diff options
Diffstat (limited to 'third_party/rust/bindgen/ir/analysis/mod.rs')
-rw-r--r-- | third_party/rust/bindgen/ir/analysis/mod.rs | 402 |
1 files changed, 402 insertions, 0 deletions
diff --git a/third_party/rust/bindgen/ir/analysis/mod.rs b/third_party/rust/bindgen/ir/analysis/mod.rs new file mode 100644 index 0000000000..40dfc6d644 --- /dev/null +++ b/third_party/rust/bindgen/ir/analysis/mod.rs @@ -0,0 +1,402 @@ +//! Fix-point analyses on the IR using the "monotone framework". +//! +//! A lattice is a set with a partial ordering between elements, where there is +//! a single least upper bound and a single greatest least bound for every +//! subset. We are dealing with finite lattices, which means that it has a +//! finite number of elements, and it follows that there exists a single top and +//! a single bottom member of the lattice. For example, the power set of a +//! finite set forms a finite lattice where partial ordering is defined by set +//! inclusion, that is `a <= b` if `a` is a subset of `b`. Here is the finite +//! lattice constructed from the set {0,1,2}: +//! +//! ```text +//! .----- Top = {0,1,2} -----. +//! / | \ +//! / | \ +//! / | \ +//! {0,1} -------. {0,2} .--------- {1,2} +//! | \ / \ / | +//! | / \ | +//! | / \ / \ | +//! {0} --------' {1} `---------- {2} +//! \ | / +//! \ | / +//! \ | / +//! `------ Bottom = {} ------' +//! ``` +//! +//! A monotone function `f` is a function where if `x <= y`, then it holds that +//! `f(x) <= f(y)`. It should be clear that running a monotone function to a +//! fix-point on a finite lattice will always terminate: `f` can only "move" +//! along the lattice in a single direction, and therefore can only either find +//! a fix-point in the middle of the lattice or continue to the top or bottom +//! depending if it is ascending or descending the lattice respectively. +//! +//! For a deeper introduction to the general form of this kind of analysis, see +//! [Static Program Analysis by Anders Møller and Michael I. Schwartzbach][spa]. +//! +//! [spa]: https://cs.au.dk/~amoeller/spa/spa.pdf + +// Re-export individual analyses. +mod template_params; +pub use self::template_params::UsedTemplateParameters; +mod derive; +pub use self::derive::{as_cannot_derive_set, CannotDerive, DeriveTrait}; +mod has_vtable; +pub use self::has_vtable::{HasVtable, HasVtableAnalysis, HasVtableResult}; +mod has_destructor; +pub use self::has_destructor::HasDestructorAnalysis; +mod has_type_param_in_array; +pub use self::has_type_param_in_array::HasTypeParameterInArray; +mod has_float; +pub use self::has_float::HasFloat; +mod sizedness; +pub use self::sizedness::{Sizedness, SizednessAnalysis, SizednessResult}; + +use crate::ir::context::{BindgenContext, ItemId}; + +use crate::ir::traversal::{EdgeKind, Trace}; +use crate::HashMap; +use std::fmt; +use std::ops; + +/// An analysis in the monotone framework. +/// +/// Implementors of this trait must maintain the following two invariants: +/// +/// 1. The concrete data must be a member of a finite-height lattice. +/// 2. The concrete `constrain` method must be monotone: that is, +/// if `x <= y`, then `constrain(x) <= constrain(y)`. +/// +/// If these invariants do not hold, iteration to a fix-point might never +/// complete. +/// +/// For a simple example analysis, see the `ReachableFrom` type in the `tests` +/// module below. +pub trait MonotoneFramework: Sized + fmt::Debug { + /// The type of node in our dependency graph. + /// + /// This is just generic (and not `ItemId`) so that we can easily unit test + /// without constructing real `Item`s and their `ItemId`s. + type Node: Copy; + + /// Any extra data that is needed during computation. + /// + /// Again, this is just generic (and not `&BindgenContext`) so that we can + /// easily unit test without constructing real `BindgenContext`s full of + /// real `Item`s and real `ItemId`s. + type Extra: Sized; + + /// The final output of this analysis. Once we have reached a fix-point, we + /// convert `self` into this type, and return it as the final result of the + /// analysis. + type Output: From<Self> + fmt::Debug; + + /// Construct a new instance of this analysis. + fn new(extra: Self::Extra) -> Self; + + /// Get the initial set of nodes from which to start the analysis. Unless + /// you are sure of some domain-specific knowledge, this should be the + /// complete set of nodes. + fn initial_worklist(&self) -> Vec<Self::Node>; + + /// Update the analysis for the given node. + /// + /// If this results in changing our internal state (ie, we discovered that + /// we have not reached a fix-point and iteration should continue), return + /// `ConstrainResult::Changed`. Otherwise, return `ConstrainResult::Same`. + /// When `constrain` returns `ConstrainResult::Same` for all nodes in the + /// set, we have reached a fix-point and the analysis is complete. + fn constrain(&mut self, node: Self::Node) -> ConstrainResult; + + /// For each node `d` that depends on the given `node`'s current answer when + /// running `constrain(d)`, call `f(d)`. This informs us which new nodes to + /// queue up in the worklist when `constrain(node)` reports updated + /// information. + fn each_depending_on<F>(&self, node: Self::Node, f: F) + where + F: FnMut(Self::Node); +} + +/// Whether an analysis's `constrain` function modified the incremental results +/// or not. +#[derive(Debug, Copy, Clone, PartialEq, Eq)] +pub enum ConstrainResult { + /// The incremental results were updated, and the fix-point computation + /// should continue. + Changed, + + /// The incremental results were not updated. + Same, +} + +impl Default for ConstrainResult { + fn default() -> Self { + ConstrainResult::Same + } +} + +impl ops::BitOr for ConstrainResult { + type Output = Self; + + fn bitor(self, rhs: ConstrainResult) -> Self::Output { + if self == ConstrainResult::Changed || rhs == ConstrainResult::Changed { + ConstrainResult::Changed + } else { + ConstrainResult::Same + } + } +} + +impl ops::BitOrAssign for ConstrainResult { + fn bitor_assign(&mut self, rhs: ConstrainResult) { + *self = *self | rhs; + } +} + +/// Run an analysis in the monotone framework. +pub fn analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output +where + Analysis: MonotoneFramework, +{ + let mut analysis = Analysis::new(extra); + let mut worklist = analysis.initial_worklist(); + + while let Some(node) = worklist.pop() { + if let ConstrainResult::Changed = analysis.constrain(node) { + analysis.each_depending_on(node, |needs_work| { + worklist.push(needs_work); + }); + } + } + + analysis.into() +} + +/// Generate the dependency map for analysis +pub fn generate_dependencies<F>( + ctx: &BindgenContext, + consider_edge: F, +) -> HashMap<ItemId, Vec<ItemId>> +where + F: Fn(EdgeKind) -> bool, +{ + let mut dependencies = HashMap::default(); + + for &item in ctx.allowlisted_items() { + dependencies.entry(item).or_insert_with(Vec::new); + + { + // We reverse our natural IR graph edges to find dependencies + // between nodes. + item.trace( + ctx, + &mut |sub_item: ItemId, edge_kind| { + if ctx.allowlisted_items().contains(&sub_item) && + consider_edge(edge_kind) + { + dependencies + .entry(sub_item) + .or_insert_with(Vec::new) + .push(item); + } + }, + &(), + ); + } + } + dependencies +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::{HashMap, HashSet}; + + // Here we find the set of nodes that are reachable from any given + // node. This is a lattice mapping nodes to subsets of all nodes. Our join + // function is set union. + // + // This is our test graph: + // + // +---+ +---+ + // | | | | + // | 1 | .----| 2 | + // | | | | | + // +---+ | +---+ + // | | ^ + // | | | + // | +---+ '------' + // '----->| | + // | 3 | + // .------| |------. + // | +---+ | + // | ^ | + // v | v + // +---+ | +---+ +---+ + // | | | | | | | + // | 4 | | | 5 |--->| 6 | + // | | | | | | | + // +---+ | +---+ +---+ + // | | | | + // | | | v + // | +---+ | +---+ + // | | | | | | + // '----->| 7 |<-----' | 8 | + // | | | | + // +---+ +---+ + // + // And here is the mapping from a node to the set of nodes that are + // reachable from it within the test graph: + // + // 1: {3,4,5,6,7,8} + // 2: {2} + // 3: {3,4,5,6,7,8} + // 4: {3,4,5,6,7,8} + // 5: {3,4,5,6,7,8} + // 6: {8} + // 7: {3,4,5,6,7,8} + // 8: {} + + #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)] + struct Node(usize); + + #[derive(Clone, Debug, Default, PartialEq, Eq)] + struct Graph(HashMap<Node, Vec<Node>>); + + impl Graph { + fn make_test_graph() -> Graph { + let mut g = Graph::default(); + g.0.insert(Node(1), vec![Node(3)]); + g.0.insert(Node(2), vec![Node(2)]); + g.0.insert(Node(3), vec![Node(4), Node(5)]); + g.0.insert(Node(4), vec![Node(7)]); + g.0.insert(Node(5), vec![Node(6), Node(7)]); + g.0.insert(Node(6), vec![Node(8)]); + g.0.insert(Node(7), vec![Node(3)]); + g.0.insert(Node(8), vec![]); + g + } + + fn reverse(&self) -> Graph { + let mut reversed = Graph::default(); + for (node, edges) in self.0.iter() { + reversed.0.entry(*node).or_insert_with(Vec::new); + for referent in edges.iter() { + reversed + .0 + .entry(*referent) + .or_insert_with(Vec::new) + .push(*node); + } + } + reversed + } + } + + #[derive(Clone, Debug, PartialEq, Eq)] + struct ReachableFrom<'a> { + reachable: HashMap<Node, HashSet<Node>>, + graph: &'a Graph, + reversed: Graph, + } + + impl<'a> MonotoneFramework for ReachableFrom<'a> { + type Node = Node; + type Extra = &'a Graph; + type Output = HashMap<Node, HashSet<Node>>; + + fn new(graph: &'a Graph) -> ReachableFrom { + let reversed = graph.reverse(); + ReachableFrom { + reachable: Default::default(), + graph, + reversed, + } + } + + fn initial_worklist(&self) -> Vec<Node> { + self.graph.0.keys().cloned().collect() + } + + fn constrain(&mut self, node: Node) -> ConstrainResult { + // The set of nodes reachable from a node `x` is + // + // reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ... + // + // where there exist edges from `x` to each of `s_0, s_1, ...`. + // + // Yes, what follows is a **terribly** inefficient set union + // implementation. Don't copy this code outside of this test! + + let original_size = self + .reachable + .entry(node) + .or_insert_with(HashSet::default) + .len(); + + for sub_node in self.graph.0[&node].iter() { + self.reachable.get_mut(&node).unwrap().insert(*sub_node); + + let sub_reachable = self + .reachable + .entry(*sub_node) + .or_insert_with(HashSet::default) + .clone(); + + for transitive in sub_reachable { + self.reachable.get_mut(&node).unwrap().insert(transitive); + } + } + + let new_size = self.reachable[&node].len(); + if original_size != new_size { + ConstrainResult::Changed + } else { + ConstrainResult::Same + } + } + + fn each_depending_on<F>(&self, node: Node, mut f: F) + where + F: FnMut(Node), + { + for dep in self.reversed.0[&node].iter() { + f(*dep); + } + } + } + + impl<'a> From<ReachableFrom<'a>> for HashMap<Node, HashSet<Node>> { + fn from(reachable: ReachableFrom<'a>) -> Self { + reachable.reachable + } + } + + #[test] + fn monotone() { + let g = Graph::make_test_graph(); + let reachable = analyze::<ReachableFrom>(&g); + println!("reachable = {:#?}", reachable); + + fn nodes<A>(nodes: A) -> HashSet<Node> + where + A: AsRef<[usize]>, + { + nodes.as_ref().iter().cloned().map(Node).collect() + } + + let mut expected = HashMap::default(); + expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8])); + expected.insert(Node(2), nodes([2])); + expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8])); + expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8])); + expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8])); + expected.insert(Node(6), nodes([8])); + expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8])); + expected.insert(Node(8), nodes([])); + println!("expected = {:#?}", expected); + + assert_eq!(reachable, expected); + } +} |