summaryrefslogtreecommitdiffstats
path: root/dom/media/AudioSegment.h
blob: a13db6fec68709c8adb00b3749ca969fb796ec1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_AUDIOSEGMENT_H_
#define MOZILLA_AUDIOSEGMENT_H_

#include <speex/speex_resampler.h>
#include "MediaTrackGraph.h"
#include "MediaSegment.h"
#include "AudioSampleFormat.h"
#include "AudioChannelFormat.h"
#include "SharedBuffer.h"
#include "WebAudioUtils.h"
#include "mozilla/ScopeExit.h"
#include "nsAutoRef.h"
#ifdef MOZILLA_INTERNAL_API
#  include "mozilla/TimeStamp.h"
#endif
#include <float.h>

namespace mozilla {
struct AudioChunk;
class AudioSegment;
}  // namespace mozilla
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::AudioChunk)

/**
 * This allows compilation of nsTArray<AudioSegment> and
 * AutoTArray<AudioSegment> since without it, static analysis fails on the
 * mChunks member being a non-memmovable AutoTArray.
 *
 * Note that AudioSegment(const AudioSegment&) is deleted, so this should
 * never come into effect.
 */
MOZ_DECLARE_RELOCATE_USING_MOVE_CONSTRUCTOR(mozilla::AudioSegment)

namespace mozilla {

template <typename T>
class SharedChannelArrayBuffer : public ThreadSharedObject {
 public:
  explicit SharedChannelArrayBuffer(nsTArray<nsTArray<T> >&& aBuffers)
      : mBuffers(std::move(aBuffers)) {}

  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override {
    size_t amount = 0;
    amount += mBuffers.ShallowSizeOfExcludingThis(aMallocSizeOf);
    for (size_t i = 0; i < mBuffers.Length(); i++) {
      amount += mBuffers[i].ShallowSizeOfExcludingThis(aMallocSizeOf);
    }

    return amount;
  }

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

  nsTArray<nsTArray<T> > mBuffers;
};

class AudioMixer;

/**
 * For auto-arrays etc, guess this as the common number of channels.
 */
const int GUESS_AUDIO_CHANNELS = 2;

// We ensure that the graph advances in steps that are multiples of the Web
// Audio block size
const uint32_t WEBAUDIO_BLOCK_SIZE_BITS = 7;
const uint32_t WEBAUDIO_BLOCK_SIZE = 1 << WEBAUDIO_BLOCK_SIZE_BITS;

template <typename SrcT, typename DestT>
static void InterleaveAndConvertBuffer(const SrcT* const* aSourceChannels,
                                       uint32_t aLength, float aVolume,
                                       uint32_t aChannels, DestT* aOutput) {
  DestT* output = aOutput;
  for (size_t i = 0; i < aLength; ++i) {
    for (size_t channel = 0; channel < aChannels; ++channel) {
      float v = AudioSampleToFloat(aSourceChannels[channel][i]) * aVolume;
      *output = FloatToAudioSample<DestT>(v);
      ++output;
    }
  }
}

template <typename SrcT, typename DestT>
static void DeinterleaveAndConvertBuffer(const SrcT* aSourceBuffer,
                                         uint32_t aFrames, uint32_t aChannels,
                                         DestT** aOutput) {
  for (size_t i = 0; i < aChannels; i++) {
    size_t interleavedIndex = i;
    for (size_t j = 0; j < aFrames; j++) {
      ConvertAudioSample(aSourceBuffer[interleavedIndex], aOutput[i][j]);
      interleavedIndex += aChannels;
    }
  }
}

class SilentChannel {
 public:
  static const int AUDIO_PROCESSING_FRAMES = 640; /* > 10ms of 48KHz audio */
  static const uint8_t
      gZeroChannel[MAX_AUDIO_SAMPLE_SIZE * AUDIO_PROCESSING_FRAMES];
  // We take advantage of the fact that zero in float and zero in int have the
  // same all-zeros bit layout.
  template <typename T>
  static const T* ZeroChannel();
};

/**
 * Given an array of input channels (aChannelData), downmix to aOutputChannels,
 * interleave the channel data. A total of aOutputChannels*aDuration
 * interleaved samples will be copied to a channel buffer in aOutput.
 */
template <typename SrcT, typename DestT>
void DownmixAndInterleave(const nsTArray<const SrcT*>& aChannelData,
                          int32_t aDuration, float aVolume,
                          uint32_t aOutputChannels, DestT* aOutput) {
  if (aChannelData.Length() == aOutputChannels) {
    InterleaveAndConvertBuffer(aChannelData.Elements(), aDuration, aVolume,
                               aOutputChannels, aOutput);
  } else {
    AutoTArray<SrcT*, GUESS_AUDIO_CHANNELS> outputChannelData;
    AutoTArray<SrcT,
               SilentChannel::AUDIO_PROCESSING_FRAMES * GUESS_AUDIO_CHANNELS>
        outputBuffers;
    outputChannelData.SetLength(aOutputChannels);
    outputBuffers.SetLength(aDuration * aOutputChannels);
    for (uint32_t i = 0; i < aOutputChannels; i++) {
      outputChannelData[i] = outputBuffers.Elements() + aDuration * i;
    }
    AudioChannelsDownMix(aChannelData, outputChannelData.Elements(),
                         aOutputChannels, aDuration);
    InterleaveAndConvertBuffer(outputChannelData.Elements(), aDuration, aVolume,
                               aOutputChannels, aOutput);
  }
}

/**
 * An AudioChunk represents a multi-channel buffer of audio samples.
 * It references an underlying ThreadSharedObject which manages the lifetime
 * of the buffer. An AudioChunk maintains its own duration and channel data
 * pointers so it can represent a subinterval of a buffer without copying.
 * An AudioChunk can store its individual channels anywhere; it maintains
 * separate pointers to each channel's buffer.
 */
struct AudioChunk {
  typedef mozilla::AudioSampleFormat SampleFormat;

  AudioChunk() = default;

  template <typename T>
  AudioChunk(already_AddRefed<ThreadSharedObject> aBuffer,
             const nsTArray<const T*>& aChannelData, TrackTime aDuration,
             PrincipalHandle aPrincipalHandle)
      : mDuration(aDuration),
        mBuffer(aBuffer),
        mBufferFormat(AudioSampleTypeToFormat<T>::Format),
        mPrincipalHandle(std::move(aPrincipalHandle)) {
    MOZ_ASSERT(!mBuffer == aChannelData.IsEmpty(), "Appending invalid data ?");
    for (const T* data : aChannelData) {
      mChannelData.AppendElement(data);
    }
  }

  // Generic methods
  void SliceTo(TrackTime aStart, TrackTime aEnd) {
    MOZ_ASSERT(aStart >= 0, "Slice out of bounds: invalid start");
    MOZ_ASSERT(aStart < aEnd, "Slice out of bounds: invalid range");
    MOZ_ASSERT(aEnd <= mDuration, "Slice out of bounds: invalid end");

    if (mBuffer) {
      MOZ_ASSERT(aStart < INT32_MAX,
                 "Can't slice beyond 32-bit sample lengths");
      for (uint32_t channel = 0; channel < mChannelData.Length(); ++channel) {
        mChannelData[channel] = AddAudioSampleOffset(
            mChannelData[channel], mBufferFormat, int32_t(aStart));
      }
    }
    mDuration = aEnd - aStart;
  }
  TrackTime GetDuration() const { return mDuration; }
  bool CanCombineWithFollowing(const AudioChunk& aOther) const {
    if (aOther.mBuffer != mBuffer) {
      return false;
    }
    if (!mBuffer) {
      return true;
    }
    if (aOther.mVolume != mVolume) {
      return false;
    }
    if (aOther.mPrincipalHandle != mPrincipalHandle) {
      return false;
    }
    NS_ASSERTION(aOther.mBufferFormat == mBufferFormat,
                 "Wrong metadata about buffer");
    NS_ASSERTION(aOther.mChannelData.Length() == mChannelData.Length(),
                 "Mismatched channel count");
    if (mDuration > INT32_MAX) {
      return false;
    }
    for (uint32_t channel = 0; channel < mChannelData.Length(); ++channel) {
      if (aOther.mChannelData[channel] !=
          AddAudioSampleOffset(mChannelData[channel], mBufferFormat,
                               int32_t(mDuration))) {
        return false;
      }
    }
    return true;
  }
  bool IsNull() const { return mBuffer == nullptr; }
  void SetNull(TrackTime aDuration) {
    mBuffer = nullptr;
    mChannelData.Clear();
    mDuration = aDuration;
    mVolume = 1.0f;
    mBufferFormat = AUDIO_FORMAT_SILENCE;
    mPrincipalHandle = PRINCIPAL_HANDLE_NONE;
  }

  uint32_t ChannelCount() const { return mChannelData.Length(); }

  bool IsMuted() const { return mVolume == 0.0f; }

  size_t SizeOfExcludingThisIfUnshared(MallocSizeOf aMallocSizeOf) const {
    return SizeOfExcludingThis(aMallocSizeOf, true);
  }

  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf, bool aUnshared) const {
    size_t amount = 0;

    // Possibly owned:
    // - mBuffer - Can hold data that is also in the decoded audio queue. If it
    //             is not shared, or unshared == false it gets counted.
    if (mBuffer && (!aUnshared || !mBuffer->IsShared())) {
      amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf);
    }

    // Memory in the array is owned by mBuffer.
    amount += mChannelData.ShallowSizeOfExcludingThis(aMallocSizeOf);
    return amount;
  }

  template <typename T>
  const nsTArray<const T*>& ChannelData() const {
    MOZ_ASSERT(AudioSampleTypeToFormat<T>::Format == mBufferFormat);
    return *reinterpret_cast<const AutoTArray<const T*, GUESS_AUDIO_CHANNELS>*>(
        &mChannelData);
  }

  /**
   * ChannelFloatsForWrite() should be used only when mBuffer is owned solely
   * by the calling thread.
   */
  template <typename T>
  T* ChannelDataForWrite(size_t aChannel) {
    MOZ_ASSERT(AudioSampleTypeToFormat<T>::Format == mBufferFormat);
    MOZ_ASSERT(!mBuffer->IsShared());
    return static_cast<T*>(const_cast<void*>(mChannelData[aChannel]));
  }

  template <typename T>
  static AudioChunk FromInterleavedBuffer(
      const T* aBuffer, size_t aFrames, uint32_t aChannels,
      const PrincipalHandle& aPrincipalHandle) {
    CheckedInt<size_t> bufferSize(sizeof(T));
    bufferSize *= aFrames;
    bufferSize *= aChannels;
    RefPtr<SharedBuffer> buffer = SharedBuffer::Create(bufferSize);

    AutoTArray<T*, 8> deinterleaved;
    if (aChannels == 1) {
      PodCopy(static_cast<T*>(buffer->Data()), aBuffer, aFrames);
      deinterleaved.AppendElement(static_cast<T*>(buffer->Data()));
    } else {
      deinterleaved.SetLength(aChannels);
      T* samples = static_cast<T*>(buffer->Data());

      size_t offset = 0;
      for (uint32_t i = 0; i < aChannels; ++i) {
        deinterleaved[i] = samples + offset;
        offset += aFrames;
      }

      DeinterleaveAndConvertBuffer(aBuffer, static_cast<uint32_t>(aFrames),
                                   aChannels, deinterleaved.Elements());
    }

    AutoTArray<const T*, GUESS_AUDIO_CHANNELS> channelData;
    channelData.AppendElements(deinterleaved);
    return AudioChunk(buffer.forget(), channelData,
                      static_cast<TrackTime>(aFrames), aPrincipalHandle);
  }

  const PrincipalHandle& GetPrincipalHandle() const { return mPrincipalHandle; }

  TrackTime mDuration = 0;             // in frames within the buffer
  RefPtr<ThreadSharedObject> mBuffer;  // the buffer object whose lifetime is
                                       // managed; null means data is all zeroes
  // one pointer per channel; empty if and only if mBuffer is null
  CopyableAutoTArray<const void*, GUESS_AUDIO_CHANNELS> mChannelData;
  float mVolume = 1.0f;  // volume multiplier to apply
  // format of frames in mBuffer (or silence if mBuffer is null)
  SampleFormat mBufferFormat = AUDIO_FORMAT_SILENCE;
  // principalHandle for the data in this chunk.
  // This can be compared to an nsIPrincipal* when back on main thread.
  PrincipalHandle mPrincipalHandle = PRINCIPAL_HANDLE_NONE;
};

/**
 * A list of audio samples consisting of a sequence of slices of SharedBuffers.
 * The audio rate is determined by the track, not stored in this class.
 */
class AudioSegment : public MediaSegmentBase<AudioSegment, AudioChunk> {
  // The channel count that MaxChannelCount() returned last time it was called.
  uint32_t mMemoizedMaxChannelCount = 0;

 public:
  typedef mozilla::AudioSampleFormat SampleFormat;

  AudioSegment() : MediaSegmentBase<AudioSegment, AudioChunk>(AUDIO) {}

  AudioSegment(AudioSegment&& aSegment) = default;

  AudioSegment(const AudioSegment&) = delete;
  AudioSegment& operator=(const AudioSegment&) = delete;

  ~AudioSegment() = default;

  // Resample the whole segment in place.  `aResampler` is an instance of a
  // resampler, initialized with `aResamplerChannelCount` channels. If this
  // function finds a chunk with more channels, `aResampler` is destroyed and a
  // new resampler is created, and `aResamplerChannelCount` is updated with the
  // new channel count value.
  template <typename T>
  void Resample(nsAutoRef<SpeexResamplerState>& aResampler,
                uint32_t* aResamplerChannelCount, uint32_t aInRate,
                uint32_t aOutRate) {
    mDuration = 0;

    for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
      AutoTArray<nsTArray<T>, GUESS_AUDIO_CHANNELS> output;
      AutoTArray<const T*, GUESS_AUDIO_CHANNELS> bufferPtrs;
      AudioChunk& c = *ci;
      // If this chunk is null, don't bother resampling, just alter its duration
      if (c.IsNull()) {
        c.mDuration = (c.mDuration * aOutRate) / aInRate;
        mDuration += c.mDuration;
        continue;
      }
      uint32_t channels = c.mChannelData.Length();
      // This might introduce a discontinuity, but a channel count change in the
      // middle of a stream is not that common. This also initializes the
      // resampler as late as possible.
      if (channels != *aResamplerChannelCount) {
        SpeexResamplerState* state =
            speex_resampler_init(channels, aInRate, aOutRate,
                                 SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
        MOZ_ASSERT(state);
        aResampler.own(state);
        *aResamplerChannelCount = channels;
      }
      output.SetLength(channels);
      bufferPtrs.SetLength(channels);
      uint32_t inFrames = c.mDuration;
      // Round up to allocate; the last frame may not be used.
      NS_ASSERTION((UINT64_MAX - aInRate + 1) / c.mDuration >= aOutRate,
                   "Dropping samples");
      uint32_t outSize =
          (static_cast<uint64_t>(c.mDuration) * aOutRate + aInRate - 1) /
          aInRate;
      for (uint32_t i = 0; i < channels; i++) {
        T* out = output[i].AppendElements(outSize);
        uint32_t outFrames = outSize;

        const T* in = static_cast<const T*>(c.mChannelData[i]);
        dom::WebAudioUtils::SpeexResamplerProcess(aResampler.get(), i, in,
                                                  &inFrames, out, &outFrames);
        MOZ_ASSERT(inFrames == c.mDuration);

        bufferPtrs[i] = out;
        output[i].SetLength(outFrames);
      }
      MOZ_ASSERT(channels > 0);
      c.mDuration = output[0].Length();
      c.mBuffer = new mozilla::SharedChannelArrayBuffer<T>(std::move(output));
      for (uint32_t i = 0; i < channels; i++) {
        c.mChannelData[i] = bufferPtrs[i];
      }
      mDuration += c.mDuration;
    }
  }

  void ResampleChunks(nsAutoRef<SpeexResamplerState>& aResampler,
                      uint32_t* aResamplerChannelCount, uint32_t aInRate,
                      uint32_t aOutRate);

  template <typename T>
  void AppendFrames(already_AddRefed<ThreadSharedObject> aBuffer,
                    const nsTArray<const T*>& aChannelData, TrackTime aDuration,
                    const PrincipalHandle& aPrincipalHandle) {
    AppendAndConsumeChunk(AudioChunk(std::move(aBuffer), aChannelData,
                                     aDuration, aPrincipalHandle));
  }
  void AppendSegment(const AudioSegment* aSegment) {
    MOZ_ASSERT(aSegment);

    for (const AudioChunk& c : aSegment->mChunks) {
      AudioChunk* chunk = AppendChunk(c.GetDuration());
      chunk->mBuffer = c.mBuffer;
      chunk->mChannelData = c.mChannelData;
      chunk->mBufferFormat = c.mBufferFormat;
      chunk->mPrincipalHandle = c.mPrincipalHandle;
    }
  }
  template <typename T>
  void AppendFromInterleavedBuffer(const T* aBuffer, size_t aFrames,
                                   uint32_t aChannels,
                                   const PrincipalHandle& aPrincipalHandle) {
    AppendAndConsumeChunk(AudioChunk::FromInterleavedBuffer<T>(
        aBuffer, aFrames, aChannels, aPrincipalHandle));
  }
  // Write the segement data into an interleaved buffer. Do mixing if the
  // AudioChunk's channel count in the segment is different from aChannels.
  // Returns sample count of the converted audio data. The converted data will
  // be stored into aBuffer.
  size_t WriteToInterleavedBuffer(nsTArray<AudioDataValue>& aBuffer,
                                  uint32_t aChannels) const;
  // Consumes aChunk, and append it to the segment if its duration is not zero.
  void AppendAndConsumeChunk(AudioChunk&& aChunk) {
    AudioChunk unused;
    AudioChunk* chunk = &unused;

    // Always consume aChunk. The chunk's mBuffer can be non-null even if its
    // duration is 0.
    auto consume = MakeScopeExit([&] {
      chunk->mBuffer = std::move(aChunk.mBuffer);
      chunk->mChannelData = std::move(aChunk.mChannelData);

      MOZ_ASSERT(chunk->mBuffer || chunk->mChannelData.IsEmpty(),
                 "Appending invalid data ?");

      chunk->mVolume = aChunk.mVolume;
      chunk->mBufferFormat = aChunk.mBufferFormat;
      chunk->mPrincipalHandle = std::move(aChunk.mPrincipalHandle);
    });

    if (aChunk.GetDuration() == 0) {
      return;
    }

    if (!mChunks.IsEmpty() &&
        mChunks.LastElement().CanCombineWithFollowing(aChunk)) {
      mChunks.LastElement().mDuration += aChunk.GetDuration();
      mDuration += aChunk.GetDuration();
      return;
    }

    chunk = AppendChunk(aChunk.mDuration);
  }
  void ApplyVolume(float aVolume);
  // Mix the segment into a mixer, interleaved. This is useful to output a
  // segment to a system audio callback. It up or down mixes to aChannelCount
  // channels.
  void WriteTo(AudioMixer& aMixer, uint32_t aChannelCount,
               uint32_t aSampleRate);
  // Mix the segment into a mixer, keeping it planar, up or down mixing to
  // aChannelCount channels.
  void Mix(AudioMixer& aMixer, uint32_t aChannelCount, uint32_t aSampleRate);

  // Returns the maximum channel count across all chunks in this segment.
  // Should there be no chunk with a channel count we return the memoized return
  // value from last time this method was called.
  uint32_t MaxChannelCount() {
    uint32_t channelCount = 0;
    for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
      if (ci->ChannelCount()) {
        channelCount = std::max(channelCount, ci->ChannelCount());
      }
    }
    if (channelCount == 0) {
      return mMemoizedMaxChannelCount;
    }
    return mMemoizedMaxChannelCount = channelCount;
  }

  static Type StaticType() { return AUDIO; }

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

  PrincipalHandle GetOldestPrinciple() const {
    const AudioChunk* chunk = mChunks.IsEmpty() ? nullptr : &mChunks[0];
    return chunk ? chunk->GetPrincipalHandle() : PRINCIPAL_HANDLE_NONE;
  }

  // Iterate on each chunks until the input function returns true.
  template <typename Function>
  void IterateOnChunks(const Function&& aFunction) {
    for (uint32_t idx = 0; idx < mChunks.Length(); idx++) {
      if (aFunction(&mChunks[idx])) {
        return;
      }
    }
  }
};

template <typename SrcT>
void WriteChunk(const AudioChunk& aChunk, uint32_t aOutputChannels,
                float aVolume, AudioDataValue* aOutputBuffer) {
  AutoTArray<const SrcT*, GUESS_AUDIO_CHANNELS> channelData;

  channelData = aChunk.ChannelData<SrcT>().Clone();

  if (channelData.Length() < aOutputChannels) {
    // Up-mix. Note that this might actually make channelData have more
    // than aOutputChannels temporarily.
    AudioChannelsUpMix(&channelData, aOutputChannels,
                       SilentChannel::ZeroChannel<SrcT>());
  }
  if (channelData.Length() > aOutputChannels) {
    // Down-mix.
    DownmixAndInterleave(channelData, aChunk.mDuration, aVolume,
                         aOutputChannels, aOutputBuffer);
  } else {
    InterleaveAndConvertBuffer(channelData.Elements(), aChunk.mDuration,
                               aVolume, aOutputChannels, aOutputBuffer);
  }
}

}  // namespace mozilla

#endif /* MOZILLA_AUDIOSEGMENT_H_ */