blob: d60cf1cc8d775193d31c1c76ffbda9b6a0051705 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_NUMERICTOOLS_H_
#define MOZILLA_GFX_NUMERICTOOLS_H_
#include <cstdint>
namespace mozilla {
// XXX - Move these into mfbt/MathAlgorithms.h?
// Returns the largest multiple of aMultiplied that's <= x.
// Same as int32_t(floor(double(x) / aMultiplier)) * aMultiplier,
// but faster.
inline int32_t RoundDownToMultiple(int32_t x, int32_t aMultiplier) {
// We don't use float division + floor because that's hard for the compiler
// to optimize.
int mod = x % aMultiplier;
if (x > 0) {
return x - mod;
}
return mod ? x - aMultiplier - mod : x;
}
// Returns the smallest multiple of aMultiplied that's >= x.
// Same as int32_t(ceil(double(x) / aMultiplier)) * aMultiplier,
// but faster.
inline int32_t RoundUpToMultiple(int32_t x, int32_t aMultiplier) {
int mod = x % aMultiplier;
if (x > 0) {
return mod ? x + aMultiplier - mod : x;
}
return x - mod;
}
inline int32_t RoundToMultiple(int32_t x, int32_t aMultiplier) {
return RoundDownToMultiple(x + aMultiplier / 2, aMultiplier);
}
} // namespace mozilla
#endif /* MOZILLA_GFX_NUMERICTOOLS_H_ */
|