summaryrefslogtreecommitdiffstats
path: root/third_party/rust/bumpalo/src/collections/vec.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/bumpalo/src/collections/vec.rs')
-rw-r--r--third_party/rust/bumpalo/src/collections/vec.rs2614
1 files changed, 2614 insertions, 0 deletions
diff --git a/third_party/rust/bumpalo/src/collections/vec.rs b/third_party/rust/bumpalo/src/collections/vec.rs
new file mode 100644
index 0000000000..312aa055b9
--- /dev/null
+++ b/third_party/rust/bumpalo/src/collections/vec.rs
@@ -0,0 +1,2614 @@
+// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! A contiguous growable array type with heap-allocated contents, written
+//! [`Vec<'bump, T>`].
+//!
+//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
+//! `O(1)` pop (from the end).
+//!
+//! This module is a fork of the [`std::vec`] module, that uses a bump allocator.
+//!
+//! [`std::vec`]: https://doc.rust-lang.org/std/vec/index.html
+//!
+//! # Examples
+//!
+//! You can explicitly create a [`Vec<'bump, T>`] with [`new_in`]:
+//!
+//! ```
+//! use bumpalo::{Bump, collections::Vec};
+//!
+//! let b = Bump::new();
+//! let v: Vec<i32> = Vec::new_in(&b);
+//! ```
+//!
+//! ... or by using the [`vec!`] macro:
+//!
+//! ```
+//! use bumpalo::{Bump, collections::Vec};
+//!
+//! let b = Bump::new();
+//!
+//! let v: Vec<i32> = bumpalo::vec![in &b];
+//!
+//! let v = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
+//!
+//! let v = bumpalo::vec![in &b; 0; 10]; // ten zeroes
+//! ```
+//!
+//! You can [`push`] values onto the end of a vector (which will grow the vector
+//! as needed):
+//!
+//! ```
+//! use bumpalo::{Bump, collections::Vec};
+//!
+//! let b = Bump::new();
+//!
+//! let mut v = bumpalo::vec![in &b; 1, 2];
+//!
+//! v.push(3);
+//! ```
+//!
+//! Popping values works in much the same way:
+//!
+//! ```
+//! use bumpalo::{Bump, collections::Vec};
+//!
+//! let b = Bump::new();
+//!
+//! let mut v = bumpalo::vec![in &b; 1, 2];
+//!
+//! assert_eq!(v.pop(), Some(2));
+//! ```
+//!
+//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
+//!
+//! ```
+//! use bumpalo::{Bump, collections::Vec};
+//!
+//! let b = Bump::new();
+//!
+//! let mut v = bumpalo::vec![in &b; 1, 2, 3];
+//! assert_eq!(v[2], 3);
+//! v[1] += 5;
+//! assert_eq!(v, [1, 7, 3]);
+//! ```
+//!
+//! [`Vec<'bump, T>`]: struct.Vec.html
+//! [`new_in`]: struct.Vec.html#method.new_in
+//! [`push`]: struct.Vec.html#method.push
+//! [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html
+//! [`IndexMut`]: https://doc.rust-lang.org/std/ops/trait.IndexMut.html
+//! [`vec!`]: ../../macro.vec.html
+
+use super::raw_vec::RawVec;
+use crate::collections::CollectionAllocErr;
+use crate::Bump;
+use core::borrow::{Borrow, BorrowMut};
+use core::cmp::Ordering;
+use core::fmt;
+use core::hash::{self, Hash};
+use core::iter::FusedIterator;
+use core::marker::PhantomData;
+use core::mem;
+use core::ops;
+use core::ops::Bound::{Excluded, Included, Unbounded};
+use core::ops::{Index, IndexMut, RangeBounds};
+use core::ptr;
+use core::ptr::NonNull;
+use core::slice;
+
+unsafe fn arith_offset<T>(p: *const T, offset: isize) -> *const T {
+ p.offset(offset)
+}
+
+fn partition_dedup_by<T, F>(s: &mut [T], mut same_bucket: F) -> (&mut [T], &mut [T])
+where
+ F: FnMut(&mut T, &mut T) -> bool,
+{
+ // Although we have a mutable reference to `s`, we cannot make
+ // *arbitrary* changes. The `same_bucket` calls could panic, so we
+ // must ensure that the slice is in a valid state at all times.
+ //
+ // The way that we handle this is by using swaps; we iterate
+ // over all the elements, swapping as we go so that at the end
+ // the elements we wish to keep are in the front, and those we
+ // wish to reject are at the back. We can then split the slice.
+ // This operation is still O(n).
+ //
+ // Example: We start in this state, where `r` represents "next
+ // read" and `w` represents "next_write`.
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing s[r] against s[w-1], this is not a duplicate, so
+ // we swap s[r] and s[w] (no effect as r==w) and then increment both
+ // r and w, leaving us with:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing s[r] against s[w-1], this value is a duplicate,
+ // so we increment `r` but leave everything else unchanged:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing s[r] against s[w-1], this is not a duplicate,
+ // so swap s[r] and s[w] and advance r and w:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 2 | 1 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Not a duplicate, repeat:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 2 | 3 | 1 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Duplicate, advance r. End of slice. Split at w.
+
+ let len = s.len();
+ if len <= 1 {
+ return (s, &mut []);
+ }
+
+ let ptr = s.as_mut_ptr();
+ let mut next_read: usize = 1;
+ let mut next_write: usize = 1;
+
+ unsafe {
+ // Avoid bounds checks by using raw pointers.
+ while next_read < len {
+ let ptr_read = ptr.add(next_read);
+ let prev_ptr_write = ptr.add(next_write - 1);
+ if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
+ if next_read != next_write {
+ let ptr_write = prev_ptr_write.offset(1);
+ mem::swap(&mut *ptr_read, &mut *ptr_write);
+ }
+ next_write += 1;
+ }
+ next_read += 1;
+ }
+ }
+
+ s.split_at_mut(next_write)
+}
+
+unsafe fn offset_from<T>(p: *const T, origin: *const T) -> isize
+where
+ T: Sized,
+{
+ let pointee_size = mem::size_of::<T>();
+ assert!(0 < pointee_size && pointee_size <= isize::max_value() as usize);
+
+ // This is the same sequence that Clang emits for pointer subtraction.
+ // It can be neither `nsw` nor `nuw` because the input is treated as
+ // unsigned but then the output is treated as signed, so neither works.
+ let d = isize::wrapping_sub(p as _, origin as _);
+ d / (pointee_size as isize)
+}
+
+/// Creates a [`Vec`] containing the arguments.
+///
+/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions.
+/// There are two forms of this macro:
+///
+/// - Create a [`Vec`] containing a given list of elements:
+///
+/// ```
+/// use bumpalo::Bump;
+///
+/// let b = Bump::new();
+/// let v = bumpalo::vec![in &b; 1, 2, 3];
+/// assert_eq!(v, [1, 2, 3]);
+/// ```
+///
+/// - Create a [`Vec`] from a given element and size:
+///
+/// ```
+/// use bumpalo::Bump;
+///
+/// let b = Bump::new();
+/// let v = bumpalo::vec![in &b; 1; 3];
+/// assert_eq!(v, [1, 1, 1]);
+/// ```
+///
+/// Note that unlike array expressions, this syntax supports all elements
+/// which implement [`Clone`] and the number of elements doesn't have to be
+/// a constant.
+///
+/// This will use `clone` to duplicate an expression, so one should be careful
+/// using this with types having a non-standard `Clone` implementation. For
+/// example, `bumpalo::vec![in &bump; Rc::new(1); 5]` will create a vector of five references
+/// to the same boxed integer value, not five references pointing to independently
+/// boxed integers.
+///
+/// [`Vec`]: collections/vec/struct.Vec.html
+/// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
+#[macro_export]
+macro_rules! vec {
+ (in $bump:expr; $elem:expr; $n:expr) => {{
+ let n = $n;
+ let mut v = $crate::collections::Vec::with_capacity_in(n, $bump);
+ if n > 0 {
+ let elem = $elem;
+ for _ in 0..n - 1 {
+ v.push(elem.clone());
+ }
+ v.push(elem);
+ }
+ v
+ }};
+ (in $bump:expr) => { $crate::collections::Vec::new_in($bump) };
+ (in $bump:expr; $($x:expr),*) => {{
+ let mut v = $crate::collections::Vec::new_in($bump);
+ $( v.push($x); )*
+ v
+ }};
+ (in $bump:expr; $($x:expr,)*) => (bumpalo::vec![in $bump; $($x),*])
+}
+
+/// A contiguous growable array type, written `Vec<'bump, T>` but pronounced 'vector'.
+///
+/// # Examples
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let mut vec = Vec::new_in(&b);
+/// vec.push(1);
+/// vec.push(2);
+///
+/// assert_eq!(vec.len(), 2);
+/// assert_eq!(vec[0], 1);
+///
+/// assert_eq!(vec.pop(), Some(2));
+/// assert_eq!(vec.len(), 1);
+///
+/// vec[0] = 7;
+/// assert_eq!(vec[0], 7);
+///
+/// vec.extend([1, 2, 3].iter().cloned());
+///
+/// for x in &vec {
+/// println!("{}", x);
+/// }
+/// assert_eq!(vec, [7, 1, 2, 3]);
+/// ```
+///
+/// The [`vec!`] macro is provided to make initialization more convenient:
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+/// vec.push(4);
+/// assert_eq!(vec, [1, 2, 3, 4]);
+/// ```
+///
+/// It can also initialize each element of a `Vec<'bump, T>` with a given value.
+/// This may be more efficient than performing allocation and initialization
+/// in separate steps, especially when initializing a vector of zeros:
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let vec = bumpalo::vec![in &b; 0; 5];
+/// assert_eq!(vec, [0, 0, 0, 0, 0]);
+///
+/// // The following is equivalent, but potentially slower:
+/// let mut vec1 = Vec::with_capacity_in(5, &b);
+/// vec1.resize(5, 0);
+/// ```
+///
+/// Use a `Vec<'bump, T>` as an efficient stack:
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let mut stack = Vec::new_in(&b);
+///
+/// stack.push(1);
+/// stack.push(2);
+/// stack.push(3);
+///
+/// while let Some(top) = stack.pop() {
+/// // Prints 3, 2, 1
+/// println!("{}", top);
+/// }
+/// ```
+///
+/// # Indexing
+///
+/// The `Vec` type allows to access values by index, because it implements the
+/// [`Index`] trait. An example will be more explicit:
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let v = bumpalo::vec![in &b; 0, 2, 4, 6];
+/// println!("{}", v[1]); // it will display '2'
+/// ```
+///
+/// However be careful: if you try to access an index which isn't in the `Vec`,
+/// your software will panic! You cannot do this:
+///
+/// ```should_panic
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// let b = Bump::new();
+///
+/// let v = bumpalo::vec![in &b; 0, 2, 4, 6];
+/// println!("{}", v[6]); // it will panic!
+/// ```
+///
+/// In conclusion: always check if the index you want to get really exists
+/// before doing it.
+///
+/// # Slicing
+///
+/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
+/// To get a slice, use `&`. Example:
+///
+/// ```
+/// use bumpalo::{Bump, collections::Vec};
+///
+/// fn read_slice(slice: &[usize]) {
+/// // ...
+/// }
+///
+/// let b = Bump::new();
+///
+/// let v = bumpalo::vec![in &b; 0, 1];
+/// read_slice(&v);
+///
+/// // ... and that's all!
+/// // you can also do it like this:
+/// let x : &[usize] = &v;
+/// ```
+///
+/// In Rust, it's more common to pass slices as arguments rather than vectors
+/// when you just want to provide a read access. The same goes for [`String`] and
+/// [`&str`].
+///
+/// # Capacity and reallocation
+///
+/// The capacity of a vector is the amount of space allocated for any future
+/// elements that will be added onto the vector. This is not to be confused with
+/// the *length* of a vector, which specifies the number of actual elements
+/// within the vector. If a vector's length exceeds its capacity, its capacity
+/// will automatically be increased, but its elements will have to be
+/// reallocated.
+///
+/// For example, a vector with capacity 10 and length 0 would be an empty vector
+/// with space for 10 more elements. Pushing 10 or fewer elements onto the
+/// vector will not change its capacity or cause reallocation to occur. However,
+/// if the vector's length is increased to 11, it will have to reallocate, which
+/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity_in`]
+/// whenever possible to specify how big the vector is expected to get.
+///
+/// # Guarantees
+///
+/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
+/// about its design. This ensures that it's as low-overhead as possible in
+/// the general case, and can be correctly manipulated in primitive ways
+/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<'bump, T>`.
+/// If additional type parameters are added (e.g. to support custom allocators),
+/// overriding their defaults may change the behavior.
+///
+/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
+/// triplet. No more, no less. The order of these fields is completely
+/// unspecified, and you should use the appropriate methods to modify these.
+/// The pointer will never be null, so this type is null-pointer-optimized.
+///
+/// However, the pointer may not actually point to allocated memory. In particular,
+/// if you construct a `Vec` with capacity 0 via [`Vec::new_in`], [`bumpalo::vec![in bump]`][`vec!`],
+/// [`Vec::with_capacity_in(0)`][`Vec::with_capacity_in`], or by calling [`shrink_to_fit`]
+/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
+/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
+/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
+/// if <code>[`mem::size_of::<T>`]\() * capacity() > 0</code>. In general, `Vec`'s allocation
+/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
+/// and use it for something else (either to pass to unsafe code, or to build your
+/// own memory-backed collection), be sure to deallocate this memory by using
+/// `from_raw_parts` to recover the `Vec` and then dropping it.
+///
+/// If a `Vec` *has* allocated memory, then the memory it points to is
+/// in the [`Bump`] arena used to construct it, and its
+/// pointer points to [`len`] initialized, contiguous elements in order (what
+/// you would see if you coerced it to a slice), followed by <code>[`capacity`] -
+/// [`len`]</code> logically uninitialized, contiguous elements.
+///
+/// `Vec` will never perform a "small optimization" where elements are actually
+/// stored on the stack for two reasons:
+///
+/// * It would make it more difficult for unsafe code to correctly manipulate
+/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
+/// only moved, and it would be more difficult to determine if a `Vec` had
+/// actually allocated memory.
+///
+/// * It would penalize the general case, incurring an additional branch
+/// on every access.
+///
+/// `Vec` will never automatically shrink itself, even if completely empty. This
+/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
+/// and then filling it back up to the same [`len`] should incur no calls to
+/// the allocator. If you wish to free up unused memory, use
+/// [`shrink_to_fit`][`shrink_to_fit`].
+///
+/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
+/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
+/// <code>[`len`] == [`capacity`]</code>. That is, the reported capacity is completely
+/// accurate, and can be relied on. It can even be used to manually free the memory
+/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
+/// when not necessary.
+///
+/// `Vec` does not guarantee any particular growth strategy when reallocating
+/// when full, nor when [`reserve`] is called. The current strategy is basic
+/// and it may prove desirable to use a non-constant growth factor. Whatever
+/// strategy is used will of course guarantee `O(1)` amortized [`push`].
+///
+/// `bumpalo::vec![in bump; x; n]`, `bumpalo::vec![in bump; a, b, c, d]`, and
+/// [`Vec::with_capacity_in(n)`][`Vec::with_capacity_in`], will all produce a
+/// `Vec` with exactly the requested capacity. If <code>[`len`] == [`capacity`]</code>, (as
+/// is the case for the [`vec!`] macro), then a `Vec<'bump, T>` can be converted
+/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the
+/// elements.
+///
+/// `Vec` will not specifically overwrite any data that is removed from it,
+/// but also won't specifically preserve it. Its uninitialized memory is
+/// scratch space that it may use however it wants. It will generally just do
+/// whatever is most efficient or otherwise easy to implement. Do not rely on
+/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
+/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
+/// first, that may not actually happen because the optimizer does not consider
+/// this a side-effect that must be preserved. There is one case which we will
+/// not break, however: using `unsafe` code to write to the excess capacity,
+/// and then increasing the length to match, is always valid.
+///
+/// `Vec` does not currently guarantee the order in which elements are dropped.
+/// The order has changed in the past and may change again.
+///
+/// [`vec!`]: ../../macro.vec.html
+/// [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html
+/// [`String`]: ../string/struct.String.html
+/// [`&str`]: https://doc.rust-lang.org/std/primitive.str.html
+/// [`Vec::with_capacity_in`]: struct.Vec.html#method.with_capacity_in
+/// [`Vec::new_in`]: struct.Vec.html#method.new_in
+/// [`shrink_to_fit`]: struct.Vec.html#method.shrink_to_fit
+/// [`capacity`]: struct.Vec.html#method.capacity
+/// [`mem::size_of::<T>`]: https://doc.rust-lang.org/std/mem/fn.size_of.html
+/// [`len`]: struct.Vec.html#method.len
+/// [`push`]: struct.Vec.html#method.push
+/// [`insert`]: struct.Vec.html#method.insert
+/// [`reserve`]: struct.Vec.html#method.reserve
+/// [owned slice]: https://doc.rust-lang.org/std/boxed/struct.Box.html
+pub struct Vec<'bump, T: 'bump> {
+ buf: RawVec<'bump, T>,
+ len: usize,
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Inherent methods
+////////////////////////////////////////////////////////////////////////////////
+
+impl<'bump, T: 'bump> Vec<'bump, T> {
+ /// Constructs a new, empty `Vec<'bump, T>`.
+ ///
+ /// The vector will not allocate until elements are pushed onto it.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # #![allow(unused_mut)]
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let mut vec: Vec<i32> = Vec::new_in(&b);
+ /// ```
+ #[inline]
+ pub fn new_in(bump: &'bump Bump) -> Vec<'bump, T> {
+ Vec {
+ buf: RawVec::new_in(bump),
+ len: 0,
+ }
+ }
+
+ /// Constructs a new, empty `Vec<'bump, T>` with the specified capacity.
+ ///
+ /// The vector will be able to hold exactly `capacity` elements without
+ /// reallocating. If `capacity` is 0, the vector will not allocate.
+ ///
+ /// It is important to note that although the returned vector has the
+ /// *capacity* specified, the vector will have a zero *length*. For an
+ /// explanation of the difference between length and capacity, see
+ /// *[Capacity and reallocation]*.
+ ///
+ /// [Capacity and reallocation]: #capacity-and-reallocation
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = Vec::with_capacity_in(10, &b);
+ ///
+ /// // The vector contains no items, even though it has capacity for more
+ /// assert_eq!(vec.len(), 0);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// vec.push(i);
+ /// }
+ ///
+ /// // ...but this may make the vector reallocate
+ /// vec.push(11);
+ /// ```
+ #[inline]
+ pub fn with_capacity_in(capacity: usize, bump: &'bump Bump) -> Vec<'bump, T> {
+ Vec {
+ buf: RawVec::with_capacity_in(capacity, bump),
+ len: 0,
+ }
+ }
+
+ /// Construct a new `Vec` from the given iterator's items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ /// use std::iter;
+ ///
+ /// let b = Bump::new();
+ /// let v = Vec::from_iter_in(iter::repeat(7).take(3), &b);
+ /// assert_eq!(v, [7, 7, 7]);
+ /// ```
+ pub fn from_iter_in<I: IntoIterator<Item = T>>(iter: I, bump: &'bump Bump) -> Vec<'bump, T> {
+ let mut v = Vec::new_in(bump);
+ v.extend(iter);
+ v
+ }
+
+ /// Creates a `Vec<'bump, T>` directly from the raw components of another vector.
+ ///
+ /// # Safety
+ ///
+ /// This is highly unsafe, due to the number of invariants that aren't
+ /// checked:
+ ///
+ /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<'bump, T>`
+ /// (at least, it's highly likely to be incorrect if it wasn't).
+ /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with.
+ /// * `length` needs to be less than or equal to `capacity`.
+ /// * `capacity` needs to be the capacity that the pointer was allocated with.
+ ///
+ /// Violating these may cause problems like corrupting the allocator's
+ /// internal data structures. For example it is **not** safe
+ /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
+ ///
+ /// The ownership of `ptr` is effectively transferred to the
+ /// `Vec<'bump, T>` which may then deallocate, reallocate or change the
+ /// contents of memory pointed to by the pointer at will. Ensure
+ /// that nothing else uses the pointer after calling this
+ /// function.
+ ///
+ /// [`String`]: ../string/struct.String.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// use std::ptr;
+ /// use std::mem;
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; 1, 2, 3];
+ ///
+ /// // Pull out the various important pieces of information about `v`
+ /// let p = v.as_mut_ptr();
+ /// let len = v.len();
+ /// let cap = v.capacity();
+ ///
+ /// unsafe {
+ /// // Cast `v` into the void: no destructor run, so we are in
+ /// // complete control of the allocation to which `p` points.
+ /// mem::forget(v);
+ ///
+ /// // Overwrite memory with 4, 5, 6
+ /// for i in 0..len as isize {
+ /// ptr::write(p.offset(i), 4 + i);
+ /// }
+ ///
+ /// // Put everything back together into a Vec
+ /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, &b);
+ /// assert_eq!(rebuilt, [4, 5, 6]);
+ /// }
+ /// ```
+ pub unsafe fn from_raw_parts_in(
+ ptr: *mut T,
+ length: usize,
+ capacity: usize,
+ bump: &'bump Bump,
+ ) -> Vec<'bump, T> {
+ Vec {
+ buf: RawVec::from_raw_parts_in(ptr, capacity, bump),
+ len: length,
+ }
+ }
+
+ /// Returns a shared reference to the allocator backing this `Vec`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// // uses the same allocator as the provided `Vec`
+ /// fn add_strings<'bump>(vec: &mut Vec<'bump, &'bump str>) {
+ /// for string in ["foo", "bar", "baz"] {
+ /// vec.push(vec.bump().alloc_str(string));
+ /// }
+ /// }
+ /// ```
+ #[inline]
+ #[must_use]
+ pub fn bump(&self) -> &'bump Bump {
+ self.buf.bump()
+ }
+
+ /// Returns the number of elements the vector can hold without
+ /// reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let vec: Vec<i32> = Vec::with_capacity_in(10, &b);
+ /// assert_eq!(vec.capacity(), 10);
+ /// ```
+ #[inline]
+ pub fn capacity(&self) -> usize {
+ self.buf.cap()
+ }
+
+ /// Reserves capacity for at least `additional` more elements to be inserted
+ /// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let mut vec = bumpalo::vec![in &b; 1];
+ /// vec.reserve(10);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.buf.reserve(self.len, additional);
+ }
+
+ /// Reserves the minimum capacity for exactly `additional` more elements to
+ /// be inserted in the given `Vec<'bump, T>`. After calling `reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore capacity can not be relied upon to be precisely
+ /// minimal. Prefer `reserve` if future insertions are expected.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let mut vec = bumpalo::vec![in &b; 1];
+ /// vec.reserve_exact(10);
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ pub fn reserve_exact(&mut self, additional: usize) {
+ self.buf.reserve_exact(self.len, additional);
+ }
+
+ /// Attempts to reserve capacity for at least `additional` more elements to be inserted
+ /// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid
+ /// frequent reallocations. After calling `try_reserve`, capacity will be
+ /// greater than or equal to `self.len() + additional`. Does nothing if
+ /// capacity is already sufficient.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let mut vec = bumpalo::vec![in &b; 1];
+ /// vec.try_reserve(10).unwrap();
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
+ self.buf.try_reserve(self.len, additional)
+ }
+
+ /// Attempts to reserve the minimum capacity for exactly `additional` more elements to
+ /// be inserted in the given `Vec<'bump, T>`. After calling `try_reserve_exact`,
+ /// capacity will be greater than or equal to `self.len() + additional`.
+ /// Does nothing if the capacity is already sufficient.
+ ///
+ /// Note that the allocator may give the collection more space than it
+ /// requests. Therefore capacity can not be relied upon to be precisely
+ /// minimal. Prefer `try_reserve` if future insertions are expected.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity overflows `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let mut vec = bumpalo::vec![in &b; 1];
+ /// vec.try_reserve_exact(10).unwrap();
+ /// assert!(vec.capacity() >= 11);
+ /// ```
+ pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
+ self.buf.try_reserve_exact(self.len, additional)
+ }
+
+ /// Shrinks the capacity of the vector as much as possible.
+ ///
+ /// It will drop down as close as possible to the length but the allocator
+ /// may still inform the vector that there is space for a few more elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = Vec::with_capacity_in(10, &b);
+ /// vec.extend([1, 2, 3].iter().cloned());
+ /// assert_eq!(vec.capacity(), 10);
+ /// vec.shrink_to_fit();
+ /// assert!(vec.capacity() >= 3);
+ /// ```
+ pub fn shrink_to_fit(&mut self) {
+ if self.capacity() != self.len {
+ self.buf.shrink_to_fit(self.len);
+ }
+ }
+
+ /// Converts the vector into `&'bump [T]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let v = bumpalo::vec![in &b; 1, 2, 3];
+ ///
+ /// let slice = v.into_bump_slice();
+ /// assert_eq!(slice, [1, 2, 3]);
+ /// ```
+ pub fn into_bump_slice(self) -> &'bump [T] {
+ unsafe {
+ let ptr = self.as_ptr();
+ let len = self.len();
+ mem::forget(self);
+ slice::from_raw_parts(ptr, len)
+ }
+ }
+
+ /// Converts the vector into `&'bump mut [T]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ /// let v = bumpalo::vec![in &b; 1, 2, 3];
+ ///
+ /// let mut slice = v.into_bump_slice_mut();
+ ///
+ /// slice[0] = 3;
+ /// slice[2] = 1;
+ ///
+ /// assert_eq!(slice, [3, 2, 1]);
+ /// ```
+ pub fn into_bump_slice_mut(mut self) -> &'bump mut [T] {
+ let ptr = self.as_mut_ptr();
+ let len = self.len();
+ mem::forget(self);
+
+ unsafe { slice::from_raw_parts_mut(ptr, len) }
+ }
+
+ /// Shortens the vector, keeping the first `len` elements and dropping
+ /// the rest.
+ ///
+ /// If `len` is greater than the vector's current length, this has no
+ /// effect.
+ ///
+ /// The [`drain`] method can emulate `truncate`, but causes the excess
+ /// elements to be returned instead of dropped.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the vector.
+ ///
+ /// # Examples
+ ///
+ /// Truncating a five element vector to two elements:
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
+ /// vec.truncate(2);
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ ///
+ /// No truncation occurs when `len` is greater than the vector's current
+ /// length:
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// vec.truncate(8);
+ /// assert_eq!(vec, [1, 2, 3]);
+ /// ```
+ ///
+ /// Truncating when `len == 0` is equivalent to calling the [`clear`]
+ /// method.
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// vec.truncate(0);
+ /// assert_eq!(vec, []);
+ /// ```
+ ///
+ /// [`clear`]: #method.clear
+ /// [`drain`]: #method.drain
+ pub fn truncate(&mut self, len: usize) {
+ let current_len = self.len;
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len);
+ // Set the final length at the end, keeping in mind that
+ // dropping an element might panic. Works around a missed
+ // optimization, as seen in the following issue:
+ // https://github.com/rust-lang/rust/issues/51802
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+
+ // drop any extra elements
+ for _ in len..current_len {
+ local_len.decrement_len(1);
+ ptr = ptr.offset(-1);
+ ptr::drop_in_place(ptr);
+ }
+ }
+ }
+
+ /// Extracts a slice containing the entire vector.
+ ///
+ /// Equivalent to `&s[..]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ /// use std::io::{self, Write};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let buffer = bumpalo::vec![in &b; 1, 2, 3, 5, 8];
+ /// io::sink().write(buffer.as_slice()).unwrap();
+ /// ```
+ #[inline]
+ pub fn as_slice(&self) -> &[T] {
+ self
+ }
+
+ /// Extracts a mutable slice of the entire vector.
+ ///
+ /// Equivalent to `&mut s[..]`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ /// use std::io::{self, Read};
+ ///
+ /// let b = Bump::new();
+ /// let mut buffer = bumpalo::vec![in &b; 0; 3];
+ /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
+ /// ```
+ #[inline]
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ self
+ }
+
+ /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
+ /// valid for zero sized reads if the vector didn't allocate.
+ ///
+ /// The caller must ensure that the vector outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ /// Modifying the vector may cause its buffer to be reallocated,
+ /// which would also make any pointers to it invalid.
+ ///
+ /// The caller must also ensure that the memory the pointer (non-transitively) points to
+ /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
+ /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let bump = Bump::new();
+ ///
+ /// let x = bumpalo::vec![in &bump; 1, 2, 4];
+ /// let x_ptr = x.as_ptr();
+ ///
+ /// unsafe {
+ /// for i in 0..x.len() {
+ /// assert_eq!(*x_ptr.add(i), 1 << i);
+ /// }
+ /// }
+ /// ```
+ ///
+ /// [`as_mut_ptr`]: Vec::as_mut_ptr
+ #[inline]
+ pub fn as_ptr(&self) -> *const T {
+ // We shadow the slice method of the same name to avoid going through
+ // `deref`, which creates an intermediate reference.
+ let ptr = self.buf.ptr();
+ unsafe {
+ if ptr.is_null() {
+ core::hint::unreachable_unchecked();
+ }
+ }
+ ptr
+ }
+
+ /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
+ /// raw pointer valid for zero sized reads if the vector didn't allocate.
+ ///
+ /// The caller must ensure that the vector outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ /// Modifying the vector may cause its buffer to be reallocated,
+ /// which would also make any pointers to it invalid.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let bump = Bump::new();
+ ///
+ /// // Allocate vector big enough for 4 elements.
+ /// let size = 4;
+ /// let mut x: Vec<i32> = Vec::with_capacity_in(size, &bump);
+ /// let x_ptr = x.as_mut_ptr();
+ ///
+ /// // Initialize elements via raw pointer writes, then set length.
+ /// unsafe {
+ /// for i in 0..size {
+ /// x_ptr.add(i).write(i as i32);
+ /// }
+ /// x.set_len(size);
+ /// }
+ /// assert_eq!(&*x, &[0, 1, 2, 3]);
+ /// ```
+ #[inline]
+ pub fn as_mut_ptr(&mut self) -> *mut T {
+ // We shadow the slice method of the same name to avoid going through
+ // `deref_mut`, which creates an intermediate reference.
+ let ptr = self.buf.ptr();
+ unsafe {
+ if ptr.is_null() {
+ core::hint::unreachable_unchecked();
+ }
+ }
+ ptr
+ }
+
+ /// Sets the length of a vector.
+ ///
+ /// This will explicitly set the size of the vector, without actually
+ /// modifying its buffers, so it is up to the caller to ensure that the
+ /// vector is actually the specified size.
+ ///
+ /// # Safety
+ ///
+ /// - `new_len` must be less than or equal to [`capacity()`].
+ /// - The elements at `old_len..new_len` must be initialized.
+ ///
+ /// [`capacity()`]: struct.Vec.html#method.capacity
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// use std::ptr;
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 'r', 'u', 's', 't'];
+ ///
+ /// unsafe {
+ /// ptr::drop_in_place(&mut vec[3]);
+ /// vec.set_len(3);
+ /// }
+ /// assert_eq!(vec, ['r', 'u', 's']);
+ /// ```
+ ///
+ /// In this example, there is a memory leak since the memory locations
+ /// owned by the inner vectors were not freed prior to the `set_len` call:
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b;
+ /// bumpalo::vec![in &b; 1, 0, 0],
+ /// bumpalo::vec![in &b; 0, 1, 0],
+ /// bumpalo::vec![in &b; 0, 0, 1]];
+ /// unsafe {
+ /// vec.set_len(0);
+ /// }
+ /// ```
+ ///
+ /// In this example, the vector gets expanded from zero to four items
+ /// but we directly initialize uninitialized memory:
+ ///
+ // TODO: rely upon `spare_capacity_mut`
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let len = 4;
+ /// let b = Bump::new();
+ ///
+ /// let mut vec: Vec<u8> = Vec::with_capacity_in(len, &b);
+ ///
+ /// for i in 0..len {
+ /// // SAFETY: we initialize memory via `pointer::write`
+ /// unsafe { vec.as_mut_ptr().add(i).write(b'a') }
+ /// }
+ ///
+ /// unsafe {
+ /// vec.set_len(len);
+ /// }
+ ///
+ /// assert_eq!(b"aaaa", &*vec);
+ /// ```
+ #[inline]
+ pub unsafe fn set_len(&mut self, new_len: usize) {
+ self.len = new_len;
+ }
+
+ /// Removes an element from the vector and returns it.
+ ///
+ /// The removed element is replaced by the last element of the vector.
+ ///
+ /// This does not preserve ordering, but is O(1).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; "foo", "bar", "baz", "qux"];
+ ///
+ /// assert_eq!(v.swap_remove(1), "bar");
+ /// assert_eq!(v, ["foo", "qux", "baz"]);
+ ///
+ /// assert_eq!(v.swap_remove(0), "foo");
+ /// assert_eq!(v, ["baz", "qux"]);
+ /// ```
+ #[inline]
+ pub fn swap_remove(&mut self, index: usize) -> T {
+ unsafe {
+ // We replace self[index] with the last element. Note that if the
+ // bounds check on hole succeeds there must be a last element (which
+ // can be self[index] itself).
+ let hole: *mut T = &mut self[index];
+ let last = ptr::read(self.get_unchecked(self.len - 1));
+ self.len -= 1;
+ ptr::replace(hole, last)
+ }
+ }
+
+ /// Inserts an element at position `index` within the vector, shifting all
+ /// elements after it to the right.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// vec.insert(1, 4);
+ /// assert_eq!(vec, [1, 4, 2, 3]);
+ /// vec.insert(4, 5);
+ /// assert_eq!(vec, [1, 4, 2, 3, 5]);
+ /// ```
+ pub fn insert(&mut self, index: usize, element: T) {
+ let len = self.len();
+ assert!(index <= len);
+
+ // space for the new element
+ if len == self.buf.cap() {
+ self.reserve(1);
+ }
+
+ unsafe {
+ // infallible
+ // The spot to put the new value
+ {
+ let p = self.as_mut_ptr().add(index);
+ // Shift everything over to make space. (Duplicating the
+ // `index`th element into two consecutive places.)
+ ptr::copy(p, p.offset(1), len - index);
+ // Write it in, overwriting the first copy of the `index`th
+ // element.
+ ptr::write(p, element);
+ }
+ self.set_len(len + 1);
+ }
+ }
+
+ /// Removes and returns the element at position `index` within the vector,
+ /// shifting all elements after it to the left.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `index` is out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; 1, 2, 3];
+ /// assert_eq!(v.remove(1), 2);
+ /// assert_eq!(v, [1, 3]);
+ /// ```
+ pub fn remove(&mut self, index: usize) -> T {
+ let len = self.len();
+ assert!(index < len);
+ unsafe {
+ // infallible
+ let ret;
+ {
+ // the place we are taking from.
+ let ptr = self.as_mut_ptr().add(index);
+ // copy it out, unsafely having a copy of the value on
+ // the stack and in the vector at the same time.
+ ret = ptr::read(ptr);
+
+ // Shift everything down to fill in that spot.
+ ptr::copy(ptr.offset(1), ptr, len - index - 1);
+ }
+ self.set_len(len - 1);
+ ret
+ }
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` such that `f(&e)` returns `false`.
+ /// This method operates in place and preserves the order of the retained
+ /// elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4];
+ /// vec.retain(|&x| x % 2 == 0);
+ /// assert_eq!(vec, [2, 4]);
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> bool,
+ {
+ self.drain_filter(|x| !f(x));
+ }
+
+ /// Creates an iterator that removes the elements in the vector
+ /// for which the predicate returns `true` and yields the removed items.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::Bump;
+ /// use bumpalo::collections::{CollectIn, Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut numbers = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
+ ///
+ /// let evens: Vec<_> = numbers.drain_filter(|x| *x % 2 == 0).collect_in(&b);
+ ///
+ /// assert_eq!(numbers, &[1, 3, 5]);
+ /// assert_eq!(evens, &[2, 4]);
+ /// ```
+ pub fn drain_filter<'a, F>(&'a mut self, filter: F) -> DrainFilter<'a, 'bump, T, F>
+ where
+ F: FnMut(&mut T) -> bool,
+ {
+ let old_len = self.len();
+
+ // Guard against us getting leaked (leak amplification)
+ unsafe {
+ self.set_len(0);
+ }
+
+ DrainFilter {
+ vec: self,
+ idx: 0,
+ del: 0,
+ old_len,
+ pred: filter,
+ }
+ }
+
+ /// Removes all but the first of consecutive elements in the vector that resolve to the same
+ /// key.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 10, 20, 21, 30, 20];
+ ///
+ /// vec.dedup_by_key(|i| *i / 10);
+ ///
+ /// assert_eq!(vec, [10, 20, 30, 20]);
+ /// ```
+ #[inline]
+ pub fn dedup_by_key<F, K>(&mut self, mut key: F)
+ where
+ F: FnMut(&mut T) -> K,
+ K: PartialEq,
+ {
+ self.dedup_by(|a, b| key(a) == key(b))
+ }
+
+ /// Removes all but the first of consecutive elements in the vector satisfying a given equality
+ /// relation.
+ ///
+ /// The `same_bucket` function is passed references to two elements from the vector and
+ /// must determine if the elements compare equal. The elements are passed in opposite order
+ /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; "foo", "bar", "Bar", "baz", "bar"];
+ ///
+ /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
+ ///
+ /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
+ /// ```
+ pub fn dedup_by<F>(&mut self, same_bucket: F)
+ where
+ F: FnMut(&mut T, &mut T) -> bool,
+ {
+ let len = {
+ let (dedup, _) = partition_dedup_by(self.as_mut_slice(), same_bucket);
+ dedup.len()
+ };
+ self.truncate(len);
+ }
+
+ /// Appends an element to the back of a vector.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the number of elements in the vector overflows a `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2];
+ /// vec.push(3);
+ /// assert_eq!(vec, [1, 2, 3]);
+ /// ```
+ #[inline]
+ pub fn push(&mut self, value: T) {
+ // This will panic or abort if we would allocate > isize::MAX bytes
+ // or if the length increment would overflow for zero-sized types.
+ if self.len == self.buf.cap() {
+ self.reserve(1);
+ }
+ unsafe {
+ let end = self.buf.ptr().add(self.len);
+ ptr::write(end, value);
+ self.len += 1;
+ }
+ }
+
+ /// Removes the last element from a vector and returns it, or [`None`] if it
+ /// is empty.
+ ///
+ /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// assert_eq!(vec.pop(), Some(3));
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ #[inline]
+ pub fn pop(&mut self) -> Option<T> {
+ if self.len == 0 {
+ None
+ } else {
+ unsafe {
+ self.len -= 1;
+ Some(ptr::read(self.as_ptr().add(self.len())))
+ }
+ }
+ }
+
+ /// Moves all the elements of `other` into `Self`, leaving `other` empty.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the number of elements in the vector overflows a `usize`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// let mut vec2 = bumpalo::vec![in &b; 4, 5, 6];
+ /// vec.append(&mut vec2);
+ /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(vec2, []);
+ /// ```
+ #[inline]
+ pub fn append(&mut self, other: &mut Self) {
+ unsafe {
+ self.append_elements(other.as_slice() as _);
+ other.set_len(0);
+ }
+ }
+
+ /// Appends elements to `Self` from other buffer.
+ #[inline]
+ unsafe fn append_elements(&mut self, other: *const [T]) {
+ let count = (*other).len();
+ self.reserve(count);
+ let len = self.len();
+ ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count);
+ self.len += count;
+ }
+
+ /// Creates a draining iterator that removes the specified range in the vector
+ /// and yields the removed items.
+ ///
+ /// Note 1: The element range is removed even if the iterator is only
+ /// partially consumed or not consumed at all.
+ ///
+ /// Note 2: It is unspecified how many elements are removed from the vector
+ /// if the `Drain` value is leaked.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::Bump;
+ /// use bumpalo::collections::{CollectIn, Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; 1, 2, 3];
+ ///
+ /// let u: Vec<_> = v.drain(1..).collect_in(&b);
+ ///
+ /// assert_eq!(v, &[1]);
+ /// assert_eq!(u, &[2, 3]);
+ ///
+ /// // A full range clears the vector
+ /// v.drain(..);
+ /// assert_eq!(v, &[]);
+ /// ```
+ pub fn drain<R>(&mut self, range: R) -> Drain<T>
+ where
+ R: RangeBounds<usize>,
+ {
+ // Memory safety
+ //
+ // When the Drain is first created, it shortens the length of
+ // the source vector to make sure no uninitialized or moved-from elements
+ // are accessible at all if the Drain's destructor never gets to run.
+ //
+ // Drain will ptr::read out the values to remove.
+ // When finished, remaining tail of the vec is copied back to cover
+ // the hole, and the vector length is restored to the new length.
+ //
+ let len = self.len();
+ let start = match range.start_bound() {
+ Included(&n) => n,
+ Excluded(&n) => n + 1,
+ Unbounded => 0,
+ };
+ let end = match range.end_bound() {
+ Included(&n) => n + 1,
+ Excluded(&n) => n,
+ Unbounded => len,
+ };
+ assert!(start <= end);
+ assert!(end <= len);
+
+ unsafe {
+ // set self.vec length's to start, to be safe in case Drain is leaked
+ self.set_len(start);
+ // Use the borrow in the IterMut to indicate borrowing behavior of the
+ // whole Drain iterator (like &mut T).
+ let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
+ Drain {
+ tail_start: end,
+ tail_len: len - end,
+ iter: range_slice.iter(),
+ vec: NonNull::from(self),
+ }
+ }
+ }
+
+ /// Clears the vector, removing all values.
+ ///
+ /// Note that this method has no effect on the allocated capacity
+ /// of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; 1, 2, 3];
+ ///
+ /// v.clear();
+ ///
+ /// assert!(v.is_empty());
+ /// ```
+ #[inline]
+ pub fn clear(&mut self) {
+ self.truncate(0)
+ }
+
+ /// Returns the number of elements in the vector, also referred to
+ /// as its 'length'.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let a = bumpalo::vec![in &b; 1, 2, 3];
+ /// assert_eq!(a.len(), 3);
+ /// ```
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Returns `true` if the vector contains no elements.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = Vec::new_in(&b);
+ /// assert!(v.is_empty());
+ ///
+ /// v.push(1);
+ /// assert!(!v.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Splits the collection into two at the given index.
+ ///
+ /// Returns a newly allocated vector. `self` contains elements `[0, at)`,
+ /// and the returned vector contains elements `[at, len)`.
+ ///
+ /// Note that the capacity of `self` does not change.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `at > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
+ /// let vec2 = vec.split_off(1);
+ /// assert_eq!(vec, [1]);
+ /// assert_eq!(vec2, [2, 3]);
+ /// ```
+ #[inline]
+ pub fn split_off(&mut self, at: usize) -> Self {
+ assert!(at <= self.len(), "`at` out of bounds");
+
+ let other_len = self.len - at;
+ let mut other = Vec::with_capacity_in(other_len, self.buf.bump());
+
+ // Unsafely `set_len` and copy items to `other`.
+ unsafe {
+ self.set_len(at);
+ other.set_len(other_len);
+
+ ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
+ }
+ other
+ }
+}
+
+#[cfg(feature = "boxed")]
+impl<'bump, T> Vec<'bump, T> {
+ /// Converts the vector into [`Box<[T]>`][owned slice].
+ ///
+ /// Note that this will drop any excess capacity.
+ ///
+ /// [owned slice]: ../../boxed/struct.Box.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec, vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let v = vec![in &b; 1, 2, 3];
+ ///
+ /// let slice = v.into_boxed_slice();
+ /// ```
+ pub fn into_boxed_slice(mut self) -> crate::boxed::Box<'bump, [T]> {
+ use crate::boxed::Box;
+
+ // Unlike `alloc::vec::Vec` shrinking here isn't necessary as `bumpalo::boxed::Box` doesn't own memory.
+ unsafe {
+ let slice = slice::from_raw_parts_mut(self.as_mut_ptr(), self.len);
+ let output: Box<'bump, [T]> = Box::from_raw(slice);
+ mem::forget(self);
+ output
+ }
+ }
+}
+
+impl<'bump, T: 'bump + Clone> Vec<'bump, T> {
+ /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
+ ///
+ /// If `new_len` is greater than `len`, the `Vec` is extended by the
+ /// difference, with each additional slot filled with `value`.
+ /// If `new_len` is less than `len`, the `Vec` is simply truncated.
+ ///
+ /// This method requires [`Clone`] to be able clone the passed value. If
+ /// you need more flexibility (or want to rely on [`Default`] instead of
+ /// [`Clone`]), use [`resize_with`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; "hello"];
+ /// vec.resize(3, "world");
+ /// assert_eq!(vec, ["hello", "world", "world"]);
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4];
+ /// vec.resize(2, 0);
+ /// assert_eq!(vec, [1, 2]);
+ /// ```
+ ///
+ /// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
+ /// [`Default`]: https://doc.rust-lang.org/std/default/trait.Default.html
+ /// [`resize_with`]: #method.resize_with
+ pub fn resize(&mut self, new_len: usize, value: T) {
+ let len = self.len();
+
+ if new_len > len {
+ self.extend_with(new_len - len, ExtendElement(value))
+ } else {
+ self.truncate(new_len);
+ }
+ }
+
+ /// Clones and appends all elements in a slice to the `Vec`.
+ ///
+ /// Iterates over the slice `other`, clones each element, and then appends
+ /// it to this `Vec`. The `other` vector is traversed in-order.
+ ///
+ /// Note that this function is same as [`extend`] except that it is
+ /// specialized to work with slices instead. If and when Rust gets
+ /// specialization this function will likely be deprecated (but still
+ /// available).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1];
+ /// vec.extend_from_slice(&[2, 3, 4]);
+ /// assert_eq!(vec, [1, 2, 3, 4]);
+ /// ```
+ ///
+ /// [`extend`]: #method.extend
+ pub fn extend_from_slice(&mut self, other: &[T]) {
+ self.extend(other.iter().cloned())
+ }
+}
+
+// This code generalises `extend_with_{element,default}`.
+trait ExtendWith<T> {
+ fn next(&mut self) -> T;
+ fn last(self) -> T;
+}
+
+struct ExtendElement<T>(T);
+impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
+ fn next(&mut self) -> T {
+ self.0.clone()
+ }
+ fn last(self) -> T {
+ self.0
+ }
+}
+
+impl<'bump, T: 'bump> Vec<'bump, T> {
+ /// Extend the vector by `n` values, using the given generator.
+ fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
+ self.reserve(n);
+
+ unsafe {
+ let mut ptr = self.as_mut_ptr().add(self.len());
+ // Use SetLenOnDrop to work around bug where compiler
+ // may not realize the store through `ptr` through self.set_len()
+ // don't alias.
+ let mut local_len = SetLenOnDrop::new(&mut self.len);
+
+ // Write all elements except the last one
+ for _ in 1..n {
+ ptr::write(ptr, value.next());
+ ptr = ptr.offset(1);
+ // Increment the length in every step in case next() panics
+ local_len.increment_len(1);
+ }
+
+ if n > 0 {
+ // We can write the last element directly without cloning needlessly
+ ptr::write(ptr, value.last());
+ local_len.increment_len(1);
+ }
+
+ // len set by scope guard
+ }
+ }
+}
+
+// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
+//
+// The idea is: The length field in SetLenOnDrop is a local variable
+// that the optimizer will see does not alias with any stores through the Vec's data
+// pointer. This is a workaround for alias analysis issue #32155
+struct SetLenOnDrop<'a> {
+ len: &'a mut usize,
+ local_len: usize,
+}
+
+impl<'a> SetLenOnDrop<'a> {
+ #[inline]
+ fn new(len: &'a mut usize) -> Self {
+ SetLenOnDrop {
+ local_len: *len,
+ len,
+ }
+ }
+
+ #[inline]
+ fn increment_len(&mut self, increment: usize) {
+ self.local_len += increment;
+ }
+
+ #[inline]
+ fn decrement_len(&mut self, decrement: usize) {
+ self.local_len -= decrement;
+ }
+}
+
+impl<'a> Drop for SetLenOnDrop<'a> {
+ #[inline]
+ fn drop(&mut self) {
+ *self.len = self.local_len;
+ }
+}
+
+impl<'bump, T: 'bump + PartialEq> Vec<'bump, T> {
+ /// Removes consecutive repeated elements in the vector according to the
+ /// [`PartialEq`] trait implementation.
+ ///
+ /// If the vector is sorted, this removes all duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut vec = bumpalo::vec![in &b; 1, 2, 2, 3, 2];
+ ///
+ /// vec.dedup();
+ ///
+ /// assert_eq!(vec, [1, 2, 3, 2]);
+ /// ```
+ #[inline]
+ pub fn dedup(&mut self) {
+ self.dedup_by(|a, b| a == b)
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Common trait implementations for Vec
+////////////////////////////////////////////////////////////////////////////////
+
+impl<'bump, T: 'bump + Clone> Clone for Vec<'bump, T> {
+ #[cfg(not(test))]
+ fn clone(&self) -> Vec<'bump, T> {
+ let mut v = Vec::with_capacity_in(self.len(), self.buf.bump());
+ v.extend(self.iter().cloned());
+ v
+ }
+
+ // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
+ // required for this method definition, is not available. Instead use the
+ // `slice::to_vec` function which is only available with cfg(test)
+ // NB see the slice::hack module in slice.rs for more information
+ #[cfg(test)]
+ fn clone(&self) -> Vec<'bump, T> {
+ let mut v = Vec::new_in(self.buf.bump());
+ v.extend(self.iter().cloned());
+ v
+ }
+}
+
+impl<'bump, T: 'bump + Hash> Hash for Vec<'bump, T> {
+ #[inline]
+ fn hash<H: hash::Hasher>(&self, state: &mut H) {
+ Hash::hash(&**self, state)
+ }
+}
+
+impl<'bump, T, I> Index<I> for Vec<'bump, T>
+where
+ I: ::core::slice::SliceIndex<[T]>,
+{
+ type Output = I::Output;
+
+ #[inline]
+ fn index(&self, index: I) -> &Self::Output {
+ Index::index(&**self, index)
+ }
+}
+
+impl<'bump, T, I> IndexMut<I> for Vec<'bump, T>
+where
+ I: ::core::slice::SliceIndex<[T]>,
+{
+ #[inline]
+ fn index_mut(&mut self, index: I) -> &mut Self::Output {
+ IndexMut::index_mut(&mut **self, index)
+ }
+}
+
+impl<'bump, T: 'bump> ops::Deref for Vec<'bump, T> {
+ type Target = [T];
+
+ fn deref(&self) -> &[T] {
+ unsafe {
+ let p = self.buf.ptr();
+ // assume(!p.is_null());
+ slice::from_raw_parts(p, self.len)
+ }
+ }
+}
+
+impl<'bump, T: 'bump> ops::DerefMut for Vec<'bump, T> {
+ fn deref_mut(&mut self) -> &mut [T] {
+ unsafe {
+ let ptr = self.buf.ptr();
+ // assume(!ptr.is_null());
+ slice::from_raw_parts_mut(ptr, self.len)
+ }
+ }
+}
+
+impl<'bump, T: 'bump> IntoIterator for Vec<'bump, T> {
+ type Item = T;
+ type IntoIter = IntoIter<'bump, T>;
+
+ /// Creates a consuming iterator, that is, one that moves each value out of
+ /// the vector (from start to end). The vector cannot be used after calling
+ /// this.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let v = bumpalo::vec![in &b; "a".to_string(), "b".to_string()];
+ /// for s in v.into_iter() {
+ /// // s has type String, not &String
+ /// println!("{}", s);
+ /// }
+ /// ```
+ #[inline]
+ fn into_iter(mut self) -> IntoIter<'bump, T> {
+ unsafe {
+ let begin = self.as_mut_ptr();
+ // assume(!begin.is_null());
+ let end = if mem::size_of::<T>() == 0 {
+ arith_offset(begin as *const i8, self.len() as isize) as *const T
+ } else {
+ begin.add(self.len()) as *const T
+ };
+ mem::forget(self);
+ IntoIter {
+ phantom: PhantomData,
+ ptr: begin,
+ end,
+ }
+ }
+ }
+}
+
+impl<'a, 'bump, T> IntoIterator for &'a Vec<'bump, T> {
+ type Item = &'a T;
+ type IntoIter = slice::Iter<'a, T>;
+
+ fn into_iter(self) -> slice::Iter<'a, T> {
+ self.iter()
+ }
+}
+
+impl<'a, 'bump, T> IntoIterator for &'a mut Vec<'bump, T> {
+ type Item = &'a mut T;
+ type IntoIter = slice::IterMut<'a, T>;
+
+ fn into_iter(self) -> slice::IterMut<'a, T> {
+ self.iter_mut()
+ }
+}
+
+impl<'bump, T: 'bump> Extend<T> for Vec<'bump, T> {
+ #[inline]
+ fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+ let iter = iter.into_iter();
+ self.reserve(iter.size_hint().0);
+
+ for t in iter {
+ self.push(t);
+ }
+ }
+}
+
+impl<'bump, T: 'bump> Vec<'bump, T> {
+ /// Creates a splicing iterator that replaces the specified range in the vector
+ /// with the given `replace_with` iterator and yields the removed items.
+ /// `replace_with` does not need to be the same length as `range`.
+ ///
+ /// Note 1: The element range is removed even if the iterator is not
+ /// consumed until the end.
+ ///
+ /// Note 2: It is unspecified how many elements are removed from the vector,
+ /// if the `Splice` value is leaked.
+ ///
+ /// Note 3: The input iterator `replace_with` is only consumed
+ /// when the `Splice` value is dropped.
+ ///
+ /// Note 4: This is optimal if:
+ ///
+ /// * The tail (elements in the vector after `range`) is empty,
+ /// * or `replace_with` yields fewer elements than `range`’s length
+ /// * or the lower bound of its `size_hint()` is exact.
+ ///
+ /// Otherwise, a temporary vector is allocated and the tail is moved twice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let mut v = bumpalo::vec![in &b; 1, 2, 3];
+ /// let new = [7, 8];
+ /// let u: Vec<_> = Vec::from_iter_in(v.splice(..2, new.iter().cloned()), &b);
+ /// assert_eq!(v, &[7, 8, 3]);
+ /// assert_eq!(u, &[1, 2]);
+ /// ```
+ #[inline]
+ pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
+ where
+ R: RangeBounds<usize>,
+ I: IntoIterator<Item = T>,
+ {
+ Splice {
+ drain: self.drain(range),
+ replace_with: replace_with.into_iter(),
+ }
+ }
+}
+
+/// Extend implementation that copies elements out of references before pushing them onto the Vec.
+///
+/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
+/// append the entire slice at once.
+///
+/// [`copy_from_slice`]: https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice
+impl<'a, 'bump, T: 'a + Copy> Extend<&'a T> for Vec<'bump, T> {
+ fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
+ self.extend(iter.into_iter().cloned())
+ }
+}
+
+macro_rules! __impl_slice_eq1 {
+ ($Lhs: ty, $Rhs: ty) => {
+ __impl_slice_eq1! { $Lhs, $Rhs, Sized }
+ };
+ ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
+ impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs
+ where
+ A: PartialEq<B>,
+ {
+ #[inline]
+ fn eq(&self, other: &$Rhs) -> bool {
+ self[..] == other[..]
+ }
+ }
+ };
+}
+
+__impl_slice_eq1! { Vec<'a, A>, Vec<'b, B> }
+__impl_slice_eq1! { Vec<'a, A>, &'b [B] }
+__impl_slice_eq1! { Vec<'a, A>, &'b mut [B] }
+// __impl_slice_eq1! { Cow<'a, [A]>, Vec<'b, B>, Clone }
+
+macro_rules! __impl_slice_eq1_array {
+ ($Lhs: ty, $Rhs: ty) => {
+ impl<'a, 'b, A, B, const N: usize> PartialEq<$Rhs> for $Lhs
+ where
+ A: PartialEq<B>,
+ {
+ #[inline]
+ fn eq(&self, other: &$Rhs) -> bool {
+ self[..] == other[..]
+ }
+ }
+ };
+}
+
+__impl_slice_eq1_array! { Vec<'a, A>, [B; N] }
+__impl_slice_eq1_array! { Vec<'a, A>, &'b [B; N] }
+__impl_slice_eq1_array! { Vec<'a, A>, &'b mut [B; N] }
+
+/// Implements comparison of vectors, lexicographically.
+impl<'bump, T: 'bump + PartialOrd> PartialOrd for Vec<'bump, T> {
+ #[inline]
+ fn partial_cmp(&self, other: &Vec<'bump, T>) -> Option<Ordering> {
+ PartialOrd::partial_cmp(&**self, &**other)
+ }
+}
+
+impl<'bump, T: 'bump + Eq> Eq for Vec<'bump, T> {}
+
+/// Implements ordering of vectors, lexicographically.
+impl<'bump, T: 'bump + Ord> Ord for Vec<'bump, T> {
+ #[inline]
+ fn cmp(&self, other: &Vec<'bump, T>) -> Ordering {
+ Ord::cmp(&**self, &**other)
+ }
+}
+
+impl<'bump, T: 'bump + fmt::Debug> fmt::Debug for Vec<'bump, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<'bump, T: 'bump> AsRef<Vec<'bump, T>> for Vec<'bump, T> {
+ fn as_ref(&self) -> &Vec<'bump, T> {
+ self
+ }
+}
+
+impl<'bump, T: 'bump> AsMut<Vec<'bump, T>> for Vec<'bump, T> {
+ fn as_mut(&mut self) -> &mut Vec<'bump, T> {
+ self
+ }
+}
+
+impl<'bump, T: 'bump> AsRef<[T]> for Vec<'bump, T> {
+ fn as_ref(&self) -> &[T] {
+ self
+ }
+}
+
+impl<'bump, T: 'bump> AsMut<[T]> for Vec<'bump, T> {
+ fn as_mut(&mut self) -> &mut [T] {
+ self
+ }
+}
+
+#[cfg(feature = "boxed")]
+impl<'bump, T: 'bump> From<Vec<'bump, T>> for crate::boxed::Box<'bump, [T]> {
+ fn from(v: Vec<'bump, T>) -> crate::boxed::Box<'bump, [T]> {
+ v.into_boxed_slice()
+ }
+}
+
+impl<'bump, T: 'bump> Borrow<[T]> for Vec<'bump, T> {
+ #[inline]
+ fn borrow(&self) -> &[T] {
+ &self[..]
+ }
+}
+
+impl<'bump, T: 'bump> BorrowMut<[T]> for Vec<'bump, T> {
+ #[inline]
+ fn borrow_mut(&mut self) -> &mut [T] {
+ &mut self[..]
+ }
+}
+
+impl<'bump, T> Drop for Vec<'bump, T> {
+ fn drop(&mut self) {
+ unsafe {
+ // use drop for [T]
+ // use a raw slice to refer to the elements of the vector as weakest necessary type;
+ // could avoid questions of validity in certain cases
+ ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
+ }
+ // RawVec handles deallocation
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Clone-on-write
+////////////////////////////////////////////////////////////////////////////////
+
+// impl<'a, 'bump, T: Clone> From<Vec<'bump, T>> for Cow<'a, [T]> {
+// fn from(v: Vec<'bump, T>) -> Cow<'a, [T]> {
+// Cow::Owned(v)
+// }
+// }
+
+// impl<'a, 'bump, T: Clone> From<&'a Vec<'bump, T>> for Cow<'a, [T]> {
+// fn from(v: &'a Vec<'bump, T>) -> Cow<'a, [T]> {
+// Cow::Borrowed(v.as_slice())
+// }
+// }
+
+////////////////////////////////////////////////////////////////////////////////
+// Iterators
+////////////////////////////////////////////////////////////////////////////////
+
+/// An iterator that moves out of a vector.
+///
+/// This `struct` is created by the [`Vec::into_iter`] method
+/// (provided by the [`IntoIterator`] trait).
+///
+/// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
+pub struct IntoIter<'bump, T> {
+ phantom: PhantomData<&'bump [T]>,
+ ptr: *const T,
+ end: *const T,
+}
+
+impl<'bump, T: fmt::Debug> fmt::Debug for IntoIter<'bump, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
+ }
+}
+
+impl<'bump, T: 'bump> IntoIter<'bump, T> {
+ /// Returns the remaining items of this iterator as a slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let vec = bumpalo::vec![in &b; 'a', 'b', 'c'];
+ /// let mut into_iter = vec.into_iter();
+ /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
+ /// let _ = into_iter.next().unwrap();
+ /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
+ /// ```
+ pub fn as_slice(&self) -> &[T] {
+ unsafe { slice::from_raw_parts(self.ptr, self.len()) }
+ }
+
+ /// Returns the remaining items of this iterator as a mutable slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use bumpalo::{Bump, collections::Vec};
+ ///
+ /// let b = Bump::new();
+ ///
+ /// let vec = bumpalo::vec![in &b; 'a', 'b', 'c'];
+ /// let mut into_iter = vec.into_iter();
+ /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
+ /// into_iter.as_mut_slice()[2] = 'z';
+ /// assert_eq!(into_iter.next().unwrap(), 'a');
+ /// assert_eq!(into_iter.next().unwrap(), 'b');
+ /// assert_eq!(into_iter.next().unwrap(), 'z');
+ /// ```
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ unsafe { slice::from_raw_parts_mut(self.ptr as *mut T, self.len()) }
+ }
+}
+
+unsafe impl<'bump, T: Send> Send for IntoIter<'bump, T> {}
+unsafe impl<'bump, T: Sync> Sync for IntoIter<'bump, T> {}
+
+impl<'bump, T: 'bump> Iterator for IntoIter<'bump, T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ unsafe {
+ if self.ptr as *const _ == self.end {
+ None
+ } else if mem::size_of::<T>() == 0 {
+ // purposefully don't use 'ptr.offset' because for
+ // vectors with 0-size elements this would return the
+ // same pointer.
+ self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
+
+ // Make up a value of this ZST.
+ Some(mem::zeroed())
+ } else {
+ let old = self.ptr;
+ self.ptr = self.ptr.offset(1);
+
+ Some(ptr::read(old))
+ }
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let exact = if mem::size_of::<T>() == 0 {
+ (self.end as usize).wrapping_sub(self.ptr as usize)
+ } else {
+ unsafe { offset_from(self.end, self.ptr) as usize }
+ };
+ (exact, Some(exact))
+ }
+
+ #[inline]
+ fn count(self) -> usize {
+ self.len()
+ }
+}
+
+impl<'bump, T: 'bump> DoubleEndedIterator for IntoIter<'bump, T> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ unsafe {
+ if self.end == self.ptr {
+ None
+ } else if mem::size_of::<T>() == 0 {
+ // See above for why 'ptr.offset' isn't used
+ self.end = arith_offset(self.end as *const i8, -1) as *mut T;
+
+ // Make up a value of this ZST.
+ Some(mem::zeroed())
+ } else {
+ self.end = self.end.offset(-1);
+
+ Some(ptr::read(self.end))
+ }
+ }
+ }
+}
+
+impl<'bump, T: 'bump> ExactSizeIterator for IntoIter<'bump, T> {}
+
+impl<'bump, T: 'bump> FusedIterator for IntoIter<'bump, T> {}
+
+impl<'bump, T> Drop for IntoIter<'bump, T> {
+ fn drop(&mut self) {
+ // drop all remaining elements
+ self.for_each(drop);
+ }
+}
+
+/// A draining iterator for `Vec<'bump, T>`.
+///
+/// This `struct` is created by the [`Vec::drain`] method.
+pub struct Drain<'a, 'bump, T: 'a + 'bump> {
+ /// Index of tail to preserve
+ tail_start: usize,
+ /// Length of tail
+ tail_len: usize,
+ /// Current remaining range to remove
+ iter: slice::Iter<'a, T>,
+ vec: NonNull<Vec<'bump, T>>,
+}
+
+impl<'a, 'bump, T: 'a + 'bump + fmt::Debug> fmt::Debug for Drain<'a, 'bump, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
+ }
+}
+
+unsafe impl<'a, 'bump, T: Sync> Sync for Drain<'a, 'bump, T> {}
+unsafe impl<'a, 'bump, T: Send> Send for Drain<'a, 'bump, T> {}
+
+impl<'a, 'bump, T> Iterator for Drain<'a, 'bump, T> {
+ type Item = T;
+
+ #[inline]
+ fn next(&mut self) -> Option<T> {
+ self.iter
+ .next()
+ .map(|elt| unsafe { ptr::read(elt as *const _) })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, 'bump, T> DoubleEndedIterator for Drain<'a, 'bump, T> {
+ #[inline]
+ fn next_back(&mut self) -> Option<T> {
+ self.iter
+ .next_back()
+ .map(|elt| unsafe { ptr::read(elt as *const _) })
+ }
+}
+
+impl<'a, 'bump, T> Drop for Drain<'a, 'bump, T> {
+ fn drop(&mut self) {
+ // exhaust self first
+ self.for_each(drop);
+
+ if self.tail_len > 0 {
+ unsafe {
+ let source_vec = self.vec.as_mut();
+ // memmove back untouched tail, update to new length
+ let start = source_vec.len();
+ let tail = self.tail_start;
+ if tail != start {
+ let src = source_vec.as_ptr().add(tail);
+ let dst = source_vec.as_mut_ptr().add(start);
+ ptr::copy(src, dst, self.tail_len);
+ }
+ source_vec.set_len(start + self.tail_len);
+ }
+ }
+ }
+}
+
+impl<'a, 'bump, T> ExactSizeIterator for Drain<'a, 'bump, T> {}
+
+impl<'a, 'bump, T> FusedIterator for Drain<'a, 'bump, T> {}
+
+/// A splicing iterator for `Vec`.
+///
+/// This struct is created by the [`Vec::splice`] method. See its
+/// documentation for more information.
+#[derive(Debug)]
+pub struct Splice<'a, 'bump, I: Iterator + 'a + 'bump> {
+ drain: Drain<'a, 'bump, I::Item>,
+ replace_with: I,
+}
+
+impl<'a, 'bump, I: Iterator> Iterator for Splice<'a, 'bump, I> {
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.drain.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.drain.size_hint()
+ }
+}
+
+impl<'a, 'bump, I: Iterator> DoubleEndedIterator for Splice<'a, 'bump, I> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ self.drain.next_back()
+ }
+}
+
+impl<'a, 'bump, I: Iterator> ExactSizeIterator for Splice<'a, 'bump, I> {}
+
+impl<'a, 'bump, I: Iterator> Drop for Splice<'a, 'bump, I> {
+ fn drop(&mut self) {
+ self.drain.by_ref().for_each(drop);
+
+ unsafe {
+ if self.drain.tail_len == 0 {
+ self.drain.vec.as_mut().extend(self.replace_with.by_ref());
+ return;
+ }
+
+ // First fill the range left by drain().
+ if !self.drain.fill(&mut self.replace_with) {
+ return;
+ }
+
+ // There may be more elements. Use the lower bound as an estimate.
+ // FIXME: Is the upper bound a better guess? Or something else?
+ let (lower_bound, _upper_bound) = self.replace_with.size_hint();
+ if lower_bound > 0 {
+ self.drain.move_tail(lower_bound);
+ if !self.drain.fill(&mut self.replace_with) {
+ return;
+ }
+ }
+
+ // Collect any remaining elements.
+ // This is a zero-length vector which does not allocate if `lower_bound` was exact.
+ let mut collected = Vec::new_in(self.drain.vec.as_ref().buf.bump());
+ collected.extend(self.replace_with.by_ref());
+ let mut collected = collected.into_iter();
+ // Now we have an exact count.
+ if collected.len() > 0 {
+ self.drain.move_tail(collected.len());
+ let filled = self.drain.fill(&mut collected);
+ debug_assert!(filled);
+ debug_assert_eq!(collected.len(), 0);
+ }
+ }
+ // Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
+ }
+}
+
+/// Private helper methods for `Splice::drop`
+impl<'a, 'bump, T> Drain<'a, 'bump, T> {
+ /// The range from `self.vec.len` to `self.tail_start` contains elements
+ /// that have been moved out.
+ /// Fill that range as much as possible with new elements from the `replace_with` iterator.
+ /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.)
+ unsafe fn fill<I: Iterator<Item = T>>(&mut self, replace_with: &mut I) -> bool {
+ let vec = self.vec.as_mut();
+ let range_start = vec.len;
+ let range_end = self.tail_start;
+ let range_slice =
+ slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start);
+
+ for place in range_slice {
+ if let Some(new_item) = replace_with.next() {
+ ptr::write(place, new_item);
+ vec.len += 1;
+ } else {
+ return false;
+ }
+ }
+ true
+ }
+
+ /// Make room for inserting more elements before the tail.
+ unsafe fn move_tail(&mut self, extra_capacity: usize) {
+ let vec = self.vec.as_mut();
+ let used_capacity = self.tail_start + self.tail_len;
+ vec.buf.reserve(used_capacity, extra_capacity);
+
+ let new_tail_start = self.tail_start + extra_capacity;
+ let src = vec.as_ptr().add(self.tail_start);
+ let dst = vec.as_mut_ptr().add(new_tail_start);
+ ptr::copy(src, dst, self.tail_len);
+ self.tail_start = new_tail_start;
+ }
+}
+
+/// An iterator produced by calling [`Vec::drain_filter`].
+#[derive(Debug)]
+pub struct DrainFilter<'a, 'bump: 'a, T: 'a + 'bump, F>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ vec: &'a mut Vec<'bump, T>,
+ idx: usize,
+ del: usize,
+ old_len: usize,
+ pred: F,
+}
+
+impl<'a, 'bump, T, F> Iterator for DrainFilter<'a, 'bump, T, F>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ unsafe {
+ while self.idx != self.old_len {
+ let i = self.idx;
+ self.idx += 1;
+ let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
+ if (self.pred)(&mut v[i]) {
+ self.del += 1;
+ return Some(ptr::read(&v[i]));
+ } else if self.del > 0 {
+ let del = self.del;
+ let src: *const T = &v[i];
+ let dst: *mut T = &mut v[i - del];
+ // This is safe because self.vec has length 0
+ // thus its elements will not have Drop::drop
+ // called on them in the event of a panic.
+ ptr::copy_nonoverlapping(src, dst, 1);
+ }
+ }
+ None
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (0, Some(self.old_len - self.idx))
+ }
+}
+
+impl<'a, 'bump, T, F> Drop for DrainFilter<'a, 'bump, T, F>
+where
+ F: FnMut(&mut T) -> bool,
+{
+ fn drop(&mut self) {
+ self.for_each(drop);
+ unsafe {
+ self.vec.set_len(self.old_len - self.del);
+ }
+ }
+}