1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioRingBuffer.h"
#include "MediaData.h"
#include "mozilla/Assertions.h"
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h"
namespace mozilla {
/**
* RingBuffer is used to preallocate a buffer of a specific size in bytes and
* then to use it for writing and reading values without any re-allocation or
* memory moving. Please note that the total byte size of the buffer modulo the
* size of the chosen type must be zero. The RingBuffer has been created with
* audio sample values types in mind which are integer or float. However, it
* can be used with any trivial type. It is _not_ thread-safe! The constructor
* can be called on any thread but the reads and write must happen on the same
* thread, which can be different than the construction thread.
*/
template <typename T>
class RingBuffer final {
public:
explicit RingBuffer(AlignedByteBuffer&& aMemoryBuffer)
: mStorage(ConvertToSpan(aMemoryBuffer)),
mMemoryBuffer(std::move(aMemoryBuffer)) {
MOZ_ASSERT(std::is_trivial<T>::value);
MOZ_ASSERT(!mStorage.IsEmpty());
}
/**
* Write `aSamples` number of zeros in the buffer.
*/
uint32_t WriteSilence(uint32_t aSamples) {
MOZ_ASSERT(aSamples);
return Write(Span<T>(), aSamples);
}
/**
* Copy `aBuffer` to the RingBuffer.
*/
uint32_t Write(const Span<const T>& aBuffer) {
MOZ_ASSERT(!aBuffer.IsEmpty());
return Write(aBuffer, aBuffer.Length());
}
private:
/**
* Copy `aSamples` number of elements from `aBuffer` to the RingBuffer. If
* `aBuffer` is empty append `aSamples` of zeros.
*/
uint32_t Write(const Span<const T>& aBuffer, uint32_t aSamples) {
MOZ_ASSERT(aSamples > 0 &&
aBuffer.Length() <= static_cast<uint32_t>(aSamples));
if (IsFull()) {
return 0;
}
uint32_t toWrite = std::min(AvailableWrite(), aSamples);
uint32_t part1 = std::min(Capacity() - mWriteIndex, toWrite);
uint32_t part2 = toWrite - part1;
Span<T> part1Buffer = mStorage.Subspan(mWriteIndex, part1);
Span<T> part2Buffer = mStorage.To(part2);
if (!aBuffer.IsEmpty()) {
Span<const T> fromPart1 = aBuffer.To(part1);
Span<const T> fromPart2 = aBuffer.Subspan(part1, part2);
CopySpan(part1Buffer, fromPart1);
CopySpan(part2Buffer, fromPart2);
} else {
// The aBuffer is empty, append zeros.
PodZero(part1Buffer.Elements(), part1Buffer.Length());
PodZero(part2Buffer.Elements(), part2Buffer.Length());
}
mWriteIndex = NextIndex(mWriteIndex, toWrite);
return toWrite;
}
public:
/**
* Copy `aSamples` number of elements from `aBuffer` to the RingBuffer. The
* `aBuffer` does not change.
*/
uint32_t Write(const RingBuffer& aBuffer, uint32_t aSamples) {
MOZ_ASSERT(aSamples);
if (IsFull()) {
return 0;
}
uint32_t toWriteThis = std::min(AvailableWrite(), aSamples);
uint32_t toReadThat = std::min(aBuffer.AvailableRead(), toWriteThis);
uint32_t part1 =
std::min(aBuffer.Capacity() - aBuffer.mReadIndex, toReadThat);
uint32_t part2 = toReadThat - part1;
Span<T> part1Buffer = aBuffer.mStorage.Subspan(aBuffer.mReadIndex, part1);
DebugOnly<uint32_t> ret = Write(part1Buffer);
MOZ_ASSERT(ret == part1);
if (part2) {
Span<T> part2Buffer = aBuffer.mStorage.To(part2);
ret = Write(part2Buffer);
MOZ_ASSERT(ret == part2);
}
return toReadThat;
}
/**
* Copy `aBuffer.Length()` number of elements from RingBuffer to `aBuffer`.
*/
uint32_t Read(const Span<T>& aBuffer) {
MOZ_ASSERT(!aBuffer.IsEmpty());
MOZ_ASSERT(aBuffer.size() <= std::numeric_limits<uint32_t>::max());
if (IsEmpty()) {
return 0;
}
uint32_t toRead = std::min<uint32_t>(AvailableRead(), aBuffer.Length());
uint32_t part1 = std::min(Capacity() - mReadIndex, toRead);
uint32_t part2 = toRead - part1;
Span<T> part1Buffer = mStorage.Subspan(mReadIndex, part1);
Span<T> part2Buffer = mStorage.To(part2);
Span<T> toPart1 = aBuffer.To(part1);
Span<T> toPart2 = aBuffer.Subspan(part1, part2);
CopySpan(toPart1, part1Buffer);
CopySpan(toPart2, part2Buffer);
mReadIndex = NextIndex(mReadIndex, toRead);
return toRead;
}
/**
* Provide `aCallable` that will be called with the internal linear read
* buffers and the number of samples available for reading. The `aCallable`
* will be called at most 2 times. The `aCallable` must return the number of
* samples that have been actually read. If that number is smaller than the
* available number of samples, provided in the argument, the `aCallable` will
* not be called again. The RingBuffer's available read samples will be
* decreased by the number returned from the `aCallable`.
*
* The important aspects of this method are that first, it makes it possible
* to avoid extra copies to an intermediates buffer, and second, each buffer
* provided to `aCallable is a linear piece of memory which can be used
* directly to a resampler for example.
*
* In general, the problem with ring buffers is that they cannot provide one
* linear chunk of memory so extra copies, to a linear buffer, are often
* needed. This method bridge that gap by breaking the ring buffer's
* internal read memory into linear pieces and making it available through
* the `aCallable`. In the body of the `aCallable` those buffers can be used
* directly without any copy or intermediate steps.
*/
uint32_t ReadNoCopy(
std::function<uint32_t(const Span<const T>&)>&& aCallable) {
if (IsEmpty()) {
return 0;
}
uint32_t part1 = std::min(Capacity() - mReadIndex, AvailableRead());
uint32_t part2 = AvailableRead() - part1;
Span<T> part1Buffer = mStorage.Subspan(mReadIndex, part1);
uint32_t toRead = aCallable(part1Buffer);
MOZ_ASSERT(toRead <= part1);
if (toRead == part1 && part2) {
Span<T> part2Buffer = mStorage.To(part2);
toRead += aCallable(part2Buffer);
MOZ_ASSERT(toRead <= part1 + part2);
}
mReadIndex = NextIndex(mReadIndex, toRead);
return toRead;
}
/**
* Remove the next `aSamples` number of samples from the ring buffer.
*/
uint32_t Discard(uint32_t aSamples) {
MOZ_ASSERT(aSamples);
if (IsEmpty()) {
return 0;
}
uint32_t toDiscard = std::min(AvailableRead(), aSamples);
mReadIndex = NextIndex(mReadIndex, toDiscard);
return toDiscard;
}
/**
* Empty the ring buffer.
*/
uint32_t Clear() {
if (IsEmpty()) {
return 0;
}
uint32_t toDiscard = AvailableRead();
mReadIndex = NextIndex(mReadIndex, toDiscard);
return toDiscard;
}
/**
* Returns true if the full capacity of the ring buffer is being used. When
* full any attempt to write more samples to the ring buffer will fail.
*/
bool IsFull() const { return (mWriteIndex + 1) % Capacity() == mReadIndex; }
/**
* Returns true if the ring buffer is empty. When empty any attempt to read
* more samples from the ring buffer will fail.
*/
bool IsEmpty() const { return mWriteIndex == mReadIndex; }
/**
* The number of samples available for writing.
*/
uint32_t AvailableWrite() const {
/* We subtract one element here to always keep at least one sample
* free in the buffer, to distinguish between full and empty array. */
uint32_t rv = mReadIndex - mWriteIndex - 1;
if (mWriteIndex >= mReadIndex) {
rv += Capacity();
}
return rv;
}
/**
* The number of samples available for reading.
*/
uint32_t AvailableRead() const {
if (mWriteIndex >= mReadIndex) {
return mWriteIndex - mReadIndex;
}
return mWriteIndex + Capacity() - mReadIndex;
}
private:
uint32_t NextIndex(uint32_t aIndex, uint32_t aStep) const {
MOZ_ASSERT(aStep < Capacity());
MOZ_ASSERT(aIndex < Capacity());
return (aIndex + aStep) % Capacity();
}
uint32_t Capacity() const { return mStorage.Length(); }
Span<T> ConvertToSpan(const AlignedByteBuffer& aOther) const {
MOZ_ASSERT(aOther.Length() >= sizeof(T));
return Span<T>(reinterpret_cast<T*>(aOther.Data()),
aOther.Length() / sizeof(T));
}
void CopySpan(Span<T>& aTo, const Span<const T>& aFrom) {
MOZ_ASSERT(aTo.Length() == aFrom.Length());
std::copy(aFrom.cbegin(), aFrom.cend(), aTo.begin());
}
private:
uint32_t mReadIndex = 0;
uint32_t mWriteIndex = 0;
/* Points to the mMemoryBuffer. */
const Span<T> mStorage;
/* The actual allocated memory set from outside. It is set in the ctor and it
* is not used again. It is here to control the lifetime of the memory. The
* memory is accessed through the mStorage. The idea is that the memory used
* from the RingBuffer can be pre-allocated. */
const AlignedByteBuffer mMemoryBuffer;
};
/** AudioRingBuffer **/
/* The private members of AudioRingBuffer. */
class AudioRingBuffer::AudioRingBufferPrivate {
public:
AudioSampleFormat mSampleFormat = AUDIO_FORMAT_SILENCE;
Maybe<RingBuffer<float>> mFloatRingBuffer;
Maybe<RingBuffer<int16_t>> mIntRingBuffer;
Maybe<AlignedByteBuffer> mBackingBuffer;
};
AudioRingBuffer::AudioRingBuffer(uint32_t aSizeInBytes)
: mPtr(MakeUnique<AudioRingBufferPrivate>()) {
MOZ_ASSERT(aSizeInBytes > 0);
mPtr->mBackingBuffer.emplace(aSizeInBytes);
MOZ_ASSERT(mPtr->mBackingBuffer);
}
AudioRingBuffer::~AudioRingBuffer() = default;
void AudioRingBuffer::SetSampleFormat(AudioSampleFormat aFormat) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_SILENCE);
MOZ_ASSERT(aFormat == AUDIO_FORMAT_S16 || aFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mIntRingBuffer);
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
MOZ_ASSERT(mPtr->mBackingBuffer);
mPtr->mSampleFormat = aFormat;
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
mPtr->mIntRingBuffer.emplace(mPtr->mBackingBuffer.extract());
MOZ_ASSERT(!mPtr->mBackingBuffer);
return;
}
mPtr->mFloatRingBuffer.emplace(mPtr->mBackingBuffer.extract());
MOZ_ASSERT(!mPtr->mBackingBuffer);
}
uint32_t AudioRingBuffer::Write(const Span<const float>& aBuffer) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mIntRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mFloatRingBuffer->Write(aBuffer);
}
uint32_t AudioRingBuffer::Write(const Span<const int16_t>& aBuffer) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mIntRingBuffer->Write(aBuffer);
}
uint32_t AudioRingBuffer::Write(const AudioRingBuffer& aBuffer,
uint32_t aSamples) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->Write(aBuffer.mPtr->mIntRingBuffer.ref(),
aSamples);
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->Write(aBuffer.mPtr->mFloatRingBuffer.ref(),
aSamples);
}
uint32_t AudioRingBuffer::WriteSilence(uint32_t aSamples) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->WriteSilence(aSamples);
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->WriteSilence(aSamples);
}
uint32_t AudioRingBuffer::Read(const Span<float>& aBuffer) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mIntRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mFloatRingBuffer->Read(aBuffer);
}
uint32_t AudioRingBuffer::Read(const Span<int16_t>& aBuffer) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mIntRingBuffer->Read(aBuffer);
}
uint32_t AudioRingBuffer::ReadNoCopy(
std::function<uint32_t(const Span<const float>&)>&& aCallable) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mIntRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mFloatRingBuffer->ReadNoCopy(std::move(aCallable));
}
uint32_t AudioRingBuffer::ReadNoCopy(
std::function<uint32_t(const Span<const int16_t>&)>&& aCallable) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16);
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
MOZ_ASSERT(!mPtr->mBackingBuffer);
return mPtr->mIntRingBuffer->ReadNoCopy(std::move(aCallable));
}
uint32_t AudioRingBuffer::Discard(uint32_t aSamples) {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->Discard(aSamples);
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->Discard(aSamples);
}
uint32_t AudioRingBuffer::Clear() {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
MOZ_ASSERT(mPtr->mIntRingBuffer);
return mPtr->mIntRingBuffer->Clear();
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
MOZ_ASSERT(mPtr->mFloatRingBuffer);
return mPtr->mFloatRingBuffer->Clear();
}
bool AudioRingBuffer::IsFull() const {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->IsFull();
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->IsFull();
}
bool AudioRingBuffer::IsEmpty() const {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->IsEmpty();
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->IsEmpty();
}
uint32_t AudioRingBuffer::AvailableWrite() const {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->AvailableWrite();
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->AvailableWrite();
}
uint32_t AudioRingBuffer::AvailableRead() const {
MOZ_ASSERT(mPtr->mSampleFormat == AUDIO_FORMAT_S16 ||
mPtr->mSampleFormat == AUDIO_FORMAT_FLOAT32);
MOZ_ASSERT(!mPtr->mBackingBuffer);
if (mPtr->mSampleFormat == AUDIO_FORMAT_S16) {
MOZ_ASSERT(!mPtr->mFloatRingBuffer);
return mPtr->mIntRingBuffer->AvailableRead();
}
MOZ_ASSERT(!mPtr->mIntRingBuffer);
return mPtr->mFloatRingBuffer->AvailableRead();
}
} // namespace mozilla
|