1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
use std::convert::TryInto;
use crate::{
iccread::{curveType, Profile},
s15Fixed16Number_to_float,
};
use crate::{matrix::Matrix, transform::PRECACHE_OUTPUT_MAX, transform::PRECACHE_OUTPUT_SIZE};
//XXX: could use a bettername
pub type uint16_fract_t = u16;
#[inline]
fn u8Fixed8Number_to_float(x: u16) -> f32 {
// 0x0000 = 0.
// 0x0100 = 1.
// 0xffff = 255 + 255/256
(x as i32 as f64 / 256.0f64) as f32
}
#[inline]
pub fn clamp_float(a: f32) -> f32 {
/* One would naturally write this function as the following:
if (a > 1.)
return 1.;
else if (a < 0)
return 0;
else
return a;
However, that version will let NaNs pass through which is undesirable
for most consumers.
*/
if a > 1. {
1.
} else if a >= 0. {
a
} else {
// a < 0 or a is NaN
0.
}
}
/* value must be a value between 0 and 1 */
//XXX: is the above a good restriction to have?
// the output range of this functions is 0..1
pub fn lut_interp_linear(mut input_value: f64, table: &[u16]) -> f32 {
input_value *= (table.len() - 1) as f64;
let upper: i32 = input_value.ceil() as i32;
let lower: i32 = input_value.floor() as i32;
let value: f32 = ((table[upper as usize] as f64) * (1. - (upper as f64 - input_value))
+ (table[lower as usize] as f64 * (upper as f64 - input_value)))
as f32;
/* scale the value */
value * (1.0 / 65535.0)
}
/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
#[no_mangle]
pub fn lut_interp_linear16(input_value: u16, table: &[u16]) -> u16 {
/* Start scaling input_value to the length of the array: 65535*(length-1).
* We'll divide out the 65535 next */
let mut value: u32 = (input_value as i32 * (table.len() as i32 - 1)) as u32; /* equivalent to ceil(value/65535) */
let upper: u32 = (value + 65534) / 65535; /* equivalent to floor(value/65535) */
let lower: u32 = value / 65535;
/* interp is the distance from upper to value scaled to 0..65535 */
let interp: u32 = value % 65535; // 0..65535*65535
value = (table[upper as usize] as u32 * interp
+ table[lower as usize] as u32 * (65535 - interp))
/ 65535;
value as u16
}
/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
* and returns a uint8_t value representing a range from 0..1 */
fn lut_interp_linear_precache_output(input_value: u32, table: &[u16]) -> u8 {
/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
* We'll divide out the PRECACHE_OUTPUT_MAX next */
let mut value: u32 = input_value * (table.len() - 1) as u32;
/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
let upper: u32 = (value + PRECACHE_OUTPUT_MAX as u32 - 1) / PRECACHE_OUTPUT_MAX as u32;
/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
let lower: u32 = value / PRECACHE_OUTPUT_MAX as u32;
/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
let interp: u32 = value % PRECACHE_OUTPUT_MAX as u32;
/* the table values range from 0..65535 */
value = table[upper as usize] as u32 * interp
+ table[lower as usize] as u32 * (PRECACHE_OUTPUT_MAX as u32 - interp); // 0..(65535*PRECACHE_OUTPUT_MAX)
/* round and scale */
value += (PRECACHE_OUTPUT_MAX * 65535 / 255 / 2) as u32; // scale to 0..255
value /= (PRECACHE_OUTPUT_MAX * 65535 / 255) as u32;
value as u8
}
/* value must be a value between 0 and 1 */
//XXX: is the above a good restriction to have?
pub fn lut_interp_linear_float(mut value: f32, table: &[f32]) -> f32 {
value *= (table.len() - 1) as f32;
let upper: i32 = value.ceil() as i32;
let lower: i32 = value.floor() as i32;
//XXX: can we be more performant here?
value = (table[upper as usize] as f64 * (1.0f64 - (upper as f32 - value) as f64)
+ (table[lower as usize] * (upper as f32 - value)) as f64) as f32;
/* scale the value */
value
}
fn compute_curve_gamma_table_type1(gamma: u16) -> Box<[f32; 256]> {
let mut gamma_table = Vec::with_capacity(256);
let gamma_float: f32 = u8Fixed8Number_to_float(gamma);
for i in 0..256 {
// 0..1^(0..255 + 255/256) will always be between 0 and 1
gamma_table.push((i as f64 / 255.0f64).powf(gamma_float as f64) as f32);
}
gamma_table.into_boxed_slice().try_into().unwrap()
}
fn compute_curve_gamma_table_type2(table: &[u16]) -> Box<[f32; 256]> {
let mut gamma_table = Vec::with_capacity(256);
for i in 0..256 {
gamma_table.push(lut_interp_linear(i as f64 / 255.0f64, table));
}
gamma_table.into_boxed_slice().try_into().unwrap()
}
fn compute_curve_gamma_table_type_parametric(params: &[f32]) -> Box<[f32; 256]> {
let params = Param::new(params);
let mut gamma_table = Vec::with_capacity(256);
for i in 0..256 {
let X = i as f32 / 255.;
gamma_table.push(clamp_float(params.eval(X)));
}
gamma_table.into_boxed_slice().try_into().unwrap()
}
fn compute_curve_gamma_table_type0() -> Box<[f32; 256]> {
let mut gamma_table = Vec::with_capacity(256);
for i in 0..256 {
gamma_table.push((i as f64 / 255.0f64) as f32);
}
gamma_table.into_boxed_slice().try_into().unwrap()
}
pub(crate) fn build_input_gamma_table(TRC: Option<&curveType>) -> Option<Box<[f32; 256]>> {
let TRC = match TRC {
Some(TRC) => TRC,
None => return None,
};
Some(match TRC {
curveType::Parametric(params) => compute_curve_gamma_table_type_parametric(params),
curveType::Curve(data) => match data.len() {
0 => compute_curve_gamma_table_type0(),
1 => compute_curve_gamma_table_type1(data[0]),
_ => compute_curve_gamma_table_type2(data),
},
})
}
pub fn build_colorant_matrix(p: &Profile) -> Matrix {
let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
result.m[0][0] = s15Fixed16Number_to_float(p.redColorant.X);
result.m[0][1] = s15Fixed16Number_to_float(p.greenColorant.X);
result.m[0][2] = s15Fixed16Number_to_float(p.blueColorant.X);
result.m[1][0] = s15Fixed16Number_to_float(p.redColorant.Y);
result.m[1][1] = s15Fixed16Number_to_float(p.greenColorant.Y);
result.m[1][2] = s15Fixed16Number_to_float(p.blueColorant.Y);
result.m[2][0] = s15Fixed16Number_to_float(p.redColorant.Z);
result.m[2][1] = s15Fixed16Number_to_float(p.greenColorant.Z);
result.m[2][2] = s15Fixed16Number_to_float(p.blueColorant.Z);
result
}
/** Parametric representation of transfer function */
#[derive(Debug)]
struct Param {
g: f32,
a: f32,
b: f32,
c: f32,
d: f32,
e: f32,
f: f32,
}
impl Param {
#[allow(clippy::many_single_char_names)]
fn new(params: &[f32]) -> Param {
// convert from the variable number of parameters
// contained in profiles to a unified representation.
let g: f32 = params[0];
match params[1..] {
[] => Param {
g,
a: 1.,
b: 0.,
c: 1.,
d: 0.,
e: 0.,
f: 0.,
},
[a, b] => Param {
g,
a,
b,
c: 0.,
d: -b / a,
e: 0.,
f: 0.,
},
[a, b, c] => Param {
g,
a,
b,
c: 0.,
d: -b / a,
e: c,
f: c,
},
[a, b, c, d] => Param {
g,
a,
b,
c,
d,
e: 0.,
f: 0.,
},
[a, b, c, d, e, f] => Param {
g,
a,
b,
c,
d,
e,
f,
},
_ => panic!(),
}
}
fn eval(&self, x: f32) -> f32 {
if x < self.d {
self.c * x + self.f
} else {
(self.a * x + self.b).powf(self.g) + self.e
}
}
#[allow(clippy::many_single_char_names)]
fn invert(&self) -> Option<Param> {
// First check if the function is continuous at the cross-over point d.
let d1 = (self.a * self.d + self.b).powf(self.g) + self.e;
let d2 = self.c * self.d + self.f;
if (d1 - d2).abs() > 0.1 {
return None;
}
let d = d1;
// y = (a * x + b)^g + e
// y - e = (a * x + b)^g
// (y - e)^(1/g) = a*x + b
// (y - e)^(1/g) - b = a*x
// (y - e)^(1/g)/a - b/a = x
// ((y - e)/a^g)^(1/g) - b/a = x
// ((1/(a^g)) * y - e/(a^g))^(1/g) - b/a = x
let a = 1. / self.a.powf(self.g);
let b = -self.e / self.a.powf(self.g);
let g = 1. / self.g;
let e = -self.b / self.a;
// y = c * x + f
// y - f = c * x
// y/c - f/c = x
let (c, f);
if d <= 0. {
c = 1.;
f = 0.;
} else {
c = 1. / self.c;
f = -self.f / self.c;
}
// if self.d > 0. and self.c == 0 as is likely with type 1 and 2 parametric function
// then c and f will not be finite.
if !(g.is_finite()
&& a.is_finite()
&& b.is_finite()
&& c.is_finite()
&& d.is_finite()
&& e.is_finite()
&& f.is_finite())
{
return None;
}
Some(Param {
g,
a,
b,
c,
d,
e,
f,
})
}
}
#[test]
fn param_invert() {
let p3 = Param::new(&[2.4, 0.948, 0.052, 0.077, 0.04]);
p3.invert().unwrap();
let g2_2 = Param::new(&[2.2]);
g2_2.invert().unwrap();
let g2_2 = Param::new(&[2.2, 0.9, 0.052]);
g2_2.invert().unwrap();
let g2_2 = dbg!(Param::new(&[2.2, 0.9, -0.52]));
g2_2.invert().unwrap();
let g2_2 = dbg!(Param::new(&[2.2, 0.9, -0.52, 0.1]));
assert!(g2_2.invert().is_none());
}
/* The following code is copied nearly directly from lcms.
* I think it could be much better. For example, Argyll seems to have better code in
* icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
* to a working solution and allows for easy comparing with lcms. */
#[no_mangle]
#[allow(clippy::many_single_char_names)]
pub fn lut_inverse_interp16(Value: u16, LutTable: &[u16]) -> uint16_fract_t {
let mut l: i32 = 1; // 'int' Give spacing for negative values
let mut r: i32 = 0x10000;
let mut x: i32 = 0;
let mut res: i32;
let length = LutTable.len() as i32;
let mut NumZeroes: i32 = 0;
while LutTable[NumZeroes as usize] as i32 == 0 && NumZeroes < length - 1 {
NumZeroes += 1
}
// There are no zeros at the beginning and we are trying to find a zero, so
// return anything. It seems zero would be the less destructive choice
/* I'm not sure that this makes sense, but oh well... */
if NumZeroes == 0 && Value as i32 == 0 {
return 0u16;
}
let mut NumPoles: i32 = 0;
while LutTable[(length - 1 - NumPoles) as usize] as i32 == 0xffff && NumPoles < length - 1 {
NumPoles += 1
}
// Does the curve belong to this case?
if NumZeroes > 1 || NumPoles > 1 {
let a_0: i32;
let b_0: i32;
// Identify if value fall downto 0 or FFFF zone
if Value as i32 == 0 {
return 0u16;
}
// if (Value == 0xFFFF) return 0xFFFF;
// else restrict to valid zone
if NumZeroes > 1 {
a_0 = (NumZeroes - 1) * 0xffff / (length - 1);
l = a_0 - 1
}
if NumPoles > 1 {
b_0 = (length - 1 - NumPoles) * 0xffff / (length - 1);
r = b_0 + 1
}
}
if r <= l {
// If this happens LutTable is not invertible
return 0u16;
}
// Seems not a degenerated case... apply binary search
while r > l {
x = (l + r) / 2;
res = lut_interp_linear16((x - 1) as uint16_fract_t, LutTable) as i32;
if res == Value as i32 {
// Found exact match.
return (x - 1) as uint16_fract_t;
}
if res > Value as i32 {
r = x - 1
} else {
l = x + 1
}
}
// Not found, should we interpolate?
// Get surrounding nodes
debug_assert!(x >= 1);
let val2: f64 = (length - 1) as f64 * ((x - 1) as f64 / 65535.0f64);
let cell0: i32 = val2.floor() as i32;
let cell1: i32 = val2.ceil() as i32;
if cell0 == cell1 {
return x as uint16_fract_t;
}
let y0: f64 = LutTable[cell0 as usize] as f64;
let x0: f64 = 65535.0f64 * cell0 as f64 / (length - 1) as f64;
let y1: f64 = LutTable[cell1 as usize] as f64;
let x1: f64 = 65535.0f64 * cell1 as f64 / (length - 1) as f64;
let a: f64 = (y1 - y0) / (x1 - x0);
let b: f64 = y0 - a * x0;
if a.abs() < 0.01f64 {
return x as uint16_fract_t;
}
let f: f64 = (Value as i32 as f64 - b) / a;
if f < 0.0f64 {
return 0u16;
}
if f >= 65535.0f64 {
return 0xffffu16;
}
(f + 0.5f64).floor() as uint16_fract_t
}
/*
The number of entries needed to invert a lookup table should not
necessarily be the same as the original number of entries. This is
especially true of lookup tables that have a small number of entries.
For example:
Using a table like:
{0, 3104, 14263, 34802, 65535}
invert_lut will produce an inverse of:
{3, 34459, 47529, 56801, 65535}
which has an maximum error of about 9855 (pixel difference of ~38.346)
For now, we punt the decision of output size to the caller. */
fn invert_lut(table: &[u16], out_length: usize) -> Vec<u16> {
/* for now we invert the lut by creating a lut of size out_length
* and attempting to lookup a value for each entry using lut_inverse_interp16 */
let mut output = Vec::with_capacity(out_length);
for i in 0..out_length {
let x: f64 = i as f64 * 65535.0f64 / (out_length - 1) as f64;
let input: uint16_fract_t = (x + 0.5f64).floor() as uint16_fract_t;
output.push(lut_inverse_interp16(input, table));
}
output
}
#[allow(clippy::needless_range_loop)]
fn compute_precache_pow(output: &mut [u8; PRECACHE_OUTPUT_SIZE], gamma: f32) {
for v in 0..PRECACHE_OUTPUT_SIZE {
//XXX: don't do integer/float conversion... and round?
output[v] = (255. * (v as f32 / PRECACHE_OUTPUT_MAX as f32).powf(gamma)) as u8;
}
}
#[allow(clippy::needless_range_loop)]
pub fn compute_precache_lut(output: &mut [u8; PRECACHE_OUTPUT_SIZE], table: &[u16]) {
for v in 0..PRECACHE_OUTPUT_SIZE {
output[v] = lut_interp_linear_precache_output(v as u32, table);
}
}
#[allow(clippy::needless_range_loop)]
pub fn compute_precache_linear(output: &mut [u8; PRECACHE_OUTPUT_SIZE]) {
for v in 0..PRECACHE_OUTPUT_SIZE {
//XXX: round?
output[v] = (v / (PRECACHE_OUTPUT_SIZE / 256)) as u8;
}
}
pub(crate) fn compute_precache(trc: &curveType, output: &mut [u8; PRECACHE_OUTPUT_SIZE]) -> bool {
match trc {
curveType::Parametric(params) => {
let mut gamma_table_uint: [u16; 256] = [0; 256];
let mut inverted_size: usize = 256;
let gamma_table = compute_curve_gamma_table_type_parametric(params);
let mut i: u16 = 0u16;
while (i as i32) < 256 {
gamma_table_uint[i as usize] = (gamma_table[i as usize] * 65535f32) as u16;
i += 1
}
//XXX: the choice of a minimum of 256 here is not backed by any theory,
// measurement or data, however it is what lcms uses.
// the maximum number we would need is 65535 because that's the
// accuracy used for computing the pre cache table
if inverted_size < 256 {
inverted_size = 256
}
let inverted = invert_lut(&gamma_table_uint, inverted_size);
compute_precache_lut(output, &inverted);
}
curveType::Curve(data) => {
match data.len() {
0 => compute_precache_linear(output),
1 => compute_precache_pow(output, 1. / u8Fixed8Number_to_float(data[0])),
_ => {
let mut inverted_size = data.len();
//XXX: the choice of a minimum of 256 here is not backed by any theory,
// measurement or data, however it is what lcms uses.
// the maximum number we would need is 65535 because that's the
// accuracy used for computing the pre cache table
if inverted_size < 256 {
inverted_size = 256
} //XXX turn this conversion into a function
let inverted = invert_lut(data, inverted_size);
compute_precache_lut(output, &inverted);
}
}
}
}
true
}
fn build_linear_table(length: usize) -> Vec<u16> {
let mut output = Vec::with_capacity(length);
for i in 0..length {
let x: f64 = i as f64 * 65535.0f64 / (length - 1) as f64;
let input: uint16_fract_t = (x + 0.5f64).floor() as uint16_fract_t;
output.push(input);
}
output
}
fn build_pow_table(gamma: f32, length: usize) -> Vec<u16> {
let mut output = Vec::with_capacity(length);
for i in 0..length {
let mut x: f64 = i as f64 / (length - 1) as f64;
x = x.powf(gamma as f64);
let result: uint16_fract_t = (x * 65535.0f64 + 0.5f64).floor() as uint16_fract_t;
output.push(result);
}
output
}
fn to_lut(params: &Param, len: usize) -> Vec<u16> {
let mut output = Vec::with_capacity(len);
for i in 0..len {
let X = i as f32 / (len-1) as f32;
output.push((params.eval(X) * 65535.) as u16);
}
output
}
pub(crate) fn build_lut_for_linear_from_tf(trc: &curveType,
lut_len: Option<usize>) -> Vec<u16> {
match trc {
curveType::Parametric(params) => {
let lut_len = lut_len.unwrap_or(256);
let params = Param::new(params);
to_lut(¶ms, lut_len)
},
curveType::Curve(data) => {
let autogen_lut_len = lut_len.unwrap_or(4096);
match data.len() {
0 => build_linear_table(autogen_lut_len),
1 => {
let gamma = u8Fixed8Number_to_float(data[0]);
build_pow_table(gamma, autogen_lut_len)
}
_ => {
let lut_len = lut_len.unwrap_or(data.len());
assert_eq!(lut_len, data.len());
data.clone() // I feel bad about this.
}
}
},
}
}
pub(crate) fn build_lut_for_tf_from_linear(trc: &curveType) -> Option<Vec<u16>> {
match trc {
curveType::Parametric(params) => {
let lut_len = 256;
let params = Param::new(params);
if let Some(inv_params) = params.invert() {
return Some(to_lut(&inv_params, lut_len));
}
// else return None instead of fallthrough to generic lut inversion.
return None;
},
curveType::Curve(data) => {
let autogen_lut_len = 4096;
match data.len() {
0 => {
return Some(build_linear_table(autogen_lut_len));
},
1 => {
let gamma = 1. / u8Fixed8Number_to_float(data[0]);
return Some(build_pow_table(gamma, autogen_lut_len));
},
_ => {},
}
},
}
let linear_from_tf = build_lut_for_linear_from_tf(trc, None);
//XXX: the choice of a minimum of 256 here is not backed by any theory,
// measurement or data, however it is what lcms uses.
let inverted_lut_len = std::cmp::max(linear_from_tf.len(), 256);
Some(invert_lut(&linear_from_tf, inverted_lut_len))
}
pub(crate) fn build_output_lut(trc: &curveType) -> Option<Vec<u16>> {
build_lut_for_tf_from_linear(trc)
}
|