summaryrefslogtreecommitdiffstats
path: root/third_party/rust/serde_json/src/lexical/math.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/serde_json/src/lexical/math.rs')
-rw-r--r--third_party/rust/serde_json/src/lexical/math.rs886
1 files changed, 886 insertions, 0 deletions
diff --git a/third_party/rust/serde_json/src/lexical/math.rs b/third_party/rust/serde_json/src/lexical/math.rs
new file mode 100644
index 0000000000..37cc1d24ad
--- /dev/null
+++ b/third_party/rust/serde_json/src/lexical/math.rs
@@ -0,0 +1,886 @@
+// Adapted from https://github.com/Alexhuszagh/rust-lexical.
+
+//! Building-blocks for arbitrary-precision math.
+//!
+//! These algorithms assume little-endian order for the large integer
+//! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb,
+//! and `0` is the least significant limb.
+
+use super::large_powers;
+use super::num::*;
+use super::small_powers::*;
+use alloc::vec::Vec;
+use core::{cmp, iter, mem};
+
+// ALIASES
+// -------
+
+// Type for a single limb of the big integer.
+//
+// A limb is analogous to a digit in base10, except, it stores 32-bit
+// or 64-bit numbers instead.
+//
+// This should be all-known 64-bit platforms supported by Rust.
+// https://forge.rust-lang.org/platform-support.html
+//
+// Platforms where native 128-bit multiplication is explicitly supported:
+// - x86_64 (Supported via `MUL`).
+// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
+//
+// Platforms where native 64-bit multiplication is supported and
+// you can extract hi-lo for 64-bit multiplications.
+// aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
+// powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits).
+//
+// Platforms where native 128-bit multiplication is not supported,
+// requiring software emulation.
+// sparc64 (`UMUL` only supported double-word arguments).
+
+// 32-BIT LIMB
+#[cfg(limb_width_32)]
+pub type Limb = u32;
+
+#[cfg(limb_width_32)]
+pub const POW5_LIMB: &[Limb] = &POW5_32;
+
+#[cfg(limb_width_32)]
+pub const POW10_LIMB: &[Limb] = &POW10_32;
+
+#[cfg(limb_width_32)]
+type Wide = u64;
+
+// 64-BIT LIMB
+#[cfg(limb_width_64)]
+pub type Limb = u64;
+
+#[cfg(limb_width_64)]
+pub const POW5_LIMB: &[Limb] = &POW5_64;
+
+#[cfg(limb_width_64)]
+pub const POW10_LIMB: &[Limb] = &POW10_64;
+
+#[cfg(limb_width_64)]
+type Wide = u128;
+
+/// Cast to limb type.
+#[inline]
+pub(crate) fn as_limb<T: Integer>(t: T) -> Limb {
+ Limb::as_cast(t)
+}
+
+/// Cast to wide type.
+#[inline]
+fn as_wide<T: Integer>(t: T) -> Wide {
+ Wide::as_cast(t)
+}
+
+// SPLIT
+// -----
+
+/// Split u64 into limbs, in little-endian order.
+#[inline]
+#[cfg(limb_width_32)]
+fn split_u64(x: u64) -> [Limb; 2] {
+ [as_limb(x), as_limb(x >> 32)]
+}
+
+/// Split u64 into limbs, in little-endian order.
+#[inline]
+#[cfg(limb_width_64)]
+fn split_u64(x: u64) -> [Limb; 1] {
+ [as_limb(x)]
+}
+
+// HI64
+// ----
+
+// NONZERO
+
+/// Check if any of the remaining bits are non-zero.
+#[inline]
+pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool {
+ let len = x.len();
+ let slc = &x[..len - rindex];
+ slc.iter().rev().any(|&x| x != T::ZERO)
+}
+
+/// Shift 64-bit integer to high 64-bits.
+#[inline]
+fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
+ debug_assert!(r0 != 0);
+ let ls = r0.leading_zeros();
+ (r0 << ls, false)
+}
+
+/// Shift 2 64-bit integers to high 64-bits.
+#[inline]
+fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
+ debug_assert!(r0 != 0);
+ let ls = r0.leading_zeros();
+ let rs = 64 - ls;
+ let v = match ls {
+ 0 => r0,
+ _ => (r0 << ls) | (r1 >> rs),
+ };
+ let n = r1 << ls != 0;
+ (v, n)
+}
+
+/// Trait to export the high 64-bits from a little-endian slice.
+trait Hi64<T>: AsRef<[T]> {
+ /// Get the hi64 bits from a 1-limb slice.
+ fn hi64_1(&self) -> (u64, bool);
+
+ /// Get the hi64 bits from a 2-limb slice.
+ fn hi64_2(&self) -> (u64, bool);
+
+ /// Get the hi64 bits from a 3-limb slice.
+ fn hi64_3(&self) -> (u64, bool);
+
+ /// High-level exporter to extract the high 64 bits from a little-endian slice.
+ #[inline]
+ fn hi64(&self) -> (u64, bool) {
+ match self.as_ref().len() {
+ 0 => (0, false),
+ 1 => self.hi64_1(),
+ 2 => self.hi64_2(),
+ _ => self.hi64_3(),
+ }
+ }
+}
+
+impl Hi64<u32> for [u32] {
+ #[inline]
+ fn hi64_1(&self) -> (u64, bool) {
+ debug_assert!(self.len() == 1);
+ let r0 = self[0] as u64;
+ u64_to_hi64_1(r0)
+ }
+
+ #[inline]
+ fn hi64_2(&self) -> (u64, bool) {
+ debug_assert!(self.len() == 2);
+ let r0 = (self[1] as u64) << 32;
+ let r1 = self[0] as u64;
+ u64_to_hi64_1(r0 | r1)
+ }
+
+ #[inline]
+ fn hi64_3(&self) -> (u64, bool) {
+ debug_assert!(self.len() >= 3);
+ let r0 = self[self.len() - 1] as u64;
+ let r1 = (self[self.len() - 2] as u64) << 32;
+ let r2 = self[self.len() - 3] as u64;
+ let (v, n) = u64_to_hi64_2(r0, r1 | r2);
+ (v, n || nonzero(self, 3))
+ }
+}
+
+impl Hi64<u64> for [u64] {
+ #[inline]
+ fn hi64_1(&self) -> (u64, bool) {
+ debug_assert!(self.len() == 1);
+ let r0 = self[0];
+ u64_to_hi64_1(r0)
+ }
+
+ #[inline]
+ fn hi64_2(&self) -> (u64, bool) {
+ debug_assert!(self.len() >= 2);
+ let r0 = self[self.len() - 1];
+ let r1 = self[self.len() - 2];
+ let (v, n) = u64_to_hi64_2(r0, r1);
+ (v, n || nonzero(self, 2))
+ }
+
+ #[inline]
+ fn hi64_3(&self) -> (u64, bool) {
+ self.hi64_2()
+ }
+}
+
+// SCALAR
+// ------
+
+// Scalar-to-scalar operations, for building-blocks for arbitrary-precision
+// operations.
+
+mod scalar {
+ use super::*;
+
+ // ADDITION
+
+ /// Add two small integers and return the resulting value and if overflow happens.
+ #[inline]
+ pub fn add(x: Limb, y: Limb) -> (Limb, bool) {
+ x.overflowing_add(y)
+ }
+
+ /// AddAssign two small integers and return if overflow happens.
+ #[inline]
+ pub fn iadd(x: &mut Limb, y: Limb) -> bool {
+ let t = add(*x, y);
+ *x = t.0;
+ t.1
+ }
+
+ // SUBTRACTION
+
+ /// Subtract two small integers and return the resulting value and if overflow happens.
+ #[inline]
+ pub fn sub(x: Limb, y: Limb) -> (Limb, bool) {
+ x.overflowing_sub(y)
+ }
+
+ /// SubAssign two small integers and return if overflow happens.
+ #[inline]
+ pub fn isub(x: &mut Limb, y: Limb) -> bool {
+ let t = sub(*x, y);
+ *x = t.0;
+ t.1
+ }
+
+ // MULTIPLICATION
+
+ /// Multiply two small integers (with carry) (and return the overflow contribution).
+ ///
+ /// Returns the (low, high) components.
+ #[inline]
+ pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
+ // Cannot overflow, as long as wide is 2x as wide. This is because
+ // the following is always true:
+ // `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()`
+ let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry);
+ let bits = mem::size_of::<Limb>() * 8;
+ (as_limb(z), as_limb(z >> bits))
+ }
+
+ /// Multiply two small integers (with carry) (and return if overflow happens).
+ #[inline]
+ pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb {
+ let t = mul(*x, y, carry);
+ *x = t.0;
+ t.1
+ }
+} // scalar
+
+// SMALL
+// -----
+
+// Large-to-small operations, to modify a big integer from a native scalar.
+
+mod small {
+ use super::*;
+
+ // MULTIPLICATIION
+
+ /// ADDITION
+
+ /// Implied AddAssign implementation for adding a small integer to bigint.
+ ///
+ /// Allows us to choose a start-index in x to store, to allow incrementing
+ /// from a non-zero start.
+ #[inline]
+ pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
+ if x.len() <= xstart {
+ x.push(y);
+ } else {
+ // Initial add
+ let mut carry = scalar::iadd(&mut x[xstart], y);
+
+ // Increment until overflow stops occurring.
+ let mut size = xstart + 1;
+ while carry && size < x.len() {
+ carry = scalar::iadd(&mut x[size], 1);
+ size += 1;
+ }
+
+ // If we overflowed the buffer entirely, need to add 1 to the end
+ // of the buffer.
+ if carry {
+ x.push(1);
+ }
+ }
+ }
+
+ /// AddAssign small integer to bigint.
+ #[inline]
+ pub fn iadd(x: &mut Vec<Limb>, y: Limb) {
+ iadd_impl(x, y, 0);
+ }
+
+ // SUBTRACTION
+
+ /// SubAssign small integer to bigint.
+ /// Does not do overflowing subtraction.
+ #[inline]
+ pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
+ debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1));
+
+ // Initial subtraction
+ let mut carry = scalar::isub(&mut x[xstart], y);
+
+ // Increment until overflow stops occurring.
+ let mut size = xstart + 1;
+ while carry && size < x.len() {
+ carry = scalar::isub(&mut x[size], 1);
+ size += 1;
+ }
+ normalize(x);
+ }
+
+ // MULTIPLICATION
+
+ /// MulAssign small integer to bigint.
+ #[inline]
+ pub fn imul(x: &mut Vec<Limb>, y: Limb) {
+ // Multiply iteratively over all elements, adding the carry each time.
+ let mut carry: Limb = 0;
+ for xi in x.iter_mut() {
+ carry = scalar::imul(xi, y, carry);
+ }
+
+ // Overflow of value, add to end.
+ if carry != 0 {
+ x.push(carry);
+ }
+ }
+
+ /// Mul small integer to bigint.
+ #[inline]
+ pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> {
+ let mut z = Vec::<Limb>::default();
+ z.extend_from_slice(x);
+ imul(&mut z, y);
+ z
+ }
+
+ /// MulAssign by a power.
+ ///
+ /// Theoretically...
+ ///
+ /// Use an exponentiation by squaring method, since it reduces the time
+ /// complexity of the multiplication to ~`O(log(n))` for the squaring,
+ /// and `O(n*m)` for the result. Since `m` is typically a lower-order
+ /// factor, this significantly reduces the number of multiplications
+ /// we need to do. Iteratively multiplying by small powers follows
+ /// the nth triangular number series, which scales as `O(p^2)`, but
+ /// where `p` is `n+m`. In short, it scales very poorly.
+ ///
+ /// Practically....
+ ///
+ /// Exponentiation by Squaring:
+ /// running 2 tests
+ /// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
+ /// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
+ ///
+ /// Exponentiation by Iterative Small Powers:
+ /// running 2 tests
+ /// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
+ /// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
+ ///
+ /// Exponentiation by Iterative Large Powers (of 2):
+ /// running 2 tests
+ /// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
+ /// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
+ ///
+ /// Even using worst-case scenarios, exponentiation by squaring is
+ /// significantly slower for our workloads. Just multiply by small powers,
+ /// in simple cases, and use precalculated large powers in other cases.
+ pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) {
+ use super::large::KARATSUBA_CUTOFF;
+
+ let small_powers = POW5_LIMB;
+ let large_powers = large_powers::POW5;
+
+ if n == 0 {
+ // No exponent, just return.
+ // The 0-index of the large powers is `2^0`, which is 1, so we want
+ // to make sure we don't take that path with a literal 0.
+ return;
+ }
+
+ // We want to use the asymptotically faster algorithm if we're going
+ // to be using Karabatsu multiplication sometime during the result,
+ // otherwise, just use exponentiation by squaring.
+ let bit_length = 32 - n.leading_zeros() as usize;
+ debug_assert!(bit_length != 0 && bit_length <= large_powers.len());
+ if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF {
+ // We can use iterative small powers to make this faster for the
+ // easy cases.
+
+ // Multiply by the largest small power until n < step.
+ let step = small_powers.len() - 1;
+ let power = small_powers[step];
+ let mut n = n as usize;
+ while n >= step {
+ imul(x, power);
+ n -= step;
+ }
+
+ // Multiply by the remainder.
+ imul(x, small_powers[n]);
+ } else {
+ // In theory, this code should be asymptotically a lot faster,
+ // in practice, our small::imul seems to be the limiting step,
+ // and large imul is slow as well.
+
+ // Multiply by higher order powers.
+ let mut idx: usize = 0;
+ let mut bit: usize = 1;
+ let mut n = n as usize;
+ while n != 0 {
+ if n & bit != 0 {
+ debug_assert!(idx < large_powers.len());
+ large::imul(x, large_powers[idx]);
+ n ^= bit;
+ }
+ idx += 1;
+ bit <<= 1;
+ }
+ }
+ }
+
+ // BIT LENGTH
+
+ /// Get number of leading zero bits in the storage.
+ #[inline]
+ pub fn leading_zeros(x: &[Limb]) -> usize {
+ x.last().map_or(0, |x| x.leading_zeros() as usize)
+ }
+
+ /// Calculate the bit-length of the big-integer.
+ #[inline]
+ pub fn bit_length(x: &[Limb]) -> usize {
+ let bits = mem::size_of::<Limb>() * 8;
+ // Avoid overflowing, calculate via total number of bits
+ // minus leading zero bits.
+ let nlz = leading_zeros(x);
+ bits.checked_mul(x.len())
+ .map_or_else(usize::max_value, |v| v - nlz)
+ }
+
+ // SHL
+
+ /// Shift-left bits inside a buffer.
+ ///
+ /// Assumes `n < Limb::BITS`, IE, internally shifting bits.
+ #[inline]
+ pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) {
+ // Need to shift by the number of `bits % Limb::BITS)`.
+ let bits = mem::size_of::<Limb>() * 8;
+ debug_assert!(n < bits);
+ if n == 0 {
+ return;
+ }
+
+ // Internally, for each item, we shift left by n, and add the previous
+ // right shifted limb-bits.
+ // For example, we transform (for u8) shifted left 2, to:
+ // b10100100 b01000010
+ // b10 b10010001 b00001000
+ let rshift = bits - n;
+ let lshift = n;
+ let mut prev: Limb = 0;
+ for xi in x.iter_mut() {
+ let tmp = *xi;
+ *xi <<= lshift;
+ *xi |= prev >> rshift;
+ prev = tmp;
+ }
+
+ // Always push the carry, even if it creates a non-normal result.
+ let carry = prev >> rshift;
+ if carry != 0 {
+ x.push(carry);
+ }
+ }
+
+ /// Shift-left `n` digits inside a buffer.
+ ///
+ /// Assumes `n` is not 0.
+ #[inline]
+ pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) {
+ debug_assert!(n != 0);
+ if !x.is_empty() {
+ x.reserve(n);
+ x.splice(..0, iter::repeat(0).take(n));
+ }
+ }
+
+ /// Shift-left buffer by n bits.
+ #[inline]
+ pub fn ishl(x: &mut Vec<Limb>, n: usize) {
+ let bits = mem::size_of::<Limb>() * 8;
+ // Need to pad with zeros for the number of `bits / Limb::BITS`,
+ // and shift-left with carry for `bits % Limb::BITS`.
+ let rem = n % bits;
+ let div = n / bits;
+ ishl_bits(x, rem);
+ if div != 0 {
+ ishl_limbs(x, div);
+ }
+ }
+
+ // NORMALIZE
+
+ /// Normalize the container by popping any leading zeros.
+ #[inline]
+ pub fn normalize(x: &mut Vec<Limb>) {
+ // Remove leading zero if we cause underflow. Since we're dividing
+ // by a small power, we have at max 1 int removed.
+ while x.last() == Some(&0) {
+ x.pop();
+ }
+ }
+} // small
+
+// LARGE
+// -----
+
+// Large-to-large operations, to modify a big integer from a native scalar.
+
+mod large {
+ use super::*;
+
+ // RELATIVE OPERATORS
+
+ /// Compare `x` to `y`, in little-endian order.
+ #[inline]
+ pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
+ if x.len() > y.len() {
+ cmp::Ordering::Greater
+ } else if x.len() < y.len() {
+ cmp::Ordering::Less
+ } else {
+ let iter = x.iter().rev().zip(y.iter().rev());
+ for (&xi, &yi) in iter {
+ if xi > yi {
+ return cmp::Ordering::Greater;
+ } else if xi < yi {
+ return cmp::Ordering::Less;
+ }
+ }
+ // Equal case.
+ cmp::Ordering::Equal
+ }
+ }
+
+ /// Check if x is less than y.
+ #[inline]
+ pub fn less(x: &[Limb], y: &[Limb]) -> bool {
+ compare(x, y) == cmp::Ordering::Less
+ }
+
+ /// Check if x is greater than or equal to y.
+ #[inline]
+ pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool {
+ !less(x, y)
+ }
+
+ // ADDITION
+
+ /// Implied AddAssign implementation for bigints.
+ ///
+ /// Allows us to choose a start-index in x to store, so we can avoid
+ /// padding the buffer with zeros when not needed, optimized for vectors.
+ pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) {
+ // The effective x buffer is from `xstart..x.len()`, so we need to treat
+ // that as the current range. If the effective y buffer is longer, need
+ // to resize to that, + the start index.
+ if y.len() > x.len() - xstart {
+ x.resize(y.len() + xstart, 0);
+ }
+
+ // Iteratively add elements from y to x.
+ let mut carry = false;
+ for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) {
+ // Only one op of the two can overflow, since we added at max
+ // Limb::max_value() + Limb::max_value(). Add the previous carry,
+ // and store the current carry for the next.
+ let mut tmp = scalar::iadd(xi, *yi);
+ if carry {
+ tmp |= scalar::iadd(xi, 1);
+ }
+ carry = tmp;
+ }
+
+ // Overflow from the previous bit.
+ if carry {
+ small::iadd_impl(x, 1, y.len() + xstart);
+ }
+ }
+
+ /// AddAssign bigint to bigint.
+ #[inline]
+ pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) {
+ iadd_impl(x, y, 0);
+ }
+
+ /// Add bigint to bigint.
+ #[inline]
+ pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
+ let mut z = Vec::<Limb>::default();
+ z.extend_from_slice(x);
+ iadd(&mut z, y);
+ z
+ }
+
+ // SUBTRACTION
+
+ /// SubAssign bigint to bigint.
+ pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) {
+ // Basic underflow checks.
+ debug_assert!(greater_equal(x, y));
+
+ // Iteratively add elements from y to x.
+ let mut carry = false;
+ for (xi, yi) in x.iter_mut().zip(y.iter()) {
+ // Only one op of the two can overflow, since we added at max
+ // Limb::max_value() + Limb::max_value(). Add the previous carry,
+ // and store the current carry for the next.
+ let mut tmp = scalar::isub(xi, *yi);
+ if carry {
+ tmp |= scalar::isub(xi, 1);
+ }
+ carry = tmp;
+ }
+
+ if carry {
+ small::isub_impl(x, 1, y.len());
+ } else {
+ small::normalize(x);
+ }
+ }
+
+ // MULTIPLICATION
+
+ /// Number of digits to bottom-out to asymptotically slow algorithms.
+ ///
+ /// Karatsuba tends to out-perform long-multiplication at ~320-640 bits,
+ /// so we go halfway, while Newton division tends to out-perform
+ /// Algorithm D at ~1024 bits. We can toggle this for optimal performance.
+ pub const KARATSUBA_CUTOFF: usize = 32;
+
+ /// Grade-school multiplication algorithm.
+ ///
+ /// Slow, naive algorithm, using limb-bit bases and just shifting left for
+ /// each iteration. This could be optimized with numerous other algorithms,
+ /// but it's extremely simple, and works in O(n*m) time, which is fine
+ /// by me. Each iteration, of which there are `m` iterations, requires
+ /// `n` multiplications, and `n` additions, or grade-school multiplication.
+ fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
+ // Using the immutable value, multiply by all the scalars in y, using
+ // the algorithm defined above. Use a single buffer to avoid
+ // frequent reallocations. Handle the first case to avoid a redundant
+ // addition, since we know y.len() >= 1.
+ let mut z: Vec<Limb> = small::mul(x, y[0]);
+ z.resize(x.len() + y.len(), 0);
+
+ // Handle the iterative cases.
+ for (i, &yi) in y[1..].iter().enumerate() {
+ let zi: Vec<Limb> = small::mul(x, yi);
+ iadd_impl(&mut z, &zi, i + 1);
+ }
+
+ small::normalize(&mut z);
+
+ z
+ }
+
+ /// Split two buffers into halfway, into (lo, hi).
+ #[inline]
+ pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) {
+ (&z[..m], &z[m..])
+ }
+
+ /// Karatsuba multiplication algorithm with roughly equal input sizes.
+ ///
+ /// Assumes `y.len() >= x.len()`.
+ fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
+ if y.len() <= KARATSUBA_CUTOFF {
+ // Bottom-out to long division for small cases.
+ long_mul(x, y)
+ } else if x.len() < y.len() / 2 {
+ karatsuba_uneven_mul(x, y)
+ } else {
+ // Do our 3 multiplications.
+ let m = y.len() / 2;
+ let (xl, xh) = karatsuba_split(x, m);
+ let (yl, yh) = karatsuba_split(y, m);
+ let sumx = add(xl, xh);
+ let sumy = add(yl, yh);
+ let z0 = karatsuba_mul(xl, yl);
+ let mut z1 = karatsuba_mul(&sumx, &sumy);
+ let z2 = karatsuba_mul(xh, yh);
+ // Properly scale z1, which is `z1 - z2 - zo`.
+ isub(&mut z1, &z2);
+ isub(&mut z1, &z0);
+
+ // Create our result, which is equal to, in little-endian order:
+ // [z0, z1 - z2 - z0, z2]
+ // z1 must be shifted m digits (2^(32m)) over.
+ // z2 must be shifted 2*m digits (2^(64m)) over.
+ let len = z0.len().max(m + z1.len()).max(2 * m + z2.len());
+ let mut result = z0;
+ result.reserve_exact(len - result.len());
+ iadd_impl(&mut result, &z1, m);
+ iadd_impl(&mut result, &z2, 2 * m);
+
+ result
+ }
+ }
+
+ /// Karatsuba multiplication algorithm where y is substantially larger than x.
+ ///
+ /// Assumes `y.len() >= x.len()`.
+ fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> {
+ let mut result = Vec::<Limb>::default();
+ result.resize(x.len() + y.len(), 0);
+
+ // This effectively is like grade-school multiplication between
+ // two numbers, except we're using splits on `y`, and the intermediate
+ // step is a Karatsuba multiplication.
+ let mut start = 0;
+ while !y.is_empty() {
+ let m = x.len().min(y.len());
+ let (yl, yh) = karatsuba_split(y, m);
+ let prod = karatsuba_mul(x, yl);
+ iadd_impl(&mut result, &prod, start);
+ y = yh;
+ start += m;
+ }
+ small::normalize(&mut result);
+
+ result
+ }
+
+ /// Forwarder to the proper Karatsuba algorithm.
+ #[inline]
+ fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
+ if x.len() < y.len() {
+ karatsuba_mul(x, y)
+ } else {
+ karatsuba_mul(y, x)
+ }
+ }
+
+ /// MulAssign bigint to bigint.
+ #[inline]
+ pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) {
+ if y.len() == 1 {
+ small::imul(x, y[0]);
+ } else {
+ // We're not really in a condition where using Karatsuba
+ // multiplication makes sense, so we're just going to use long
+ // division. ~20% speedup compared to:
+ // *x = karatsuba_mul_fwd(x, y);
+ *x = karatsuba_mul_fwd(x, y);
+ }
+ }
+} // large
+
+// TRAITS
+// ------
+
+/// Traits for shared operations for big integers.
+///
+/// None of these are implemented using normal traits, since these
+/// are very expensive operations, and we want to deliberately
+/// and explicitly use these functions.
+pub(crate) trait Math: Clone + Sized + Default {
+ // DATA
+
+ /// Get access to the underlying data
+ fn data(&self) -> &Vec<Limb>;
+
+ /// Get access to the underlying data
+ fn data_mut(&mut self) -> &mut Vec<Limb>;
+
+ // RELATIVE OPERATIONS
+
+ /// Compare self to y.
+ #[inline]
+ fn compare(&self, y: &Self) -> cmp::Ordering {
+ large::compare(self.data(), y.data())
+ }
+
+ // PROPERTIES
+
+ /// Get the high 64-bits from the bigint and if there are remaining bits.
+ #[inline]
+ fn hi64(&self) -> (u64, bool) {
+ self.data().as_slice().hi64()
+ }
+
+ /// Calculate the bit-length of the big-integer.
+ /// Returns usize::max_value() if the value overflows,
+ /// IE, if `self.data().len() > usize::max_value() / 8`.
+ #[inline]
+ fn bit_length(&self) -> usize {
+ small::bit_length(self.data())
+ }
+
+ // INTEGER CONVERSIONS
+
+ /// Create new big integer from u64.
+ #[inline]
+ fn from_u64(x: u64) -> Self {
+ let mut v = Self::default();
+ let slc = split_u64(x);
+ v.data_mut().extend_from_slice(&slc);
+ v.normalize();
+ v
+ }
+
+ // NORMALIZE
+
+ /// Normalize the integer, so any leading zero values are removed.
+ #[inline]
+ fn normalize(&mut self) {
+ small::normalize(self.data_mut());
+ }
+
+ // ADDITION
+
+ /// AddAssign small integer.
+ #[inline]
+ fn iadd_small(&mut self, y: Limb) {
+ small::iadd(self.data_mut(), y);
+ }
+
+ // MULTIPLICATION
+
+ /// MulAssign small integer.
+ #[inline]
+ fn imul_small(&mut self, y: Limb) {
+ small::imul(self.data_mut(), y);
+ }
+
+ /// Multiply by a power of 2.
+ #[inline]
+ fn imul_pow2(&mut self, n: u32) {
+ self.ishl(n as usize);
+ }
+
+ /// Multiply by a power of 5.
+ #[inline]
+ fn imul_pow5(&mut self, n: u32) {
+ small::imul_pow5(self.data_mut(), n);
+ }
+
+ /// MulAssign by a power of 10.
+ #[inline]
+ fn imul_pow10(&mut self, n: u32) {
+ self.imul_pow5(n);
+ self.imul_pow2(n);
+ }
+
+ // SHIFTS
+
+ /// Shift-left the entire buffer n bits.
+ #[inline]
+ fn ishl(&mut self, n: usize) {
+ small::ishl(self.data_mut(), n);
+ }
+}