1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_GL_COLORSPACES_H_
#define MOZILLA_GFX_GL_COLORSPACES_H_
// Reference: https://hackmd.io/0wkiLmP7RWOFjcD13M870A
// We are going to be doing so, so many transforms, so descriptive labels are
// critical.
// Colorspace background info: https://hackmd.io/0wkiLmP7RWOFjcD13M870A
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <optional>
#include <vector>
#include "AutoMappable.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Span.h"
#ifdef DEBUG
# define ASSERT(EXPR) \
do { \
if (!(EXPR)) { \
__builtin_trap(); \
} \
} while (false)
#else
# define ASSERT(EXPR) (void)(EXPR)
#endif
struct _qcms_profile;
typedef struct _qcms_profile qcms_profile;
namespace mozilla::color {
struct YuvLumaCoeffs final {
float r = 0.2126;
float g = 0.7152;
float b = 0.0722;
auto Members() const { return std::tie(r, g, b); }
INLINE_AUTO_MAPPABLE(YuvLumaCoeffs)
static constexpr auto Rec709() { return YuvLumaCoeffs(); }
static constexpr auto Rec2020() {
return YuvLumaCoeffs{0.2627, 0.6780, 0.0593};
}
};
struct PiecewiseGammaDesc final {
// tf = { k * linear | linear < b
// { a * pow(linear, 1/g) - (1-a) | linear >= b
// Default to Srgb
float a = 1.055;
float b = 0.04045 / 12.92;
float g = 2.4;
float k = 12.92;
auto Members() const { return std::tie(a, b, g, k); }
INLINE_AUTO_MAPPABLE(PiecewiseGammaDesc)
static constexpr auto Srgb() { return PiecewiseGammaDesc(); }
static constexpr auto DisplayP3() { return Srgb(); }
static constexpr auto Rec709() {
return PiecewiseGammaDesc{
1.099,
0.018,
1.0 / 0.45, // ~2.222
4.5,
};
}
// FYI: static constexpr auto Rec2020_10bit() { return Rec709(); }
static constexpr auto Rec2020_12bit() {
return PiecewiseGammaDesc{
1.0993,
0.0181,
1.0 / 0.45, // ~2.222
4.5,
};
}
};
struct YcbcrDesc final {
float y0 = 16 / 255.0;
float y1 = 235 / 255.0;
float u0 = 128 / 255.0;
float uPlusHalf = 240 / 255.0;
auto Members() const { return std::tie(y0, y1, u0, uPlusHalf); }
INLINE_AUTO_MAPPABLE(YcbcrDesc)
static constexpr auto Narrow8() { // AKA limited/studio/tv
return YcbcrDesc();
}
static constexpr auto Full8() { // AKA pc
return YcbcrDesc{
0 / 255.0,
255 / 255.0,
128 / 255.0,
254 / 255.0,
};
}
static constexpr auto Float() { // Best for a LUT
return YcbcrDesc{0.0, 1.0, 0.5, 1.0};
}
};
struct Chromaticities final {
float rx = 0.640;
float ry = 0.330;
float gx = 0.300;
float gy = 0.600;
float bx = 0.150;
float by = 0.060;
// D65:
static constexpr float wx = 0.3127;
static constexpr float wy = 0.3290;
auto Members() const { return std::tie(rx, ry, gx, gy, bx, by); }
INLINE_AUTO_MAPPABLE(Chromaticities)
// -
static constexpr auto Rec709() { // AKA limited/studio/tv
return Chromaticities();
}
static constexpr auto Srgb() { return Rec709(); }
static constexpr auto Rec601_625_Pal() {
auto ret = Rec709();
ret.gx = 0.290;
return ret;
}
static constexpr auto Rec601_525_Ntsc() {
return Chromaticities{
0.630, 0.340, // r
0.310, 0.595, // g
0.155, 0.070, // b
};
}
static constexpr auto Rec2020() {
return Chromaticities{
0.708, 0.292, // r
0.170, 0.797, // g
0.131, 0.046, // b
};
}
static constexpr auto DisplayP3() {
return Chromaticities{
0.680, 0.320, // r
0.265, 0.690, // g
0.150, 0.060, // b
};
}
};
// -
struct YuvDesc final {
YuvLumaCoeffs yCoeffs;
YcbcrDesc ycbcr;
auto Members() const { return std::tie(yCoeffs, ycbcr); }
INLINE_AUTO_MAPPABLE(YuvDesc);
};
struct ColorspaceDesc final {
Chromaticities chrom;
std::optional<PiecewiseGammaDesc> tf;
std::optional<YuvDesc> yuv;
auto Members() const { return std::tie(chrom, tf, yuv); }
INLINE_AUTO_MAPPABLE(ColorspaceDesc);
};
// -
template <class TT, int NN>
struct avec final {
using T = TT;
static constexpr auto N = NN;
std::array<T, N> data = {};
// -
constexpr avec() = default;
constexpr avec(const avec&) = default;
constexpr avec(const avec<T, N - 1>& v, T a) {
for (int i = 0; i < N - 1; i++) {
data[i] = v[i];
}
data[N - 1] = a;
}
constexpr avec(const avec<T, N - 2>& v, T a, T b) {
for (int i = 0; i < N - 2; i++) {
data[i] = v[i];
}
data[N - 2] = a;
data[N - 1] = b;
}
MOZ_IMPLICIT constexpr avec(const std::array<T, N>& data) {
this->data = data;
}
explicit constexpr avec(const T v) {
for (int i = 0; i < N; i++) {
data[i] = v;
}
}
template <class T2, int N2>
explicit constexpr avec(const avec<T2, N2>& v) {
const auto n = std::min(N, N2);
for (int i = 0; i < n; i++) {
data[i] = static_cast<T>(v[i]);
}
}
// -
const auto& operator[](const size_t n) const { return data[n]; }
auto& operator[](const size_t n) { return data[n]; }
template <int i>
constexpr auto get() const {
return (i < N) ? data[i] : 0;
}
constexpr auto x() const { return get<0>(); }
constexpr auto y() const { return get<1>(); }
constexpr auto z() const { return get<2>(); }
constexpr auto w() const { return get<3>(); }
constexpr auto xyz() const { return vec3({x(), y(), z()}); }
template <int i>
void set(const T v) {
if (i < N) {
data[i] = v;
}
}
void x(const T v) { set<0>(v); }
void y(const T v) { set<1>(v); }
void z(const T v) { set<2>(v); }
void w(const T v) { set<3>(v); }
// -
#define _(OP) \
friend avec operator OP(const avec a, const avec b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a[i] OP b[i]; \
} \
return c; \
} \
friend avec operator OP(const avec a, const T b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a[i] OP b; \
} \
return c; \
} \
friend avec operator OP(const T a, const avec b) { \
avec c; \
for (int i = 0; i < N; i++) { \
c[i] = a OP b[i]; \
} \
return c; \
}
_(+)
_(-)
_(*)
_(/)
#undef _
friend bool operator==(const avec a, const avec b) {
bool eq = true;
for (int i = 0; i < N; i++) {
eq &= (a[i] == b[i]);
}
return eq;
}
};
using vec2 = avec<float, 2>;
using vec3 = avec<float, 3>;
using vec4 = avec<float, 4>;
using ivec3 = avec<int32_t, 3>;
using ivec4 = avec<int32_t, 4>;
template <class T, int N>
T dot(const avec<T, N>& a, const avec<T, N>& b) {
const auto c = a * b;
T ret = 0;
for (int i = 0; i < N; i++) {
ret += c[i];
}
return ret;
}
template <class V>
V mix(const V& zero, const V& one, const float val) {
return zero * (1 - val) + one * val;
}
template <class T, int N>
auto min(const avec<T, N>& a, const avec<T, N>& b) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::min(a[i], b[i]);
}
return ret;
}
template <class T, int N>
auto max(const avec<T, N>& a, const avec<T, N>& b) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::max(a[i], b[i]);
}
return ret;
}
template <class T, int N>
auto floor(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = floorf(a[i]);
}
return ret;
}
template <class T, int N>
auto round(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = roundf(a[i]);
}
return ret;
}
template <class T, int N>
auto abs(const avec<T, N>& a) {
auto ret = avec<T, N>{};
for (int i = 0; i < ret.N; i++) {
ret[i] = std::abs(a[i]);
}
return ret;
}
// -
template <int Y_Rows, int X_Cols>
struct mat final {
static constexpr int y_rows = Y_Rows;
static constexpr int x_cols = X_Cols;
static constexpr auto Identity() {
auto ret = mat{};
for (int i = 0; i < std::min(x_cols, y_rows); i++) {
ret.at(i, i) = 1;
}
return ret;
}
static constexpr auto Scale(const avec<float, std::min(x_cols, y_rows)>& v) {
auto ret = mat{};
for (int i = 0; i < v.N; i++) {
ret.at(i, i) = v[i];
}
return ret;
}
std::array<avec<float, X_Cols>, Y_Rows> rows = {}; // row-major
// -
constexpr mat() = default;
explicit constexpr mat(const std::array<avec<float, X_Cols>, Y_Rows>& rows) {
this->rows = rows;
}
template <int Y_Rows2, int X_Cols2>
explicit constexpr mat(const mat<Y_Rows2, X_Cols2>& m) {
*this = Identity();
for (int x = 0; x < std::min(X_Cols, X_Cols2); x++) {
for (int y = 0; y < std::min(Y_Rows, Y_Rows2); y++) {
at(x, y) = m.at(x, y);
}
}
}
const auto& at(const int x, const int y) const { return rows.at(y)[x]; }
auto& at(const int x, const int y) { return rows.at(y)[x]; }
friend auto operator*(const mat& a, const avec<float, X_Cols>& b_colvec) {
avec<float, Y_Rows> c_colvec;
for (int i = 0; i < y_rows; i++) {
c_colvec[i] = dot(a.rows.at(i), b_colvec);
}
return c_colvec;
}
friend auto operator*(const mat& a, const float b) {
mat c;
for (int x = 0; x < x_cols; x++) {
for (int y = 0; y < y_rows; y++) {
c.at(x, y) = a.at(x, y) * b;
}
}
return c;
}
friend auto operator/(const mat& a, const float b) { return a * (1 / b); }
template <int BCols, int BRows = X_Cols>
friend auto operator*(const mat& a, const mat<BRows, BCols>& b) {
const auto bt = transpose(b);
const auto& b_cols = bt.rows;
mat<Y_Rows, BCols> c;
for (int x = 0; x < BCols; x++) {
for (int y = 0; y < Y_Rows; y++) {
c.at(x, y) = dot(a.rows.at(y), b_cols.at(x));
}
}
return c;
}
// For e.g. similarity evaluation
friend auto operator-(const mat& a, const mat& b) {
mat c;
for (int y = 0; y < y_rows; y++) {
c.rows[y] = a.rows[y] - b.rows[y];
}
return c;
}
};
template <class M>
inline float dotDifference(const M& a, const M& b) {
const auto c = a - b;
const auto d = c * avec<float, M::x_cols>(1);
const auto d2 = dot(d, d);
return d2;
}
template <class M>
inline bool approx(const M& a, const M& b, const float eps = 0.0001) {
const auto errSquared = dotDifference(a, b);
return errSquared <= (eps * eps);
}
using mat3 = mat<3, 3>;
using mat4 = mat<4, 4>;
inline float determinant(const mat<1, 1>& m) { return m.at(0, 0); }
template <class T>
float determinant(const T& m) {
static_assert(T::x_cols == T::y_rows);
float ret = 0;
for (int i = 0; i < T::x_cols; i++) {
const auto cofact = cofactor(m, i, 0);
ret += m.at(i, 0) * cofact;
}
return ret;
}
// -
template <class T>
float cofactor(const T& m, const int x_col, const int y_row) {
ASSERT(0 <= x_col && x_col < T::x_cols);
ASSERT(0 <= y_row && y_row < T::y_rows);
auto cofactor = minor_val(m, x_col, y_row);
if ((x_col + y_row) % 2 == 1) {
cofactor *= -1;
}
return cofactor;
}
// -
// Unfortunately, can't call this `minor(...)` because there is
// `#define minor(dev) gnu_dev_minor (dev)`
// in /usr/include/x86_64-linux-gnu/sys/sysmacros.h:62
template <class T>
float minor_val(const T& a, const int skip_x, const int skip_y) {
ASSERT(0 <= skip_x && skip_x < T::x_cols);
ASSERT(0 <= skip_y && skip_y < T::y_rows);
// A minor matrix is a matrix without its x_col and y_row.
mat<T::y_rows - 1, T::x_cols - 1> b;
int x_skips = 0;
for (int ax = 0; ax < T::x_cols; ax++) {
if (ax == skip_x) {
x_skips = 1;
continue;
}
int y_skips = 0;
for (int ay = 0; ay < T::y_rows; ay++) {
if (ay == skip_y) {
y_skips = 1;
continue;
}
b.at(ax - x_skips, ay - y_skips) = a.at(ax, ay);
}
}
const auto minor = determinant(b);
return minor;
}
// -
/// The matrix of cofactors.
template <class T>
auto comatrix(const T& a) {
auto b = T{};
for (int x = 0; x < T::x_cols; x++) {
for (int y = 0; y < T::y_rows; y++) {
b.at(x, y) = cofactor(a, x, y);
}
}
return b;
}
// -
template <class T>
auto transpose(const T& a) {
auto b = mat<T::x_cols, T::y_rows>{};
for (int x = 0; x < T::x_cols; x++) {
for (int y = 0; y < T::y_rows; y++) {
b.at(y, x) = a.at(x, y);
}
}
return b;
}
// -
template <class T>
inline T inverse(const T& a) {
const auto det = determinant(a);
const auto comat = comatrix(a);
const auto adjugate = transpose(comat);
const auto inv = adjugate / det;
return inv;
}
// -
template <class F>
void ForEachIntWithin(const ivec3 size, const F& f) {
ivec3 p;
for (p.z(0); p.z() < size.z(); p.z(p.z() + 1)) {
for (p.y(0); p.y() < size.y(); p.y(p.y() + 1)) {
for (p.x(0); p.x() < size.x(); p.x(p.x() + 1)) {
f(p);
}
}
}
}
template <class F>
void ForEachSampleWithin(const ivec3 size, const F& f) {
const auto div = vec3(size - 1);
ForEachIntWithin(size, [&](const ivec3& isrc) {
const auto fsrc = vec3(isrc) / div;
f(fsrc);
});
}
// -
struct Lut3 final {
ivec3 size;
std::vector<vec3> data;
// -
static Lut3 Create(const ivec3 size) {
Lut3 lut;
lut.size = size;
lut.data.resize(size.x() * size.y() * size.z());
return lut;
}
// -
/// p: [0, N-1] (clamps)
size_t Index(ivec3 p) const {
const auto scales = ivec3({1, size.x(), size.x() * size.y()});
p = max(ivec3(0), min(p, size - 1)); // clamp
return dot(p, scales);
}
// -
template <class F>
void SetMap(const F& dstFromSrc01) {
ForEachIntWithin(size, [&](const ivec3 p) {
const auto i = Index(p);
const auto src01 = vec3(p) / vec3(size - 1);
const auto dstVal = dstFromSrc01(src01);
data.at(i) = dstVal;
});
}
// -
/// p: [0, N-1] (clamps)
vec3 Fetch(ivec3 p) const {
const auto i = Index(p);
return data.at(i);
}
/// in01: [0.0, 1.0] (clamps)
vec3 Sample(vec3 in01) const;
};
// -
/**
Naively, it would be ideal to map directly from ycbcr to rgb,
but headroom and footroom are problematic: For e.g. narrow-range-8-bit,
our naive LUT would start at absolute y=0/255. However, values only start
at y=16/255, and depending on where your first LUT sample is, you might get
very poor approximations for y=16/255.
Further, even for full-range-8-bit, y=-0.5 is encoded as 1/255. U and v
aren't *as* important as y, but we should try be accurate for the min and
max values. Additionally, it would be embarassing to get whites/greys wrong,
so preserving u=0.0 should also be a goal.
Finally, when using non-linear transfer functions, the linear approximation of a
point between two samples will be fairly inaccurate.
We preserve min and max by choosing our input range such that min and max are
the endpoints of their LUT axis.
We preserve accuracy (at and around) mid by choosing odd sizes for dimentions.
But also, the LUT is surprisingly robust, so check if the simple version works
before adding complexity!
**/
struct ColorspaceTransform final {
ColorspaceDesc srcSpace;
ColorspaceDesc dstSpace;
mat4 srcRgbTfFromSrc;
std::optional<PiecewiseGammaDesc> srcTf;
mat3 dstRgbLinFromSrcRgbLin;
std::optional<PiecewiseGammaDesc> dstTf;
mat4 dstFromDstRgbTf;
static ColorspaceTransform Create(const ColorspaceDesc& src,
const ColorspaceDesc& dst);
// -
vec3 DstFromSrc(vec3 src) const;
std::optional<mat4> ToMat4() const;
Lut3 ToLut3(const ivec3 size) const;
Lut3 ToLut3() const {
auto defaultSize = ivec3({31, 31, 15}); // Order of importance: G, R, B
if (srcSpace.yuv) {
defaultSize = ivec3({31, 15, 31}); // Y, Cb, Cr
}
return ToLut3(defaultSize);
}
};
// -
struct RgbTransferTables {
std::vector<float> r;
std::vector<float> g;
std::vector<float> b;
};
float GuessGamma(const std::vector<float>& vals, float exp_guess = 1.0);
static constexpr auto D65 = vec2{{0.3127, 0.3290}};
static constexpr auto D50 = vec2{{0.34567, 0.35850}};
mat3 XyzAFromXyzB_BradfordLinear(const vec2 xyA, const vec2 xyB);
// -
struct ColorProfileDesc {
// ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50)
// However, all of our colorspaces are D65, so let's normalize to that,
// even though it's a reversible transform.
color::mat4 rgbFromYcbcr = color::mat4::Identity();
RgbTransferTables linearFromTf;
color::mat3 xyzd65FromLinearRgb = color::mat3::Identity();
static ColorProfileDesc From(const ColorspaceDesc&);
static ColorProfileDesc From(const qcms_profile&);
};
template <class C>
inline float SampleOutByIn(const C& outByIn, const float in) {
switch (outByIn.size()) {
case 0:
return in;
case 1:
return outByIn.at(0);
}
MOZ_ASSERT(outByIn.size() >= 2);
const auto begin = outByIn.begin();
const auto in0i = size_t(floorf(in * (outByIn.size() - 1)));
const auto out0_itr = begin + std::min(in0i, outByIn.size() - 2);
const auto in0 = float(out0_itr - begin) / (outByIn.size() - 1);
const auto out0 = *out0_itr;
const auto d_in = float(1) / (outByIn.size() - 1);
const auto d_out = *(out0_itr + 1) - *out0_itr;
const auto out = out0 + (d_out / d_in) * (in - in0);
// printf("SampleOutByIn(%f)->%f\n", in, out);
return out;
}
template <class C>
inline float SampleInByOut(const C& outByIn, const float out) {
MOZ_ASSERT(outByIn.size() >= 2);
const auto begin = outByIn.begin();
const auto out0_itr = std::lower_bound(begin + 1, outByIn.end() - 1, out) - 1;
const auto in0 = float(out0_itr - begin) / (outByIn.size() - 1);
const auto out0 = *out0_itr;
const auto d_in = float(1) / (outByIn.size() - 1);
const auto d_out = *(out0_itr + 1) - *out0_itr;
// printf("%f + (%f / %f) * (%f - %f)\n", in0, d_in, d_out, out, out0);
const auto in = in0 + (d_in / d_out) * (out - out0);
// printf("SampleInByOut(%f)->%f\n", out, in);
return in;
}
template <class C, class FnLessEqualT = std::less_equal<typename C::value_type>>
inline bool IsMonotonic(const C& vals, const FnLessEqualT& LessEqual = {}) {
bool ok = true;
const auto begin = vals.begin();
for (size_t i = 1; i < vals.size(); i++) {
const auto itr = begin + i;
ok &= LessEqual(*(itr - 1), *itr);
// Assert(true, [&]() {
// return prints("[%zu]->%f <= [%zu]->%f", i-1, *(itr-1), i, *itr);
// });
}
return ok;
}
template <class T, class I>
inline std::optional<I> SeekNeq(const T& ref, const I first, const I last) {
const auto inc = (last - first) > 0 ? 1 : -1;
auto itr = first;
while (true) {
if (*itr != ref) return itr;
if (itr == last) return {};
itr += inc;
}
}
template <class T>
struct TwoPoints {
struct {
T x;
T y;
} p0;
struct {
T x;
T y;
} p1;
T y(const T x) const {
const auto dx = p1.x - p0.x;
const auto dy = p1.y - p0.y;
return p0.y + dy / dx * (x - p0.x);
}
};
/// Fills `vals` with `x:[0..vals.size()-1] => line.y(x)`.
template <class T>
static void LinearFill(T& vals, const TwoPoints<float>& line) {
float x = -1;
for (auto& val : vals) {
x += 1;
val = line.y(x);
}
}
// -
inline void DequantizeMonotonic(const Span<float> vals) {
MOZ_ASSERT(IsMonotonic(vals));
const auto first = vals.begin();
const auto end = vals.end();
if (first == end) return;
const auto last = end - 1;
if (first == last) return;
// Three monotonic cases:
// 1. [0,0,0,0]
// 2. [0,0,1,1]
// 3. [0,1,1,2]
const auto body_first = SeekNeq(*first, first, last);
if (!body_first) {
// E.g. [0,0,0,0]
return;
}
const auto body_last = SeekNeq(*last, last, *body_first);
if (!body_last) {
// E.g. [0,0,1,1]
// This isn't the most accurate, but close enough.
// print("#2: %s", to_str(vals).c_str());
LinearFill(vals, {
{0, *first},
{float(vals.size() - 1), *last},
});
// print(" -> %s\n", to_str(vals).c_str());
return;
}
// E.g. [0,1,1,2]
// ^^^ body
// => f(0.5)->0.5, f(2.5)->1.5
// => f(x) = f(x0) + (x-x0) * (f(x1) - f(x0)) / (x1-x0)
// => f(x) = f(x0) + (x-x0) * dfdx
const auto head_end = *body_first;
const auto head = vals.subspan(0, head_end - vals.begin());
const auto tail_begin = *body_last + 1;
const auto tail = vals.subspan(tail_begin - vals.begin());
// print("head tail: %s %s\n",
// to_str(head).c_str(),
// to_str(tail).c_str());
// const auto body = vals->subspan(head.size(), vals->size()-tail.size());
auto next_part_first = head_end;
while (next_part_first != tail_begin) {
const auto part_first = next_part_first;
// print("part_first: %f\n", *part_first);
next_part_first = *SeekNeq(*part_first, part_first, tail_begin);
// print("next_part_first: %f\n", *next_part_first);
const auto part =
Span<float>{part_first, size_t(next_part_first - part_first)};
// print("part: %s\n", to_str(part).c_str());
const auto prev_part_last = part_first - 1;
const auto part_last = next_part_first - 1;
const auto line = TwoPoints<float>{
{-0.5, (*prev_part_last + *part_first) / 2},
{part.size() - 0.5f, (*part_last + *next_part_first) / 2},
};
LinearFill(part, line);
}
static constexpr bool INFER_HEAD_TAIL_FROM_BODY_EDGE = false;
// Basically ignore contents of head and tail, and infer from edges of body.
// print("3: %s\n", to_str(vals).c_str());
if (!IsMonotonic(head, std::less<float>{})) {
if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) {
LinearFill(head,
{
{0, *head.begin()},
{head.size() - 0.5f, (*(head.end() - 1) + *head_end) / 2},
});
} else {
LinearFill(head, {
{head.size() + 0.0f, *head_end},
{head.size() + 1.0f, *(head_end + 1)},
});
}
}
if (!IsMonotonic(tail, std::less<float>{})) {
if (!INFER_HEAD_TAIL_FROM_BODY_EDGE) {
LinearFill(tail, {
{-0.5, (*(tail_begin - 1) + *tail.begin()) / 2},
{tail.size() - 1.0f, *(tail.end() - 1)},
});
} else {
LinearFill(tail, {
{-2.0f, *(tail_begin - 2)},
{-1.0f, *(tail_begin - 1)},
});
}
}
// print("3: %s\n", to_str(vals).c_str());
MOZ_ASSERT(IsMonotonic(vals, std::less<float>{}));
// Rescale, because we tend to lose range.
static constexpr bool RESCALE = false;
if (RESCALE) {
const auto firstv = *first;
const auto lastv = *last;
for (auto& val : vals) {
val = (val - firstv) / (lastv - firstv);
}
}
// print("4: %s\n", to_str(vals).c_str());
}
template <class In, class Out>
static void InvertLut(const In& lut, Out* const out_invertedLut) {
MOZ_ASSERT(IsMonotonic(lut));
auto plut = &lut;
auto vec = std::vector<float>{};
if (!IsMonotonic(lut, std::less<float>{})) {
// print("Not strictly monotonic...\n");
vec.assign(lut.begin(), lut.end());
DequantizeMonotonic(vec);
plut = &vec;
// print(" Now strictly monotonic: %i: %s\n",
// int(IsMonotonic(*plut, std::less<float>{})), to_str(*plut).c_str());
MOZ_ASSERT(IsMonotonic(*plut, std::less<float>{}));
}
MOZ_ASSERT(plut->size() >= 2);
auto& ret = *out_invertedLut;
for (size_t i_out = 0; i_out < ret.size(); i_out++) {
const auto f_out = i_out / float(ret.size() - 1);
const auto f_in = SampleInByOut(*plut, f_out);
ret[i_out] = f_in;
}
MOZ_ASSERT(IsMonotonic(ret));
MOZ_ASSERT(IsMonotonic(ret, std::less<float>{}));
}
// -
struct ColorProfileConversionDesc {
// ICC profiles are phrased as PCS-from-encoded (PCS is CIEXYZ-D50)
color::mat4 srcRgbFromSrcYuv = color::mat4::Identity();
RgbTransferTables srcLinearFromSrcTf;
color::mat3 dstLinearFromSrcLinear = color::mat3::Identity();
RgbTransferTables dstTfFromDstLinear;
struct FromDesc {
ColorProfileDesc src;
ColorProfileDesc dst;
};
static ColorProfileConversionDesc From(const FromDesc&);
vec3 Apply(const vec3 src) const {
const auto srcRgb = vec3(srcRgbFromSrcYuv * vec4(src, 1));
const auto srcLinear = vec3{{
SampleOutByIn(srcLinearFromSrcTf.r, srcRgb.x()),
SampleOutByIn(srcLinearFromSrcTf.g, srcRgb.y()),
SampleOutByIn(srcLinearFromSrcTf.b, srcRgb.z()),
}};
const auto dstLinear = dstLinearFromSrcLinear * srcLinear;
const auto dstRgb = vec3{{
SampleOutByIn(dstTfFromDstLinear.r, dstLinear.x()),
SampleOutByIn(dstTfFromDstLinear.g, dstLinear.y()),
SampleOutByIn(dstTfFromDstLinear.b, dstLinear.z()),
}};
return dstRgb;
}
};
} // namespace mozilla::color
#undef ASSERT
#endif // MOZILLA_GFX_GL_COLORSPACES_H_
|