+ ///
+ /// Returns the base64-encoded form of the accumulated written data.
+ pub fn into_inner(mut self) -> S {
+ self.encoder
+ .finish()
+ .expect("Writing to a consumer should never fail")
+ .str_consumer
+ }
+}
+
+impl<'e, E: Engine> EncoderStringWriter<'e, E, String> {
+ /// Create a EncoderStringWriter that will encode into a new `String` with the provided config.
+ pub fn new(engine: &'e E) -> Self {
+ EncoderStringWriter::from_consumer(String::new(), engine)
+ }
+}
+
+impl<'e, E: Engine, S: StrConsumer> io::Write for EncoderStringWriter<'e, E, S> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ self.encoder.write(buf)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ self.encoder.flush()
+ }
+}
+
+/// An abstraction around consuming `str`s produced by base64 encoding.
+pub trait StrConsumer {
+ /// Consume the base64 encoded data in `buf`
+ fn consume(&mut self, buf: &str);
+}
+
+/// As for io::Write, `StrConsumer` is implemented automatically for `&mut S`.
+impl<S: StrConsumer + ?Sized> StrConsumer for &mut S {
+ fn consume(&mut self, buf: &str) {
+ (**self).consume(buf);
+ }
+}
+
+/// Pushes the str onto the end of the String
+impl StrConsumer for String {
+ fn consume(&mut self, buf: &str) {
+ self.push_str(buf);
+ }
+}
+
+/// A `Write` that only can handle bytes that are valid single-byte UTF-8 code units.
+///
+/// This is safe because we only use it when writing base64, which is always valid UTF-8.
+struct Utf8SingleCodeUnitWriter<S: StrConsumer> {
+ str_consumer: S,
+}
+
+impl<S: StrConsumer> io::Write for Utf8SingleCodeUnitWriter<S> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ // Because we expect all input to be valid utf-8 individual bytes, we can encode any buffer
+ // length
+ let s = std::str::from_utf8(buf).expect("Input must be valid UTF-8");
+
+ self.str_consumer.consume(s);
+
+ Ok(buf.len())
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ // no op
+ Ok(())
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::{
+ engine::Engine, tests::random_engine, write::encoder_string_writer::EncoderStringWriter,
+ };
+ use rand::Rng;
+ use std::io::Write;
+
+ #[test]
+ fn every_possible_split_of_input() {
+ let mut rng = rand::thread_rng();
+ let mut orig_data = Vec::<u8>::new();
+ let mut normal_encoded = String::new();
+
+ let size = 5_000;
+
+ for i in 0..size {
+ orig_data.clear();
+ normal_encoded.clear();
+
+ for _ in 0..size {
+ orig_data.push(rng.gen());
+ }
+
+ let engine = random_engine(&mut rng);
+ engine.encode_string(&orig_data, &mut normal_encoded);
+
+ let mut stream_encoder = EncoderStringWriter::new(&engine);
+ // Write the first i bytes, then the rest
+ stream_encoder.write_all(&orig_data[0..i]).unwrap();
+ stream_encoder.write_all(&orig_data[i..]).unwrap();
+
+ let stream_encoded = stream_encoder.into_inner();
+
+ assert_eq!(normal_encoded, stream_encoded);
+ }
+ }
+}
diff --git a/third_party/rust/base64/src/write/encoder_tests.rs b/third_party/rust/base64/src/write/encoder_tests.rs
new file mode 100644
index 0000000000..ce76d631e5
--- /dev/null
+++ b/third_party/rust/base64/src/write/encoder_tests.rs
@@ -0,0 +1,554 @@
+use std::io::{Cursor, Write};
+use std::{cmp, io, str};
+
+use rand::Rng;
+
+use crate::{
+ alphabet::{STANDARD, URL_SAFE},
+ engine::{
+ general_purpose::{GeneralPurpose, NO_PAD, PAD},
+ Engine,
+ },
+ tests::random_engine,
+};
+
+use super::EncoderWriter;
+
+const URL_SAFE_ENGINE: GeneralPurpose = GeneralPurpose::new(&URL_SAFE, PAD);
+const NO_PAD_ENGINE: GeneralPurpose = GeneralPurpose::new(&STANDARD, NO_PAD);
+
+#[test]
+fn encode_three_bytes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ let sz = enc.write(b"abc").unwrap();
+ assert_eq!(sz, 3);
+ }
+ assert_eq!(&c.get_ref()[..], URL_SAFE_ENGINE.encode("abc").as_bytes());
+}
+
+#[test]
+fn encode_nine_bytes_two_writes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ let sz = enc.write(b"abcdef").unwrap();
+ assert_eq!(sz, 6);
+ let sz = enc.write(b"ghi").unwrap();
+ assert_eq!(sz, 3);
+ }
+ assert_eq!(
+ &c.get_ref()[..],
+ URL_SAFE_ENGINE.encode("abcdefghi").as_bytes()
+ );
+}
+
+#[test]
+fn encode_one_then_two_bytes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ let sz = enc.write(b"a").unwrap();
+ assert_eq!(sz, 1);
+ let sz = enc.write(b"bc").unwrap();
+ assert_eq!(sz, 2);
+ }
+ assert_eq!(&c.get_ref()[..], URL_SAFE_ENGINE.encode("abc").as_bytes());
+}
+
+#[test]
+fn encode_one_then_five_bytes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ let sz = enc.write(b"a").unwrap();
+ assert_eq!(sz, 1);
+ let sz = enc.write(b"bcdef").unwrap();
+ assert_eq!(sz, 5);
+ }
+ assert_eq!(
+ &c.get_ref()[..],
+ URL_SAFE_ENGINE.encode("abcdef").as_bytes()
+ );
+}
+
+#[test]
+fn encode_1_2_3_bytes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ let sz = enc.write(b"a").unwrap();
+ assert_eq!(sz, 1);
+ let sz = enc.write(b"bc").unwrap();
+ assert_eq!(sz, 2);
+ let sz = enc.write(b"def").unwrap();
+ assert_eq!(sz, 3);
+ }
+ assert_eq!(
+ &c.get_ref()[..],
+ URL_SAFE_ENGINE.encode("abcdef").as_bytes()
+ );
+}
+
+#[test]
+fn encode_with_padding() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ enc.write_all(b"abcd").unwrap();
+
+ enc.flush().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], URL_SAFE_ENGINE.encode("abcd").as_bytes());
+}
+
+#[test]
+fn encode_with_padding_multiple_writes() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ assert_eq!(1, enc.write(b"a").unwrap());
+ assert_eq!(2, enc.write(b"bc").unwrap());
+ assert_eq!(3, enc.write(b"def").unwrap());
+ assert_eq!(1, enc.write(b"g").unwrap());
+
+ enc.flush().unwrap();
+ }
+ assert_eq!(
+ &c.get_ref()[..],
+ URL_SAFE_ENGINE.encode("abcdefg").as_bytes()
+ );
+}
+
+#[test]
+fn finish_writes_extra_byte() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &URL_SAFE_ENGINE);
+
+ assert_eq!(6, enc.write(b"abcdef").unwrap());
+
+ // will be in extra
+ assert_eq!(1, enc.write(b"g").unwrap());
+
+ // 1 trailing byte = 2 encoded chars
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(
+ &c.get_ref()[..],
+ URL_SAFE_ENGINE.encode("abcdefg").as_bytes()
+ );
+}
+
+#[test]
+fn write_partial_chunk_encodes_partial_chunk() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ // nothing encoded yet
+ assert_eq!(2, enc.write(b"ab").unwrap());
+ // encoded here
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("ab").as_bytes());
+ assert_eq!(3, c.get_ref().len());
+}
+
+#[test]
+fn write_1_chunk_encodes_complete_chunk() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ assert_eq!(3, enc.write(b"abc").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abc").as_bytes());
+ assert_eq!(4, c.get_ref().len());
+}
+
+#[test]
+fn write_1_chunk_and_partial_encodes_only_complete_chunk() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ // "d" not consumed since it's not a full chunk
+ assert_eq!(3, enc.write(b"abcd").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abc").as_bytes());
+ assert_eq!(4, c.get_ref().len());
+}
+
+#[test]
+fn write_2_partials_to_exactly_complete_chunk_encodes_complete_chunk() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ assert_eq!(1, enc.write(b"a").unwrap());
+ assert_eq!(2, enc.write(b"bc").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abc").as_bytes());
+ assert_eq!(4, c.get_ref().len());
+}
+
+#[test]
+fn write_partial_then_enough_to_complete_chunk_but_not_complete_another_chunk_encodes_complete_chunk_without_consuming_remaining(
+) {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ assert_eq!(1, enc.write(b"a").unwrap());
+ // doesn't consume "d"
+ assert_eq!(2, enc.write(b"bcd").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abc").as_bytes());
+ assert_eq!(4, c.get_ref().len());
+}
+
+#[test]
+fn write_partial_then_enough_to_complete_chunk_and_another_chunk_encodes_complete_chunks() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ assert_eq!(1, enc.write(b"a").unwrap());
+ // completes partial chunk, and another chunk
+ assert_eq!(5, enc.write(b"bcdef").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abcdef").as_bytes());
+ assert_eq!(8, c.get_ref().len());
+}
+
+#[test]
+fn write_partial_then_enough_to_complete_chunk_and_another_chunk_and_another_partial_chunk_encodes_only_complete_chunks(
+) {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+
+ assert_eq!(1, enc.write(b"a").unwrap());
+ // completes partial chunk, and another chunk, with one more partial chunk that's not
+ // consumed
+ assert_eq!(5, enc.write(b"bcdefe").unwrap());
+ let _ = enc.finish().unwrap();
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("abcdef").as_bytes());
+ assert_eq!(8, c.get_ref().len());
+}
+
+#[test]
+fn drop_calls_finish_for_you() {
+ let mut c = Cursor::new(Vec::new());
+ {
+ let mut enc = EncoderWriter::new(&mut c, &NO_PAD_ENGINE);
+ assert_eq!(1, enc.write(b"a").unwrap());
+ }
+ assert_eq!(&c.get_ref()[..], NO_PAD_ENGINE.encode("a").as_bytes());
+ assert_eq!(2, c.get_ref().len());
+}
+
+#[test]
+fn every_possible_split_of_input() {
+ let mut rng = rand::thread_rng();
+ let mut orig_data = Vec::<u8>::new();
+ let mut stream_encoded = Vec::<u8>::new();
+ let mut normal_encoded = String::new();
+
+ let size = 5_000;
+
+ for i in 0..size {
+ orig_data.clear();
+ stream_encoded.clear();
+ normal_encoded.clear();
+
+ for _ in 0..size {
+ orig_data.push(rng.gen());
+ }
+
+ let engine = random_engine(&mut rng);
+ engine.encode_string(&orig_data, &mut normal_encoded);
+
+ {
+ let mut stream_encoder = EncoderWriter::new(&mut stream_encoded, &engine);
+ // Write the first i bytes, then the rest
+ stream_encoder.write_all(&orig_data[0..i]).unwrap();
+ stream_encoder.write_all(&orig_data[i..]).unwrap();
+ }
+
+ assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap());
+ }
+}
+
+#[test]
+fn encode_random_config_matches_normal_encode_reasonable_input_len() {
+ // choose up to 2 * buf size, so ~half the time it'll use a full buffer
+ do_encode_random_config_matches_normal_encode(super::encoder::BUF_SIZE * 2);
+}
+
+#[test]
+fn encode_random_config_matches_normal_encode_tiny_input_len() {
+ do_encode_random_config_matches_normal_encode(10);
+}
+
+#[test]
+fn retrying_writes_that_error_with_interrupted_works() {
+ let mut rng = rand::thread_rng();
+ let mut orig_data = Vec::<u8>::new();
+ let mut stream_encoded = Vec::<u8>::new();
+ let mut normal_encoded = String::new();
+
+ for _ in 0..1_000 {
+ orig_data.clear();
+ stream_encoded.clear();
+ normal_encoded.clear();
+
+ let orig_len: usize = rng.gen_range(100..20_000);
+ for _ in 0..orig_len {
+ orig_data.push(rng.gen());
+ }
+
+ // encode the normal way
+ let engine = random_engine(&mut rng);
+ engine.encode_string(&orig_data, &mut normal_encoded);
+
+ // encode via the stream encoder
+ {
+ let mut interrupt_rng = rand::thread_rng();
+ let mut interrupting_writer = InterruptingWriter {
+ w: &mut stream_encoded,
+ rng: &mut interrupt_rng,
+ fraction: 0.8,
+ };
+
+ let mut stream_encoder = EncoderWriter::new(&mut interrupting_writer, &engine);
+ let mut bytes_consumed = 0;
+ while bytes_consumed < orig_len {
+ // use short inputs since we want to use `extra` a lot as that's what needs rollback
+ // when errors occur
+ let input_len: usize = cmp::min(rng.gen_range(0..10), orig_len - bytes_consumed);
+
+ retry_interrupted_write_all(
+ &mut stream_encoder,
+ &orig_data[bytes_consumed..bytes_consumed + input_len],
+ )
+ .unwrap();
+
+ bytes_consumed += input_len;
+ }
+
+ loop {
+ let res = stream_encoder.finish();
+ match res {
+ Ok(_) => break,
+ Err(e) => match e.kind() {
+ io::ErrorKind::Interrupted => continue,
+ _ => Err(e).unwrap(), // bail
+ },
+ }
+ }
+
+ assert_eq!(orig_len, bytes_consumed);
+ }
+
+ assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap());
+ }
+}
+
+#[test]
+fn writes_that_only_write_part_of_input_and_sometimes_interrupt_produce_correct_encoded_data() {
+ let mut rng = rand::thread_rng();
+ let mut orig_data = Vec::<u8>::new();
+ let mut stream_encoded = Vec::<u8>::new();
+ let mut normal_encoded = String::new();
+
+ for _ in 0..1_000 {
+ orig_data.clear();
+ stream_encoded.clear();
+ normal_encoded.clear();
+
+ let orig_len: usize = rng.gen_range(100..20_000);
+ for _ in 0..orig_len {
+ orig_data.push(rng.gen());
+ }
+
+ // encode the normal way
+ let engine = random_engine(&mut rng);
+ engine.encode_string(&orig_data, &mut normal_encoded);
+
+ // encode via the stream encoder
+ {
+ let mut partial_rng = rand::thread_rng();
+ let mut partial_writer = PartialInterruptingWriter {
+ w: &mut stream_encoded,
+ rng: &mut partial_rng,
+ full_input_fraction: 0.1,
+ no_interrupt_fraction: 0.1,
+ };
+
+ let mut stream_encoder = EncoderWriter::new(&mut partial_writer, &engine);
+ let mut bytes_consumed = 0;
+ while bytes_consumed < orig_len {
+ // use at most medium-length inputs to exercise retry logic more aggressively
+ let input_len: usize = cmp::min(rng.gen_range(0..100), orig_len - bytes_consumed);
+
+ let res =
+ stream_encoder.write(&orig_data[bytes_consumed..bytes_consumed + input_len]);
+
+ // retry on interrupt
+ match res {
+ Ok(len) => bytes_consumed += len,
+ Err(e) => match e.kind() {
+ io::ErrorKind::Interrupted => continue,
+ _ => {
+ panic!("should not see other errors");
+ }
+ },
+ }
+ }
+
+ let _ = stream_encoder.finish().unwrap();
+
+ assert_eq!(orig_len, bytes_consumed);
+ }
+
+ assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap());
+ }
+}
+
+/// Retry writes until all the data is written or an error that isn't Interrupted is returned.
+fn retry_interrupted_write_all<W: Write>(w: &mut W, buf: &[u8]) -> io::Result<()> {
+ let mut bytes_consumed = 0;
+
+ while bytes_consumed < buf.len() {
+ let res = w.write(&buf[bytes_consumed..]);
+
+ match res {
+ Ok(len) => bytes_consumed += len,
+ Err(e) => match e.kind() {
+ io::ErrorKind::Interrupted => continue,
+ _ => return Err(e),
+ },
+ }
+ }
+
+ Ok(())
+}
+
+fn do_encode_random_config_matches_normal_encode(max_input_len: usize) {
+ let mut rng = rand::thread_rng();
+ let mut orig_data = Vec::<u8>::new();
+ let mut stream_encoded = Vec::<u8>::new();
+ let mut normal_encoded = String::new();
+
+ for _ in 0..1_000 {
+ orig_data.clear();
+ stream_encoded.clear();
+ normal_encoded.clear();
+
+ let orig_len: usize = rng.gen_range(100..20_000);
+ for _ in 0..orig_len {
+ orig_data.push(rng.gen());
+ }
+
+ // encode the normal way
+ let engine = random_engine(&mut rng);
+ engine.encode_string(&orig_data, &mut normal_encoded);
+
+ // encode via the stream encoder
+ {
+ let mut stream_encoder = EncoderWriter::new(&mut stream_encoded, &engine);
+ let mut bytes_consumed = 0;
+ while bytes_consumed < orig_len {
+ let input_len: usize =
+ cmp::min(rng.gen_range(0..max_input_len), orig_len - bytes_consumed);
+
+ // write a little bit of the data
+ stream_encoder
+ .write_all(&orig_data[bytes_consumed..bytes_consumed + input_len])
+ .unwrap();
+
+ bytes_consumed += input_len;
+ }
+
+ let _ = stream_encoder.finish().unwrap();
+
+ assert_eq!(orig_len, bytes_consumed);
+ }
+
+ assert_eq!(normal_encoded, str::from_utf8(&stream_encoded).unwrap());
+ }
+}
+
+/// A `Write` implementation that returns Interrupted some fraction of the time, randomly.
+struct InterruptingWriter<'a, W: 'a + Write, R: 'a + Rng> {
+ w: &'a mut W,
+ rng: &'a mut R,
+ /// In [0, 1]. If a random number in [0, 1] is `<= threshold`, `Write` methods will return
+ /// an `Interrupted` error
+ fraction: f64,
+}
+
+impl<'a, W: Write, R: Rng> Write for InterruptingWriter<'a, W, R> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ if self.rng.gen_range(0.0..1.0) <= self.fraction {
+ return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted"));
+ }
+
+ self.w.write(buf)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ if self.rng.gen_range(0.0..1.0) <= self.fraction {
+ return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted"));
+ }
+
+ self.w.flush()
+ }
+}
+
+/// A `Write` implementation that sometimes will only write part of its input.
+struct PartialInterruptingWriter<'a, W: 'a + Write, R: 'a + Rng> {
+ w: &'a mut W,
+ rng: &'a mut R,
+ /// In [0, 1]. If a random number in [0, 1] is `<= threshold`, `write()` will write all its
+ /// input. Otherwise, it will write a random substring
+ full_input_fraction: f64,
+ no_interrupt_fraction: f64,
+}
+
+impl<'a, W: Write, R: Rng> Write for PartialInterruptingWriter<'a, W, R> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ if self.rng.gen_range(0.0..1.0) > self.no_interrupt_fraction {
+ return Err(io::Error::new(io::ErrorKind::Interrupted, "interrupted"));
+ }
+
+ if self.rng.gen_range(0.0..1.0) <= self.full_input_fraction || buf.is_empty() {
+ // pass through the buf untouched
+ self.w.write(buf)
+ } else {
+ // only use a prefix of it
+ self.w
+ .write(&buf[0..(self.rng.gen_range(0..(buf.len() - 1)))])
+ }
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ self.w.flush()
+ }
+}
diff --git a/third_party/rust/base64/src/write/mod.rs b/third_party/rust/base64/src/write/mod.rs
new file mode 100644
index 0000000000..2a617db9de
--- /dev/null
+++ b/third_party/rust/base64/src/write/mod.rs
@@ -0,0 +1,11 @@
+//! Implementations of `io::Write` to transparently handle base64.
+mod encoder;
+mod encoder_string_writer;
+
+pub use self::{
+ encoder::EncoderWriter,
+ encoder_string_writer::{EncoderStringWriter, StrConsumer},
+};
+
+#[cfg(test)]
+mod encoder_tests;