summaryrefslogtreecommitdiffstats
path: root/toolkit/components/protobuf/src/google/protobuf/map.h
diff options
context:
space:
mode:
Diffstat (limited to 'toolkit/components/protobuf/src/google/protobuf/map.h')
-rw-r--r--toolkit/components/protobuf/src/google/protobuf/map.h1448
1 files changed, 1448 insertions, 0 deletions
diff --git a/toolkit/components/protobuf/src/google/protobuf/map.h b/toolkit/components/protobuf/src/google/protobuf/map.h
new file mode 100644
index 0000000000..008c192253
--- /dev/null
+++ b/toolkit/components/protobuf/src/google/protobuf/map.h
@@ -0,0 +1,1448 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// This file defines the map container and its helpers to support protobuf maps.
+//
+// The Map and MapIterator types are provided by this header file.
+// Please avoid using other types defined here, unless they are public
+// types within Map or MapIterator, such as Map::value_type.
+
+#ifndef GOOGLE_PROTOBUF_MAP_H__
+#define GOOGLE_PROTOBUF_MAP_H__
+
+
+#include <functional>
+#include <initializer_list>
+#include <iterator>
+#include <limits> // To support Visual Studio 2008
+#include <map>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+#if defined(__cpp_lib_string_view)
+#include <string_view>
+#endif // defined(__cpp_lib_string_view)
+
+#if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__)
+#include <mach/mach_time.h>
+#endif
+
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/arena.h>
+#include <google/protobuf/generated_enum_util.h>
+#include <google/protobuf/map_type_handler.h>
+#include <google/protobuf/port.h>
+#include <google/protobuf/stubs/hash.h>
+
+#ifdef SWIG
+#error "You cannot SWIG proto headers"
+#endif
+
+// Must be included last.
+#include <google/protobuf/port_def.inc>
+
+namespace google {
+namespace protobuf {
+
+template <typename Key, typename T>
+class Map;
+
+class MapIterator;
+
+template <typename Enum>
+struct is_proto_enum;
+
+namespace internal {
+template <typename Derived, typename Key, typename T,
+ WireFormatLite::FieldType key_wire_type,
+ WireFormatLite::FieldType value_wire_type>
+class MapFieldLite;
+
+template <typename Derived, typename Key, typename T,
+ WireFormatLite::FieldType key_wire_type,
+ WireFormatLite::FieldType value_wire_type>
+class MapField;
+
+template <typename Key, typename T>
+class TypeDefinedMapFieldBase;
+
+class DynamicMapField;
+
+class GeneratedMessageReflection;
+
+// re-implement std::allocator to use arena allocator for memory allocation.
+// Used for Map implementation. Users should not use this class
+// directly.
+template <typename U>
+class MapAllocator {
+ public:
+ using value_type = U;
+ using pointer = value_type*;
+ using const_pointer = const value_type*;
+ using reference = value_type&;
+ using const_reference = const value_type&;
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+
+ constexpr MapAllocator() : arena_(nullptr) {}
+ explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
+ template <typename X>
+ MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit)
+ : arena_(allocator.arena()) {}
+
+ // MapAllocator does not support alignments beyond 8. Technically we should
+ // support up to std::max_align_t, but this fails with ubsan and tcmalloc
+ // debug allocation logic which assume 8 as default alignment.
+ static_assert(alignof(value_type) <= 8, "");
+
+ pointer allocate(size_type n, const void* /* hint */ = nullptr) {
+ // If arena is not given, malloc needs to be called which doesn't
+ // construct element object.
+ if (arena_ == nullptr) {
+ return static_cast<pointer>(::operator new(n * sizeof(value_type)));
+ } else {
+ return reinterpret_cast<pointer>(
+ Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
+ }
+ }
+
+ void deallocate(pointer p, size_type n) {
+ if (arena_ == nullptr) {
+ internal::SizedDelete(p, n * sizeof(value_type));
+ }
+ }
+
+#if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
+ !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
+ template <class NodeType, class... Args>
+ void construct(NodeType* p, Args&&... args) {
+ // Clang 3.6 doesn't compile static casting to void* directly. (Issue
+ // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
+ // not cast away constness". So first the maybe const pointer is casted to
+ // const void* and after the const void* is const casted.
+ new (const_cast<void*>(static_cast<const void*>(p)))
+ NodeType(std::forward<Args>(args)...);
+ }
+
+ template <class NodeType>
+ void destroy(NodeType* p) {
+ p->~NodeType();
+ }
+#else
+ void construct(pointer p, const_reference t) { new (p) value_type(t); }
+
+ void destroy(pointer p) { p->~value_type(); }
+#endif
+
+ template <typename X>
+ struct rebind {
+ using other = MapAllocator<X>;
+ };
+
+ template <typename X>
+ bool operator==(const MapAllocator<X>& other) const {
+ return arena_ == other.arena_;
+ }
+
+ template <typename X>
+ bool operator!=(const MapAllocator<X>& other) const {
+ return arena_ != other.arena_;
+ }
+
+ // To support Visual Studio 2008
+ size_type max_size() const {
+ // parentheses around (std::...:max) prevents macro warning of max()
+ return (std::numeric_limits<size_type>::max)();
+ }
+
+ // To support gcc-4.4, which does not properly
+ // support templated friend classes
+ Arena* arena() const { return arena_; }
+
+ private:
+ using DestructorSkippable_ = void;
+ Arena* arena_;
+};
+
+template <typename T>
+using KeyForTree =
+ typename std::conditional<std::is_scalar<T>::value, T,
+ std::reference_wrapper<const T>>::type;
+
+// Default case: Not transparent.
+// We use std::hash<key_type>/std::less<key_type> and all the lookup functions
+// only accept `key_type`.
+template <typename key_type>
+struct TransparentSupport {
+ using hash = std::hash<key_type>;
+ using less = std::less<key_type>;
+
+ static bool Equals(const key_type& a, const key_type& b) { return a == b; }
+
+ template <typename K>
+ using key_arg = key_type;
+};
+
+#if defined(__cpp_lib_string_view)
+// If std::string_view is available, we add transparent support for std::string
+// keys. We use std::hash<std::string_view> as it supports the input types we
+// care about. The lookup functions accept arbitrary `K`. This will include any
+// key type that is convertible to std::string_view.
+template <>
+struct TransparentSupport<std::string> {
+ static std::string_view ImplicitConvert(std::string_view str) { return str; }
+ // If the element is not convertible to std::string_view, try to convert to
+ // std::string first.
+ // The template makes this overload lose resolution when both have the same
+ // rank otherwise.
+ template <typename = void>
+ static std::string_view ImplicitConvert(const std::string& str) {
+ return str;
+ }
+
+ struct hash : private std::hash<std::string_view> {
+ using is_transparent = void;
+
+ template <typename T>
+ size_t operator()(const T& str) const {
+ return base()(ImplicitConvert(str));
+ }
+
+ private:
+ const std::hash<std::string_view>& base() const { return *this; }
+ };
+ struct less {
+ using is_transparent = void;
+
+ template <typename T, typename U>
+ bool operator()(const T& t, const U& u) const {
+ return ImplicitConvert(t) < ImplicitConvert(u);
+ }
+ };
+
+ template <typename T, typename U>
+ static bool Equals(const T& t, const U& u) {
+ return ImplicitConvert(t) == ImplicitConvert(u);
+ }
+
+ template <typename K>
+ using key_arg = K;
+};
+#endif // defined(__cpp_lib_string_view)
+
+template <typename Key>
+using TreeForMap =
+ std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
+ MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;
+
+inline bool TableEntryIsEmpty(void* const* table, size_t b) {
+ return table[b] == nullptr;
+}
+inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
+ return table[b] != nullptr && table[b] != table[b ^ 1];
+}
+inline bool TableEntryIsTree(void* const* table, size_t b) {
+ return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
+}
+inline bool TableEntryIsList(void* const* table, size_t b) {
+ return !TableEntryIsTree(table, b);
+}
+
+// This captures all numeric types.
+inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
+inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
+ return StringSpaceUsedExcludingSelfLong(str);
+}
+template <typename T,
+ typename = decltype(std::declval<const T&>().SpaceUsedLong())>
+size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
+ return message.SpaceUsedLong() - sizeof(T);
+}
+
+constexpr size_t kGlobalEmptyTableSize = 1;
+PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];
+
+// Space used for the table, trees, and nodes.
+// Does not include the indirect space used. Eg the data of a std::string.
+template <typename Key>
+PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
+ size_t num_elements,
+ size_t sizeof_node) {
+ size_t size = 0;
+ // The size of the table.
+ size += sizeof(void*) * num_buckets;
+ // All the nodes.
+ size += sizeof_node * num_elements;
+ // For each tree, count the overhead of the those nodes.
+ // Two buckets at a time because we only care about trees.
+ for (size_t b = 0; b < num_buckets; b += 2) {
+ if (internal::TableEntryIsTree(table, b)) {
+ using Tree = TreeForMap<Key>;
+ Tree* tree = static_cast<Tree*>(table[b]);
+ // Estimated cost of the red-black tree nodes, 3 pointers plus a
+ // bool (plus alignment, so 4 pointers).
+ size += tree->size() *
+ (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
+ }
+ }
+ return size;
+}
+
+template <typename Map,
+ typename = typename std::enable_if<
+ !std::is_scalar<typename Map::key_type>::value ||
+ !std::is_scalar<typename Map::mapped_type>::value>::type>
+size_t SpaceUsedInValues(const Map* map) {
+ size_t size = 0;
+ for (const auto& v : *map) {
+ size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
+ internal::MapValueSpaceUsedExcludingSelfLong(v.second);
+ }
+ return size;
+}
+
+inline size_t SpaceUsedInValues(const void*) { return 0; }
+
+} // namespace internal
+
+// This is the class for Map's internal value_type. Instead of using
+// std::pair as value_type, we use this class which provides us more control of
+// its process of construction and destruction.
+template <typename Key, typename T>
+struct PROTOBUF_ATTRIBUTE_STANDALONE_DEBUG MapPair {
+ using first_type = const Key;
+ using second_type = T;
+
+ MapPair(const Key& other_first, const T& other_second)
+ : first(other_first), second(other_second) {}
+ explicit MapPair(const Key& other_first) : first(other_first), second() {}
+ explicit MapPair(Key&& other_first)
+ : first(std::move(other_first)), second() {}
+ MapPair(const MapPair& other) : first(other.first), second(other.second) {}
+
+ ~MapPair() {}
+
+ // Implicitly convertible to std::pair of compatible types.
+ template <typename T1, typename T2>
+ operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit)
+ return std::pair<T1, T2>(first, second);
+ }
+
+ const Key first;
+ T second;
+
+ private:
+ friend class Arena;
+ friend class Map<Key, T>;
+};
+
+// Map is an associative container type used to store protobuf map
+// fields. Each Map instance may or may not use a different hash function, a
+// different iteration order, and so on. E.g., please don't examine
+// implementation details to decide if the following would work:
+// Map<int, int> m0, m1;
+// m0[0] = m1[0] = m0[1] = m1[1] = 0;
+// assert(m0.begin()->first == m1.begin()->first); // Bug!
+//
+// Map's interface is similar to std::unordered_map, except that Map is not
+// designed to play well with exceptions.
+template <typename Key, typename T>
+class Map {
+ public:
+ using key_type = Key;
+ using mapped_type = T;
+ using value_type = MapPair<Key, T>;
+
+ using pointer = value_type*;
+ using const_pointer = const value_type*;
+ using reference = value_type&;
+ using const_reference = const value_type&;
+
+ using size_type = size_t;
+ using hasher = typename internal::TransparentSupport<Key>::hash;
+
+ constexpr Map() : elements_(nullptr) {}
+ explicit Map(Arena* arena) : elements_(arena) {}
+
+ Map(const Map& other) : Map() { insert(other.begin(), other.end()); }
+
+ Map(Map&& other) noexcept : Map() {
+ if (other.arena() != nullptr) {
+ *this = other;
+ } else {
+ swap(other);
+ }
+ }
+
+ Map& operator=(Map&& other) noexcept {
+ if (this != &other) {
+ if (arena() != other.arena()) {
+ *this = other;
+ } else {
+ swap(other);
+ }
+ }
+ return *this;
+ }
+
+ template <class InputIt>
+ Map(const InputIt& first, const InputIt& last) : Map() {
+ insert(first, last);
+ }
+
+ ~Map() {}
+
+ private:
+ using Allocator = internal::MapAllocator<void*>;
+
+ // InnerMap is a generic hash-based map. It doesn't contain any
+ // protocol-buffer-specific logic. It is a chaining hash map with the
+ // additional feature that some buckets can be converted to use an ordered
+ // container. This ensures O(lg n) bounds on find, insert, and erase, while
+ // avoiding the overheads of ordered containers most of the time.
+ //
+ // The implementation doesn't need the full generality of unordered_map,
+ // and it doesn't have it. More bells and whistles can be added as needed.
+ // Some implementation details:
+ // 1. The hash function has type hasher and the equality function
+ // equal_to<Key>. We inherit from hasher to save space
+ // (empty-base-class optimization).
+ // 2. The number of buckets is a power of two.
+ // 3. Buckets are converted to trees in pairs: if we convert bucket b then
+ // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have
+ // the same non-null value iff they are sharing a tree. (An alternative
+ // implementation strategy would be to have a tag bit per bucket.)
+ // 4. As is typical for hash_map and such, the Keys and Values are always
+ // stored in linked list nodes. Pointers to elements are never invalidated
+ // until the element is deleted.
+ // 5. The trees' payload type is pointer to linked-list node. Tree-converting
+ // a bucket doesn't copy Key-Value pairs.
+ // 6. Once we've tree-converted a bucket, it is never converted back. However,
+ // the items a tree contains may wind up assigned to trees or lists upon a
+ // rehash.
+ // 7. The code requires no C++ features from C++14 or later.
+ // 8. Mutations to a map do not invalidate the map's iterators, pointers to
+ // elements, or references to elements.
+ // 9. Except for erase(iterator), any non-const method can reorder iterators.
+ // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
+ // is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
+ // otherwise. This avoids unnecessary copies of string keys, for example.
+ class InnerMap : private hasher {
+ public:
+ explicit constexpr InnerMap(Arena* arena)
+ : hasher(),
+ num_elements_(0),
+ num_buckets_(internal::kGlobalEmptyTableSize),
+ seed_(0),
+ index_of_first_non_null_(internal::kGlobalEmptyTableSize),
+ table_(const_cast<void**>(internal::kGlobalEmptyTable)),
+ alloc_(arena) {}
+
+ ~InnerMap() {
+ if (alloc_.arena() == nullptr &&
+ num_buckets_ != internal::kGlobalEmptyTableSize) {
+ clear();
+ Dealloc<void*>(table_, num_buckets_);
+ }
+ }
+
+ private:
+ enum { kMinTableSize = 8 };
+
+ // Linked-list nodes, as one would expect for a chaining hash table.
+ struct Node {
+ value_type kv;
+ Node* next;
+ };
+
+ // Trees. The payload type is a copy of Key, so that we can query the tree
+ // with Keys that are not in any particular data structure.
+ // The value is a void* pointing to Node. We use void* instead of Node* to
+ // avoid code bloat. That way there is only one instantiation of the tree
+ // class per key type.
+ using Tree = internal::TreeForMap<Key>;
+ using TreeIterator = typename Tree::iterator;
+
+ static Node* NodeFromTreeIterator(TreeIterator it) {
+ return static_cast<Node*>(it->second);
+ }
+
+ // iterator and const_iterator are instantiations of iterator_base.
+ template <typename KeyValueType>
+ class iterator_base {
+ public:
+ using reference = KeyValueType&;
+ using pointer = KeyValueType*;
+
+ // Invariants:
+ // node_ is always correct. This is handy because the most common
+ // operations are operator* and operator-> and they only use node_.
+ // When node_ is set to a non-null value, all the other non-const fields
+ // are updated to be correct also, but those fields can become stale
+ // if the underlying map is modified. When those fields are needed they
+ // are rechecked, and updated if necessary.
+ iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}
+
+ explicit iterator_base(const InnerMap* m) : m_(m) {
+ SearchFrom(m->index_of_first_non_null_);
+ }
+
+ // Any iterator_base can convert to any other. This is overkill, and we
+ // rely on the enclosing class to use it wisely. The standard "iterator
+ // can convert to const_iterator" is OK but the reverse direction is not.
+ template <typename U>
+ explicit iterator_base(const iterator_base<U>& it)
+ : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
+
+ iterator_base(Node* n, const InnerMap* m, size_type index)
+ : node_(n), m_(m), bucket_index_(index) {}
+
+ iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
+ : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
+ // Invariant: iterators that use buckets with trees have an even
+ // bucket_index_.
+ GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
+ }
+
+ // Advance through buckets, looking for the first that isn't empty.
+ // If nothing non-empty is found then leave node_ == nullptr.
+ void SearchFrom(size_type start_bucket) {
+ GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
+ m_->table_[m_->index_of_first_non_null_] != nullptr);
+ node_ = nullptr;
+ for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
+ bucket_index_++) {
+ if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
+ node_ = static_cast<Node*>(m_->table_[bucket_index_]);
+ break;
+ } else if (m_->TableEntryIsTree(bucket_index_)) {
+ Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
+ GOOGLE_DCHECK(!tree->empty());
+ node_ = NodeFromTreeIterator(tree->begin());
+ break;
+ }
+ }
+ }
+
+ reference operator*() const { return node_->kv; }
+ pointer operator->() const { return &(operator*()); }
+
+ friend bool operator==(const iterator_base& a, const iterator_base& b) {
+ return a.node_ == b.node_;
+ }
+ friend bool operator!=(const iterator_base& a, const iterator_base& b) {
+ return a.node_ != b.node_;
+ }
+
+ iterator_base& operator++() {
+ if (node_->next == nullptr) {
+ TreeIterator tree_it;
+ const bool is_list = revalidate_if_necessary(&tree_it);
+ if (is_list) {
+ SearchFrom(bucket_index_ + 1);
+ } else {
+ GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
+ Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
+ if (++tree_it == tree->end()) {
+ SearchFrom(bucket_index_ + 2);
+ } else {
+ node_ = NodeFromTreeIterator(tree_it);
+ }
+ }
+ } else {
+ node_ = node_->next;
+ }
+ return *this;
+ }
+
+ iterator_base operator++(int /* unused */) {
+ iterator_base tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ // Assumes node_ and m_ are correct and non-null, but other fields may be
+ // stale. Fix them as needed. Then return true iff node_ points to a
+ // Node in a list. If false is returned then *it is modified to be
+ // a valid iterator for node_.
+ bool revalidate_if_necessary(TreeIterator* it) {
+ GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
+ // Force bucket_index_ to be in range.
+ bucket_index_ &= (m_->num_buckets_ - 1);
+ // Common case: the bucket we think is relevant points to node_.
+ if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
+ // Less common: the bucket is a linked list with node_ somewhere in it,
+ // but not at the head.
+ if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
+ Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
+ while ((l = l->next) != nullptr) {
+ if (l == node_) {
+ return true;
+ }
+ }
+ }
+ // Well, bucket_index_ still might be correct, but probably
+ // not. Revalidate just to be sure. This case is rare enough that we
+ // don't worry about potential optimizations, such as having a custom
+ // find-like method that compares Node* instead of the key.
+ iterator_base i(m_->find(node_->kv.first, it));
+ bucket_index_ = i.bucket_index_;
+ return m_->TableEntryIsList(bucket_index_);
+ }
+
+ Node* node_;
+ const InnerMap* m_;
+ size_type bucket_index_;
+ };
+
+ public:
+ using iterator = iterator_base<value_type>;
+ using const_iterator = iterator_base<const value_type>;
+
+ Arena* arena() const { return alloc_.arena(); }
+
+ void Swap(InnerMap* other) {
+ std::swap(num_elements_, other->num_elements_);
+ std::swap(num_buckets_, other->num_buckets_);
+ std::swap(seed_, other->seed_);
+ std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
+ std::swap(table_, other->table_);
+ std::swap(alloc_, other->alloc_);
+ }
+
+ iterator begin() { return iterator(this); }
+ iterator end() { return iterator(); }
+ const_iterator begin() const { return const_iterator(this); }
+ const_iterator end() const { return const_iterator(); }
+
+ void clear() {
+ for (size_type b = 0; b < num_buckets_; b++) {
+ if (TableEntryIsNonEmptyList(b)) {
+ Node* node = static_cast<Node*>(table_[b]);
+ table_[b] = nullptr;
+ do {
+ Node* next = node->next;
+ DestroyNode(node);
+ node = next;
+ } while (node != nullptr);
+ } else if (TableEntryIsTree(b)) {
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
+ table_[b] = table_[b + 1] = nullptr;
+ typename Tree::iterator tree_it = tree->begin();
+ do {
+ Node* node = NodeFromTreeIterator(tree_it);
+ typename Tree::iterator next = tree_it;
+ ++next;
+ tree->erase(tree_it);
+ DestroyNode(node);
+ tree_it = next;
+ } while (tree_it != tree->end());
+ DestroyTree(tree);
+ b++;
+ }
+ }
+ num_elements_ = 0;
+ index_of_first_non_null_ = num_buckets_;
+ }
+
+ const hasher& hash_function() const { return *this; }
+
+ static size_type max_size() {
+ return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
+ }
+ size_type size() const { return num_elements_; }
+ bool empty() const { return size() == 0; }
+
+ template <typename K>
+ iterator find(const K& k) {
+ return iterator(FindHelper(k).first);
+ }
+
+ template <typename K>
+ const_iterator find(const K& k) const {
+ return FindHelper(k).first;
+ }
+
+ // Inserts a new element into the container if there is no element with the
+ // key in the container.
+ // The new element is:
+ // (1) Constructed in-place with the given args, if mapped_type is not
+ // arena constructible.
+ // (2) Constructed in-place with the arena and then assigned with a
+ // mapped_type temporary constructed with the given args, otherwise.
+ template <typename K, typename... Args>
+ std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
+ return ArenaAwareTryEmplace(Arena::is_arena_constructable<mapped_type>(),
+ std::forward<K>(k),
+ std::forward<Args>(args)...);
+ }
+
+ // Inserts the key into the map, if not present. In that case, the value
+ // will be value initialized.
+ template <typename K>
+ std::pair<iterator, bool> insert(K&& k) {
+ return try_emplace(std::forward<K>(k));
+ }
+
+ template <typename K>
+ value_type& operator[](K&& k) {
+ return *try_emplace(std::forward<K>(k)).first;
+ }
+
+ void erase(iterator it) {
+ GOOGLE_DCHECK_EQ(it.m_, this);
+ typename Tree::iterator tree_it;
+ const bool is_list = it.revalidate_if_necessary(&tree_it);
+ size_type b = it.bucket_index_;
+ Node* const item = it.node_;
+ if (is_list) {
+ GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
+ Node* head = static_cast<Node*>(table_[b]);
+ head = EraseFromLinkedList(item, head);
+ table_[b] = static_cast<void*>(head);
+ } else {
+ GOOGLE_DCHECK(TableEntryIsTree(b));
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ tree->erase(tree_it);
+ if (tree->empty()) {
+ // Force b to be the minimum of b and b ^ 1. This is important
+ // only because we want index_of_first_non_null_ to be correct.
+ b &= ~static_cast<size_type>(1);
+ DestroyTree(tree);
+ table_[b] = table_[b + 1] = nullptr;
+ }
+ }
+ DestroyNode(item);
+ --num_elements_;
+ if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
+ while (index_of_first_non_null_ < num_buckets_ &&
+ table_[index_of_first_non_null_] == nullptr) {
+ ++index_of_first_non_null_;
+ }
+ }
+ }
+
+ size_t SpaceUsedInternal() const {
+ return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
+ num_elements_, sizeof(Node));
+ }
+
+ private:
+ template <typename K, typename... Args>
+ std::pair<iterator, bool> TryEmplaceInternal(K&& k, Args&&... args) {
+ std::pair<const_iterator, size_type> p = FindHelper(k);
+ // Case 1: key was already present.
+ if (p.first.node_ != nullptr)
+ return std::make_pair(iterator(p.first), false);
+ // Case 2: insert.
+ if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
+ p = FindHelper(k);
+ }
+ const size_type b = p.second; // bucket number
+ // If K is not key_type, make the conversion to key_type explicit.
+ using TypeToInit = typename std::conditional<
+ std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
+ key_type>::type;
+ Node* node = Alloc<Node>(1);
+ // Even when arena is nullptr, CreateInArenaStorage is still used to
+ // ensure the arena of submessage will be consistent. Otherwise,
+ // submessage may have its own arena when message-owned arena is enabled.
+ // Note: This only works if `Key` is not arena constructible.
+ Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
+ alloc_.arena(),
+ static_cast<TypeToInit>(std::forward<K>(k)));
+ // Note: if `T` is arena constructible, `Args` needs to be empty.
+ Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena(),
+ std::forward<Args>(args)...);
+
+ iterator result = InsertUnique(b, node);
+ ++num_elements_;
+ return std::make_pair(result, true);
+ }
+
+ // A helper function to perform an assignment of `mapped_type`.
+ // If the first argument is true, then it is a regular assignment.
+ // Otherwise, we first create a temporary and then perform an assignment.
+ template <typename V>
+ static void AssignMapped(std::true_type, mapped_type& mapped, V&& v) {
+ mapped = std::forward<V>(v);
+ }
+ template <typename... Args>
+ static void AssignMapped(std::false_type, mapped_type& mapped,
+ Args&&... args) {
+ mapped = mapped_type(std::forward<Args>(args)...);
+ }
+
+ // Case 1: `mapped_type` is arena constructible. A temporary object is
+ // created and then (if `Args` are not empty) assigned to a mapped value
+ // that was created with the arena.
+ template <typename K>
+ std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k) {
+ // case 1.1: "default" constructed (e.g. from arena only).
+ return TryEmplaceInternal(std::forward<K>(k));
+ }
+ template <typename K, typename... Args>
+ std::pair<iterator, bool> ArenaAwareTryEmplace(std::true_type, K&& k,
+ Args&&... args) {
+ // case 1.2: "default" constructed + copy/move assignment
+ auto p = TryEmplaceInternal(std::forward<K>(k));
+ if (p.second) {
+ AssignMapped(std::is_same<void(typename std::decay<Args>::type...),
+ void(mapped_type)>(),
+ p.first->second, std::forward<Args>(args)...);
+ }
+ return p;
+ }
+ // Case 2: `mapped_type` is not arena constructible. Using in-place
+ // construction.
+ template <typename... Args>
+ std::pair<iterator, bool> ArenaAwareTryEmplace(std::false_type,
+ Args&&... args) {
+ return TryEmplaceInternal(std::forward<Args>(args)...);
+ }
+
+ const_iterator find(const Key& k, TreeIterator* it) const {
+ return FindHelper(k, it).first;
+ }
+ template <typename K>
+ std::pair<const_iterator, size_type> FindHelper(const K& k) const {
+ return FindHelper(k, nullptr);
+ }
+ template <typename K>
+ std::pair<const_iterator, size_type> FindHelper(const K& k,
+ TreeIterator* it) const {
+ size_type b = BucketNumber(k);
+ if (TableEntryIsNonEmptyList(b)) {
+ Node* node = static_cast<Node*>(table_[b]);
+ do {
+ if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
+ return std::make_pair(const_iterator(node, this, b), b);
+ } else {
+ node = node->next;
+ }
+ } while (node != nullptr);
+ } else if (TableEntryIsTree(b)) {
+ GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
+ b &= ~static_cast<size_t>(1);
+ Tree* tree = static_cast<Tree*>(table_[b]);
+ auto tree_it = tree->find(k);
+ if (tree_it != tree->end()) {
+ if (it != nullptr) *it = tree_it;
+ return std::make_pair(const_iterator(tree_it, this, b), b);
+ }
+ }
+ return std::make_pair(end(), b);
+ }
+
+ // Insert the given Node in bucket b. If that would make bucket b too big,
+ // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
+ // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
+ // bucket. num_elements_ is not modified.
+ iterator InsertUnique(size_type b, Node* node) {
+ GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
+ table_[index_of_first_non_null_] != nullptr);
+ // In practice, the code that led to this point may have already
+ // determined whether we are inserting into an empty list, a short list,
+ // or whatever. But it's probably cheap enough to recompute that here;
+ // it's likely that we're inserting into an empty or short list.
+ iterator result;
+ GOOGLE_DCHECK(find(node->kv.first) == end());
+ if (TableEntryIsEmpty(b)) {
+ result = InsertUniqueInList(b, node);
+ } else if (TableEntryIsNonEmptyList(b)) {
+ if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
+ TreeConvert(b);
+ result = InsertUniqueInTree(b, node);
+ GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
+ } else {
+ // Insert into a pre-existing list. This case cannot modify
+ // index_of_first_non_null_, so we skip the code to update it.
+ return InsertUniqueInList(b, node);
+ }
+ } else {
+ // Insert into a pre-existing tree. This case cannot modify
+ // index_of_first_non_null_, so we skip the code to update it.
+ return InsertUniqueInTree(b, node);
+ }
+ // parentheses around (std::min) prevents macro expansion of min(...)
+ index_of_first_non_null_ =
+ (std::min)(index_of_first_non_null_, result.bucket_index_);
+ return result;
+ }
+
+ // Returns whether we should insert after the head of the list. For
+ // non-optimized builds, we randomly decide whether to insert right at the
+ // head of the list or just after the head. This helps add a little bit of
+ // non-determinism to the map ordering.
+ bool ShouldInsertAfterHead(void* node) {
+#ifdef NDEBUG
+ (void)node;
+ return false;
+#else
+ // Doing modulo with a prime mixes the bits more.
+ return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
+#endif
+ }
+
+ // Helper for InsertUnique. Handles the case where bucket b is a
+ // not-too-long linked list.
+ iterator InsertUniqueInList(size_type b, Node* node) {
+ if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
+ Node* first = static_cast<Node*>(table_[b]);
+ node->next = first->next;
+ first->next = node;
+ return iterator(node, this, b);
+ }
+
+ node->next = static_cast<Node*>(table_[b]);
+ table_[b] = static_cast<void*>(node);
+ return iterator(node, this, b);
+ }
+
+ // Helper for InsertUnique. Handles the case where bucket b points to a
+ // Tree.
+ iterator InsertUniqueInTree(size_type b, Node* node) {
+ GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
+ // Maintain the invariant that node->next is null for all Nodes in Trees.
+ node->next = nullptr;
+ return iterator(
+ static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
+ this, b & ~static_cast<size_t>(1));
+ }
+
+ // Returns whether it did resize. Currently this is only used when
+ // num_elements_ increases, though it could be used in other situations.
+ // It checks for load too low as well as load too high: because any number
+ // of erases can occur between inserts, the load could be as low as 0 here.
+ // Resizing to a lower size is not always helpful, but failing to do so can
+ // destroy the expected big-O bounds for some operations. By having the
+ // policy that sometimes we resize down as well as up, clients can easily
+ // keep O(size()) = O(number of buckets) if they want that.
+ bool ResizeIfLoadIsOutOfRange(size_type new_size) {
+ const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff
+ const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
+ const size_type lo_cutoff = hi_cutoff / 4;
+ // We don't care how many elements are in trees. If a lot are,
+ // we may resize even though there are many empty buckets. In
+ // practice, this seems fine.
+ if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
+ if (num_buckets_ <= max_size() / 2) {
+ Resize(num_buckets_ * 2);
+ return true;
+ }
+ } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
+ num_buckets_ > kMinTableSize)) {
+ size_type lg2_of_size_reduction_factor = 1;
+ // It's possible we want to shrink a lot here... size() could even be 0.
+ // So, estimate how much to shrink by making sure we don't shrink so
+ // much that we would need to grow the table after a few inserts.
+ const size_type hypothetical_size = new_size * 5 / 4 + 1;
+ while ((hypothetical_size << lg2_of_size_reduction_factor) <
+ hi_cutoff) {
+ ++lg2_of_size_reduction_factor;
+ }
+ size_type new_num_buckets = std::max<size_type>(
+ kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
+ if (new_num_buckets != num_buckets_) {
+ Resize(new_num_buckets);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // Resize to the given number of buckets.
+ void Resize(size_t new_num_buckets) {
+ if (num_buckets_ == internal::kGlobalEmptyTableSize) {
+ // This is the global empty array.
+ // Just overwrite with a new one. No need to transfer or free anything.
+ num_buckets_ = index_of_first_non_null_ = kMinTableSize;
+ table_ = CreateEmptyTable(num_buckets_);
+ seed_ = Seed();
+ return;
+ }
+
+ GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
+ void** const old_table = table_;
+ const size_type old_table_size = num_buckets_;
+ num_buckets_ = new_num_buckets;
+ table_ = CreateEmptyTable(num_buckets_);
+ const size_type start = index_of_first_non_null_;
+ index_of_first_non_null_ = num_buckets_;
+ for (size_type i = start; i < old_table_size; i++) {
+ if (internal::TableEntryIsNonEmptyList(old_table, i)) {
+ TransferList(old_table, i);
+ } else if (internal::TableEntryIsTree(old_table, i)) {
+ TransferTree(old_table, i++);
+ }
+ }
+ Dealloc<void*>(old_table, old_table_size);
+ }
+
+ void TransferList(void* const* table, size_type index) {
+ Node* node = static_cast<Node*>(table[index]);
+ do {
+ Node* next = node->next;
+ InsertUnique(BucketNumber(node->kv.first), node);
+ node = next;
+ } while (node != nullptr);
+ }
+
+ void TransferTree(void* const* table, size_type index) {
+ Tree* tree = static_cast<Tree*>(table[index]);
+ typename Tree::iterator tree_it = tree->begin();
+ do {
+ InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
+ NodeFromTreeIterator(tree_it));
+ } while (++tree_it != tree->end());
+ DestroyTree(tree);
+ }
+
+ Node* EraseFromLinkedList(Node* item, Node* head) {
+ if (head == item) {
+ return head->next;
+ } else {
+ head->next = EraseFromLinkedList(item, head->next);
+ return head;
+ }
+ }
+
+ bool TableEntryIsEmpty(size_type b) const {
+ return internal::TableEntryIsEmpty(table_, b);
+ }
+ bool TableEntryIsNonEmptyList(size_type b) const {
+ return internal::TableEntryIsNonEmptyList(table_, b);
+ }
+ bool TableEntryIsTree(size_type b) const {
+ return internal::TableEntryIsTree(table_, b);
+ }
+ bool TableEntryIsList(size_type b) const {
+ return internal::TableEntryIsList(table_, b);
+ }
+
+ void TreeConvert(size_type b) {
+ GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
+ Tree* tree =
+ Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
+ typename Tree::allocator_type(alloc_));
+ size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
+ GOOGLE_DCHECK_EQ(count, tree->size());
+ table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
+ }
+
+ // Copy a linked list in the given bucket to a tree.
+ // Returns the number of things it copied.
+ size_type CopyListToTree(size_type b, Tree* tree) {
+ size_type count = 0;
+ Node* node = static_cast<Node*>(table_[b]);
+ while (node != nullptr) {
+ tree->insert({node->kv.first, node});
+ ++count;
+ Node* next = node->next;
+ node->next = nullptr;
+ node = next;
+ }
+ return count;
+ }
+
+ // Return whether table_[b] is a linked list that seems awfully long.
+ // Requires table_[b] to point to a non-empty linked list.
+ bool TableEntryIsTooLong(size_type b) {
+ const size_type kMaxLength = 8;
+ size_type count = 0;
+ Node* node = static_cast<Node*>(table_[b]);
+ do {
+ ++count;
+ node = node->next;
+ } while (node != nullptr);
+ // Invariant: no linked list ever is more than kMaxLength in length.
+ GOOGLE_DCHECK_LE(count, kMaxLength);
+ return count >= kMaxLength;
+ }
+
+ template <typename K>
+ size_type BucketNumber(const K& k) const {
+ // We xor the hash value against the random seed so that we effectively
+ // have a random hash function.
+ uint64_t h = hash_function()(k) ^ seed_;
+
+ // We use the multiplication method to determine the bucket number from
+ // the hash value. The constant kPhi (suggested by Knuth) is roughly
+ // (sqrt(5) - 1) / 2 * 2^64.
+ constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
+ return ((kPhi * h) >> 32) & (num_buckets_ - 1);
+ }
+
+ // Return a power of two no less than max(kMinTableSize, n).
+ // Assumes either n < kMinTableSize or n is a power of two.
+ size_type TableSize(size_type n) {
+ return n < static_cast<size_type>(kMinTableSize)
+ ? static_cast<size_type>(kMinTableSize)
+ : n;
+ }
+
+ // Use alloc_ to allocate an array of n objects of type U.
+ template <typename U>
+ U* Alloc(size_type n) {
+ using alloc_type = typename Allocator::template rebind<U>::other;
+ return alloc_type(alloc_).allocate(n);
+ }
+
+ // Use alloc_ to deallocate an array of n objects of type U.
+ template <typename U>
+ void Dealloc(U* t, size_type n) {
+ using alloc_type = typename Allocator::template rebind<U>::other;
+ alloc_type(alloc_).deallocate(t, n);
+ }
+
+ void DestroyNode(Node* node) {
+ if (alloc_.arena() == nullptr) {
+ delete node;
+ }
+ }
+
+ void DestroyTree(Tree* tree) {
+ if (alloc_.arena() == nullptr) {
+ delete tree;
+ }
+ }
+
+ void** CreateEmptyTable(size_type n) {
+ GOOGLE_DCHECK(n >= kMinTableSize);
+ GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
+ void** result = Alloc<void*>(n);
+ memset(result, 0, n * sizeof(result[0]));
+ return result;
+ }
+
+ // Return a randomish value.
+ size_type Seed() const {
+ // We get a little bit of randomness from the address of the map. The
+ // lower bits are not very random, due to alignment, so we discard them
+ // and shift the higher bits into their place.
+ size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
+#if !defined(GOOGLE_PROTOBUF_NO_RDTSC)
+#if defined(__APPLE__)
+ // Use a commpage-based fast time function on Apple environments (MacOS,
+ // iOS, tvOS, watchOS, etc).
+ s += mach_absolute_time();
+#elif defined(__x86_64__) && defined(__GNUC__)
+ uint32_t hi, lo;
+ asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
+ s += ((static_cast<uint64_t>(hi) << 32) | lo);
+#elif defined(__aarch64__) && defined(__GNUC__)
+ // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the
+ // system timer. It runs at a different frequency than the CPU's, but is
+ // the best source of time-based entropy we get.
+ uint64_t virtual_timer_value;
+ asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
+ s += virtual_timer_value;
+#endif
+#endif // !defined(GOOGLE_PROTOBUF_NO_RDTSC)
+ return s;
+ }
+
+ friend class Arena;
+ using InternalArenaConstructable_ = void;
+ using DestructorSkippable_ = void;
+
+ size_type num_elements_;
+ size_type num_buckets_;
+ size_type seed_;
+ size_type index_of_first_non_null_;
+ void** table_; // an array with num_buckets_ entries
+ Allocator alloc_;
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
+ }; // end of class InnerMap
+
+ template <typename LookupKey>
+ using key_arg = typename internal::TransparentSupport<
+ key_type>::template key_arg<LookupKey>;
+
+ public:
+ // Iterators
+ class const_iterator {
+ using InnerIt = typename InnerMap::const_iterator;
+
+ public:
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = typename Map::value_type;
+ using difference_type = ptrdiff_t;
+ using pointer = const value_type*;
+ using reference = const value_type&;
+
+ const_iterator() {}
+ explicit const_iterator(const InnerIt& it) : it_(it) {}
+
+ const_reference operator*() const { return *it_; }
+ const_pointer operator->() const { return &(operator*()); }
+
+ const_iterator& operator++() {
+ ++it_;
+ return *this;
+ }
+ const_iterator operator++(int) { return const_iterator(it_++); }
+
+ friend bool operator==(const const_iterator& a, const const_iterator& b) {
+ return a.it_ == b.it_;
+ }
+ friend bool operator!=(const const_iterator& a, const const_iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ InnerIt it_;
+ };
+
+ class iterator {
+ using InnerIt = typename InnerMap::iterator;
+
+ public:
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = typename Map::value_type;
+ using difference_type = ptrdiff_t;
+ using pointer = value_type*;
+ using reference = value_type&;
+
+ iterator() {}
+ explicit iterator(const InnerIt& it) : it_(it) {}
+
+ reference operator*() const { return *it_; }
+ pointer operator->() const { return &(operator*()); }
+
+ iterator& operator++() {
+ ++it_;
+ return *this;
+ }
+ iterator operator++(int) { return iterator(it_++); }
+
+ // Allow implicit conversion to const_iterator.
+ operator const_iterator() const { // NOLINT(runtime/explicit)
+ return const_iterator(typename InnerMap::const_iterator(it_));
+ }
+
+ friend bool operator==(const iterator& a, const iterator& b) {
+ return a.it_ == b.it_;
+ }
+ friend bool operator!=(const iterator& a, const iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ friend class Map;
+
+ InnerIt it_;
+ };
+
+ iterator begin() { return iterator(elements_.begin()); }
+ iterator end() { return iterator(elements_.end()); }
+ const_iterator begin() const { return const_iterator(elements_.begin()); }
+ const_iterator end() const { return const_iterator(elements_.end()); }
+ const_iterator cbegin() const { return begin(); }
+ const_iterator cend() const { return end(); }
+
+ // Capacity
+ size_type size() const { return elements_.size(); }
+ bool empty() const { return size() == 0; }
+
+ // Element access
+ template <typename K = key_type>
+ T& operator[](const key_arg<K>& key) {
+ return elements_[key].second;
+ }
+ template <
+ typename K = key_type,
+ // Disable for integral types to reduce code bloat.
+ typename = typename std::enable_if<!std::is_integral<K>::value>::type>
+ T& operator[](key_arg<K>&& key) {
+ return elements_[std::forward<K>(key)].second;
+ }
+
+ template <typename K = key_type>
+ const T& at(const key_arg<K>& key) const {
+ const_iterator it = find(key);
+ GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
+ return it->second;
+ }
+
+ template <typename K = key_type>
+ T& at(const key_arg<K>& key) {
+ iterator it = find(key);
+ GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
+ return it->second;
+ }
+
+ // Lookup
+ template <typename K = key_type>
+ size_type count(const key_arg<K>& key) const {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ template <typename K = key_type>
+ const_iterator find(const key_arg<K>& key) const {
+ return const_iterator(elements_.find(key));
+ }
+ template <typename K = key_type>
+ iterator find(const key_arg<K>& key) {
+ return iterator(elements_.find(key));
+ }
+
+ template <typename K = key_type>
+ bool contains(const key_arg<K>& key) const {
+ return find(key) != end();
+ }
+
+ template <typename K = key_type>
+ std::pair<const_iterator, const_iterator> equal_range(
+ const key_arg<K>& key) const {
+ const_iterator it = find(key);
+ if (it == end()) {
+ return std::pair<const_iterator, const_iterator>(it, it);
+ } else {
+ const_iterator begin = it++;
+ return std::pair<const_iterator, const_iterator>(begin, it);
+ }
+ }
+
+ template <typename K = key_type>
+ std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
+ iterator it = find(key);
+ if (it == end()) {
+ return std::pair<iterator, iterator>(it, it);
+ } else {
+ iterator begin = it++;
+ return std::pair<iterator, iterator>(begin, it);
+ }
+ }
+
+ // insert
+ template <typename K, typename... Args>
+ std::pair<iterator, bool> try_emplace(K&& k, Args&&... args) {
+ auto p =
+ elements_.try_emplace(std::forward<K>(k), std::forward<Args>(args)...);
+ return std::pair<iterator, bool>(iterator(p.first), p.second);
+ }
+ std::pair<iterator, bool> insert(const value_type& value) {
+ return try_emplace(value.first, value.second);
+ }
+ std::pair<iterator, bool> insert(value_type&& value) {
+ return try_emplace(value.first, std::move(value.second));
+ }
+ template <typename... Args>
+ std::pair<iterator, bool> emplace(Args&&... args) {
+ return insert(value_type(std::forward<Args>(args)...));
+ }
+ template <class InputIt>
+ void insert(InputIt first, InputIt last) {
+ for (; first != last; ++first) {
+ try_emplace(first->first, first->second);
+ }
+ }
+ void insert(std::initializer_list<value_type> values) {
+ insert(values.begin(), values.end());
+ }
+
+ // Erase and clear
+ template <typename K = key_type>
+ size_type erase(const key_arg<K>& key) {
+ iterator it = find(key);
+ if (it == end()) {
+ return 0;
+ } else {
+ erase(it);
+ return 1;
+ }
+ }
+ iterator erase(iterator pos) {
+ iterator i = pos++;
+ elements_.erase(i.it_);
+ return pos;
+ }
+ void erase(iterator first, iterator last) {
+ while (first != last) {
+ first = erase(first);
+ }
+ }
+ void clear() { elements_.clear(); }
+
+ // Assign
+ Map& operator=(const Map& other) {
+ if (this != &other) {
+ clear();
+ insert(other.begin(), other.end());
+ }
+ return *this;
+ }
+
+ void swap(Map& other) {
+ if (arena() == other.arena()) {
+ InternalSwap(other);
+ } else {
+ // TODO(zuguang): optimize this. The temporary copy can be allocated
+ // in the same arena as the other message, and the "other = copy" can
+ // be replaced with the fast-path swap above.
+ Map copy = *this;
+ *this = other;
+ other = copy;
+ }
+ }
+
+ void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }
+
+ // Access to hasher. Currently this returns a copy, but it may
+ // be modified to return a const reference in the future.
+ hasher hash_function() const { return elements_.hash_function(); }
+
+ size_t SpaceUsedExcludingSelfLong() const {
+ if (empty()) return 0;
+ return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
+ }
+
+ private:
+ Arena* arena() const { return elements_.arena(); }
+ InnerMap elements_;
+
+ friend class Arena;
+ using InternalArenaConstructable_ = void;
+ using DestructorSkippable_ = void;
+ template <typename Derived, typename K, typename V,
+ internal::WireFormatLite::FieldType key_wire_type,
+ internal::WireFormatLite::FieldType value_wire_type>
+ friend class internal::MapFieldLite;
+};
+
+} // namespace protobuf
+} // namespace google
+
+#include <google/protobuf/port_undef.inc>
+
+#endif // GOOGLE_PROTOBUF_MAP_H__