summaryrefslogtreecommitdiffstats
path: root/gfx/wr/swgl/src/blend.h
blob: 8bc1c93994e66fc647c42c920cab1dc8fbe0b16a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

static ALWAYS_INLINE HalfRGBA8 packRGBA8(I32 a, I32 b) {
#if USE_SSE2
  return _mm_packs_epi32(a, b);
#elif USE_NEON
  return vcombine_u16(vqmovun_s32(a), vqmovun_s32(b));
#else
  return CONVERT(combine(a, b), HalfRGBA8);
#endif
}

static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8(const vec4& v,
                                                 float scale = 255.0f) {
  ivec4 i = round_pixel(v, scale);
  HalfRGBA8 xz = packRGBA8(i.z, i.x);
  HalfRGBA8 yw = packRGBA8(i.y, i.w);
  HalfRGBA8 xyzwl = zipLow(xz, yw);
  HalfRGBA8 xyzwh = zipHigh(xz, yw);
  HalfRGBA8 lo = zip2Low(xyzwl, xyzwh);
  HalfRGBA8 hi = zip2High(xyzwl, xyzwh);
  return combine(lo, hi);
}

static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8(Float alpha,
                                                 float scale = 255.0f) {
  I32 i = round_pixel(alpha, scale);
  HalfRGBA8 c = packRGBA8(i, i);
  c = zipLow(c, c);
  return zip(c, c);
}

static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8(float alpha,
                                                 float scale = 255.0f) {
  I32 i = round_pixel(alpha, scale);
  return repeat2(packRGBA8(i, i));
}

UNUSED static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8(const vec4_scalar& v,
                                                        float scale = 255.0f) {
  I32 i = round_pixel((Float){v.z, v.y, v.x, v.w}, scale);
  return repeat2(packRGBA8(i, i));
}

static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8() {
  return pack_pixels_RGBA8(fragment_shader->gl_FragColor);
}

static ALWAYS_INLINE WideRGBA8 pack_pixels_RGBA8(WideRGBA32F v,
                                                 float scale = 255.0f) {
  ivec4 i = round_pixel(bit_cast<vec4>(v), scale);
  return combine(packRGBA8(i.x, i.y), packRGBA8(i.z, i.w));
}

static ALWAYS_INLINE WideR8 packR8(I32 a) {
#if USE_SSE2
  return lowHalf(bit_cast<V8<uint16_t>>(_mm_packs_epi32(a, a)));
#elif USE_NEON
  return vqmovun_s32(a);
#else
  return CONVERT(a, WideR8);
#endif
}

static ALWAYS_INLINE WideR8 pack_pixels_R8(Float c, float scale = 255.0f) {
  return packR8(round_pixel(c, scale));
}

static ALWAYS_INLINE WideR8 pack_pixels_R8() {
  return pack_pixels_R8(fragment_shader->gl_FragColor.x);
}

// Load a partial span > 0 and < 4 pixels.
template <typename V, typename P>
static ALWAYS_INLINE V partial_load_span(const P* src, int span) {
  return bit_cast<V>(
      (span >= 2
           ? combine(unaligned_load<V2<P>>(src),
                     V2<P>{span > 2 ? unaligned_load<P>(src + 2) : P(0), 0})
           : V4<P>{unaligned_load<P>(src), 0, 0, 0}));
}

// Store a partial span > 0 and < 4 pixels.
template <typename V, typename P>
static ALWAYS_INLINE void partial_store_span(P* dst, V src, int span) {
  auto pixels = bit_cast<V4<P>>(src);
  if (span >= 2) {
    unaligned_store(dst, lowHalf(pixels));
    if (span > 2) {
      unaligned_store(dst + 2, pixels.z);
    }
  } else {
    unaligned_store(dst, pixels.x);
  }
}

// Dispatcher that chooses when to load a full or partial span
template <typename V, typename P>
static ALWAYS_INLINE V load_span(const P* src, int span) {
  if (span >= 4) {
    return unaligned_load<V, P>(src);
  } else {
    return partial_load_span<V, P>(src, span);
  }
}

// Dispatcher that chooses when to store a full or partial span
template <typename V, typename P>
static ALWAYS_INLINE void store_span(P* dst, V src, int span) {
  if (span >= 4) {
    unaligned_store<V, P>(dst, src);
  } else {
    partial_store_span<V, P>(dst, src, span);
  }
}

template <typename T>
static ALWAYS_INLINE T muldiv256(T x, T y) {
  return (x * y) >> 8;
}

// (x*y + x) >> 8, cheap approximation of (x*y) / 255
template <typename T>
static ALWAYS_INLINE T muldiv255(T x, T y) {
  return (x * y + x) >> 8;
}

template <typename V>
static ALWAYS_INLINE WideRGBA8 pack_span(uint32_t*, const V& v,
                                         float scale = 255.0f) {
  return pack_pixels_RGBA8(v, scale);
}

template <typename C>
static ALWAYS_INLINE WideR8 pack_span(uint8_t*, C c, float scale = 255.0f) {
  return pack_pixels_R8(c, scale);
}

// Helper functions to apply a color modulus when available.
struct NoColor {};

template <typename P>
static ALWAYS_INLINE P applyColor(P src, NoColor) {
  return src;
}

struct InvertColor {};

template <typename P>
static ALWAYS_INLINE P applyColor(P src, InvertColor) {
  return 255 - src;
}

template <typename P>
static ALWAYS_INLINE P applyColor(P src, P color) {
  return muldiv255(color, src);
}

static ALWAYS_INLINE WideRGBA8 applyColor(PackedRGBA8 src, WideRGBA8 color) {
  return applyColor(unpack(src), color);
}

template <typename P, typename C>
static ALWAYS_INLINE auto packColor(P* buf, C color) {
  return pack_span(buf, color, 255.0f);
}

template <typename P>
static ALWAYS_INLINE NoColor packColor(UNUSED P* buf, NoColor noColor) {
  return noColor;
}

template <typename P>
static ALWAYS_INLINE InvertColor packColor(UNUSED P* buf,
                                           InvertColor invertColor) {
  return invertColor;
}

// Single argument variation that takes an explicit destination buffer type.
template <typename P, typename C>
static ALWAYS_INLINE auto packColor(C color) {
  // Just pass in a typed null pointer, as the pack routines never use the
  // pointer's value, just its type.
  return packColor((P*)0, color);
}

// Byte-wise addition for when x or y is a signed 8-bit value stored in the
// low byte of a larger type T only with zeroed-out high bits, where T is
// greater than 8 bits, i.e. uint16_t. This can result when muldiv255 is used
// upon signed operands, using up all the precision in a 16 bit integer, and
// potentially losing the sign bit in the last >> 8 shift. Due to the
// properties of two's complement arithmetic, even though we've discarded the
// sign bit, we can still represent a negative number under addition (without
// requiring any extra sign bits), just that any negative number will behave
// like a large unsigned number under addition, generating a single carry bit
// on overflow that we need to discard. Thus, just doing a byte-wise add will
// overflow without the troublesome carry, giving us only the remaining 8 low
// bits we actually need while keeping the high bits at zero.
template <typename T>
static ALWAYS_INLINE T addlow(T x, T y) {
  typedef VectorType<uint8_t, sizeof(T)> bytes;
  return bit_cast<T>(bit_cast<bytes>(x) + bit_cast<bytes>(y));
}

// Replace color components of each pixel with the pixel's alpha values.
template <typename T>
static ALWAYS_INLINE T alphas(T c) {
  return SHUFFLE(c, c, 3, 3, 3, 3, 7, 7, 7, 7, 11, 11, 11, 11, 15, 15, 15, 15);
}

// Replace the alpha values of the first vector with alpha values from the
// second, while leaving the color components unmodified.
template <typename T>
static ALWAYS_INLINE T set_alphas(T c, T a) {
  return SHUFFLE(c, a, 0, 1, 2, 19, 4, 5, 6, 23, 8, 9, 10, 27, 12, 13, 14, 31);
}

// Miscellaneous helper functions for working with packed RGBA8 data.
static ALWAYS_INLINE HalfRGBA8 if_then_else(V8<int16_t> c, HalfRGBA8 t,
                                            HalfRGBA8 e) {
  return bit_cast<HalfRGBA8>((c & t) | (~c & e));
}

template <typename T, typename C, int N>
static ALWAYS_INLINE VectorType<T, N> if_then_else(VectorType<C, N> c,
                                                   VectorType<T, N> t,
                                                   VectorType<T, N> e) {
  return combine(if_then_else(lowHalf(c), lowHalf(t), lowHalf(e)),
                 if_then_else(highHalf(c), highHalf(t), highHalf(e)));
}

static ALWAYS_INLINE HalfRGBA8 min(HalfRGBA8 x, HalfRGBA8 y) {
#if USE_SSE2
  return bit_cast<HalfRGBA8>(
      _mm_min_epi16(bit_cast<V8<int16_t>>(x), bit_cast<V8<int16_t>>(y)));
#elif USE_NEON
  return vminq_u16(x, y);
#else
  return if_then_else(x < y, x, y);
#endif
}

template <typename T, int N>
static ALWAYS_INLINE VectorType<T, N> min(VectorType<T, N> x,
                                          VectorType<T, N> y) {
  return combine(min(lowHalf(x), lowHalf(y)), min(highHalf(x), highHalf(y)));
}

static ALWAYS_INLINE HalfRGBA8 max(HalfRGBA8 x, HalfRGBA8 y) {
#if USE_SSE2
  return bit_cast<HalfRGBA8>(
      _mm_max_epi16(bit_cast<V8<int16_t>>(x), bit_cast<V8<int16_t>>(y)));
#elif USE_NEON
  return vmaxq_u16(x, y);
#else
  return if_then_else(x > y, x, y);
#endif
}

template <typename T, int N>
static ALWAYS_INLINE VectorType<T, N> max(VectorType<T, N> x,
                                          VectorType<T, N> y) {
  return combine(max(lowHalf(x), lowHalf(y)), max(highHalf(x), highHalf(y)));
}

template <typename T, int N>
static ALWAYS_INLINE VectorType<T, N> recip(VectorType<T, N> v) {
  return combine(recip(lowHalf(v)), recip(highHalf(v)));
}

// Helper to get the reciprocal if the value is non-zero, or otherwise default
// to the supplied fallback value.
template <typename V>
static ALWAYS_INLINE V recip_or(V v, float f) {
  return if_then_else(v != V(0.0f), recip(v), V(f));
}

template <typename T, int N>
static ALWAYS_INLINE VectorType<T, N> inversesqrt(VectorType<T, N> v) {
  return combine(inversesqrt(lowHalf(v)), inversesqrt(highHalf(v)));
}

// Extract the alpha components so that we can cheaply calculate the reciprocal
// on a single SIMD register. Then multiply the duplicated alpha reciprocal with
// the pixel data. 0 alpha is treated as transparent black.
static ALWAYS_INLINE WideRGBA32F unpremultiply(WideRGBA32F v) {
  Float a = recip_or((Float){v[3], v[7], v[11], v[15]}, 0.0f);
  return v * a.xxxxyyyyzzzzwwww;
}

// Packed RGBA32F data is AoS in BGRA order. Transpose it to SoA and swizzle to
// RGBA to unpack.
static ALWAYS_INLINE vec4 unpack(PackedRGBA32F c) {
  return bit_cast<vec4>(
      SHUFFLE(c, c, 2, 6, 10, 14, 1, 5, 9, 13, 0, 4, 8, 12, 3, 7, 11, 15));
}

// The following lum/sat functions mostly follow the KHR_blend_equation_advanced
// specification but are rearranged to work on premultiplied data.
static ALWAYS_INLINE Float lumv3(vec3 v) {
  return v.x * 0.30f + v.y * 0.59f + v.z * 0.11f;
}

static ALWAYS_INLINE Float minv3(vec3 v) { return min(min(v.x, v.y), v.z); }

static ALWAYS_INLINE Float maxv3(vec3 v) { return max(max(v.x, v.y), v.z); }

static inline vec3 clip_color(vec3 v, Float lum, Float alpha) {
  Float mincol = max(-minv3(v), lum);
  Float maxcol = max(maxv3(v), alpha - lum);
  return lum + v * (lum * (alpha - lum) * recip_or(mincol * maxcol, 0.0f));
}

static inline vec3 set_lum(vec3 base, vec3 ref, Float alpha) {
  return clip_color(base - lumv3(base), lumv3(ref), alpha);
}

static inline vec3 set_lum_sat(vec3 base, vec3 sref, vec3 lref, Float alpha) {
  vec3 diff = base - minv3(base);
  Float sbase = maxv3(diff);
  Float ssat = maxv3(sref) - minv3(sref);
  // The sbase range is rescaled to ssat. If sbase has 0 extent, then rescale
  // to black, as per specification.
  return set_lum(diff * ssat * recip_or(sbase, 0.0f), lref, alpha);
}

// Flags the reflect the current blend-stage clipping to be applied.
enum SWGLClipFlag {
  SWGL_CLIP_FLAG_MASK = 1 << 0,
  SWGL_CLIP_FLAG_AA = 1 << 1,
  SWGL_CLIP_FLAG_BLEND_OVERRIDE = 1 << 2,
};
static int swgl_ClipFlags = 0;
static BlendKey swgl_BlendOverride = BLEND_KEY_NONE;
static WideRGBA8 swgl_BlendColorRGBA8 = {0};
static WideRGBA8 swgl_BlendAlphaRGBA8 = {0};

// A pointer into the color buffer for the start of the span.
static void* swgl_SpanBuf = nullptr;
// A pointer into the clip mask for the start of the span.
static uint8_t* swgl_ClipMaskBuf = nullptr;

static ALWAYS_INLINE WideR8 expand_mask(UNUSED uint8_t* buf, WideR8 mask) {
  return mask;
}
static ALWAYS_INLINE WideRGBA8 expand_mask(UNUSED uint32_t* buf, WideR8 mask) {
  WideRG8 maskRG = zip(mask, mask);
  return zip(maskRG, maskRG);
}

// Loads a chunk of clip masks. The current pointer into the color buffer is
// used to reconstruct the relative position within the span. From there, the
// pointer into the clip mask can be generated from the start of the clip mask
// span.
template <typename P>
static ALWAYS_INLINE uint8_t* get_clip_mask(P* buf) {
  return &swgl_ClipMaskBuf[buf - (P*)swgl_SpanBuf];
}

template <typename P>
static ALWAYS_INLINE auto load_clip_mask(P* buf, int span)
    -> decltype(expand_mask(buf, 0)) {
  return expand_mask(buf,
                     unpack(load_span<PackedR8>(get_clip_mask(buf), span)));
}

// Temporarily removes masking from the blend stage, assuming the caller will
// handle it.
static ALWAYS_INLINE void override_clip_mask() {
  blend_key = BlendKey(blend_key - MASK_BLEND_KEY_NONE);
}

// Restores masking to the blend stage, assuming it was previously overridden.
static ALWAYS_INLINE void restore_clip_mask() {
  blend_key = BlendKey(MASK_BLEND_KEY_NONE + blend_key);
}

// A pointer to the start of the opaque destination region of the span for AA.
static const uint8_t* swgl_OpaqueStart = nullptr;
// The size, in bytes, of the opaque region.
static uint32_t swgl_OpaqueSize = 0;
// AA coverage distance offsets for the left and right edges.
static Float swgl_LeftAADist = 0.0f;
static Float swgl_RightAADist = 0.0f;
// AA coverage slope values used for accumulating coverage for each step.
static Float swgl_AASlope = 0.0f;

// Get the amount of pixels we need to process before the start of the opaque
// region.
template <typename P>
static ALWAYS_INLINE int get_aa_opaque_start(P* buf) {
  return max(int((P*)swgl_OpaqueStart - buf), 0);
}

// Assuming we are already in the opaque part of the span, return the remaining
// size of the opaque part.
template <typename P>
static ALWAYS_INLINE int get_aa_opaque_size(P* buf) {
  return max(int((P*)&swgl_OpaqueStart[swgl_OpaqueSize] - buf), 0);
}

// Temporarily removes anti-aliasing from the blend stage, assuming the caller
// will handle it.
static ALWAYS_INLINE void override_aa() {
  blend_key = BlendKey(blend_key - AA_BLEND_KEY_NONE);
}

// Restores anti-aliasing to the blend stage, assuming it was previously
// overridden.
static ALWAYS_INLINE void restore_aa() {
  blend_key = BlendKey(AA_BLEND_KEY_NONE + blend_key);
}

static PREFER_INLINE WideRGBA8 blend_pixels(uint32_t* buf, PackedRGBA8 pdst,
                                            WideRGBA8 src, int span = 4) {
  WideRGBA8 dst = unpack(pdst);
  const WideRGBA8 RGB_MASK = {0xFFFF, 0xFFFF, 0xFFFF, 0,      0xFFFF, 0xFFFF,
                              0xFFFF, 0,      0xFFFF, 0xFFFF, 0xFFFF, 0,
                              0xFFFF, 0xFFFF, 0xFFFF, 0};
  const WideRGBA8 ALPHA_MASK = {0, 0, 0, 0xFFFF, 0, 0, 0, 0xFFFF,
                                0, 0, 0, 0xFFFF, 0, 0, 0, 0xFFFF};
  const WideRGBA8 ALPHA_OPAQUE = {0, 0, 0, 255, 0, 0, 0, 255,
                                  0, 0, 0, 255, 0, 0, 0, 255};

// clang-format off
  // Computes AA for the given pixel based on the offset of the pixel within
  // destination row. Given the initial coverage offsets for the left and right
  // edges, the offset is scaled by the slope and accumulated to find the
  // minimum coverage value for the pixel. A final weight is generated that
  // can be used to scale the source pixel.
#define DO_AA(format, body)                                   \
  do {                                                        \
    int offset = int((const uint8_t*)buf - swgl_OpaqueStart); \
    if (uint32_t(offset) >= swgl_OpaqueSize) {                \
      Float delta = swgl_AASlope * float(offset);             \
      Float dist = clamp(min(swgl_LeftAADist + delta.x,       \
                             swgl_RightAADist + delta.y),     \
                         0.0f, 256.0f);                       \
      auto aa = pack_pixels_##format(dist, 1.0f);             \
      body;                                                   \
    }                                                         \
  } while (0)

  // Each blend case is preceded by the MASK_ variant. The MASK_ case first
  // loads the mask values and multiplies the source value by them. After, it
  // falls through to the normal blending case using the masked source. The
  // AA_ variations may further precede the blend cases, in which case the
  // source value is further modified before use.
#define BLEND_CASE_KEY(key)                          \
  case AA_##key:                                     \
    DO_AA(RGBA8, src = muldiv256(src, aa));          \
    goto key;                                        \
  case AA_MASK_##key:                                \
    DO_AA(RGBA8, src = muldiv256(src, aa));          \
    FALLTHROUGH;                                     \
  case MASK_##key:                                   \
    src = muldiv255(src, load_clip_mask(buf, span)); \
    FALLTHROUGH;                                     \
  case key: key

#define BLEND_CASE(...) BLEND_CASE_KEY(BLEND_KEY(__VA_ARGS__))

  switch (blend_key) {
  BLEND_CASE(GL_ONE, GL_ZERO):
    return src;
  BLEND_CASE(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE,
                  GL_ONE_MINUS_SRC_ALPHA):
    // dst + src.a*(src.rgb1 - dst)
    // use addlow for signed overflow
    return addlow(dst, muldiv255(alphas(src), (src | ALPHA_OPAQUE) - dst));
  BLEND_CASE(GL_ONE, GL_ONE_MINUS_SRC_ALPHA):
    return src + dst - muldiv255(dst, alphas(src));
  BLEND_CASE(GL_ZERO, GL_ONE_MINUS_SRC_COLOR):
    return dst - muldiv255(dst, src);
  BLEND_CASE(GL_ZERO, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE):
    return dst - (muldiv255(dst, src) & RGB_MASK);
  BLEND_CASE(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA):
    return dst - muldiv255(dst, alphas(src));
  BLEND_CASE(GL_ZERO, GL_SRC_COLOR):
    return muldiv255(src, dst);
  BLEND_CASE(GL_ONE, GL_ONE):
    return src + dst;
  BLEND_CASE(GL_ONE, GL_ONE, GL_ONE, GL_ONE_MINUS_SRC_ALPHA):
    return src + dst - (muldiv255(dst, src) & ALPHA_MASK);
  BLEND_CASE(GL_ONE_MINUS_DST_ALPHA, GL_ONE, GL_ZERO, GL_ONE):
    // src*(1-dst.a) + dst*1 = src - src*dst.a + dst
    return dst + ((src - muldiv255(src, alphas(dst))) & RGB_MASK);
  BLEND_CASE(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR):
    // src*k + (1-src)*dst = src*k + dst -
    // src*dst = dst + src*(k - dst) use addlow
    // for signed overflow
    return addlow(
        dst, muldiv255(src, repeat2(ctx->blendcolor) - dst));

  // We must explicitly handle the masked/anti-aliased secondary blend case.
  // The secondary color as well as the source must be multiplied by the
  // weights.
  case BLEND_KEY(GL_ONE, GL_ONE_MINUS_SRC1_COLOR): {
    WideRGBA8 secondary =
        applyColor(dst,
            packColor<uint32_t>(fragment_shader->gl_SecondaryFragColor));
    return src + dst - secondary;
  }
  case MASK_BLEND_KEY(GL_ONE, GL_ONE_MINUS_SRC1_COLOR): {
    WideRGBA8 secondary =
        applyColor(dst,
            packColor<uint32_t>(fragment_shader->gl_SecondaryFragColor));
    WideRGBA8 mask = load_clip_mask(buf, span);
    return muldiv255(src, mask) + dst - muldiv255(secondary, mask);
  }
  case AA_BLEND_KEY(GL_ONE, GL_ONE_MINUS_SRC1_COLOR): {
    WideRGBA8 secondary =
        applyColor(dst,
            packColor<uint32_t>(fragment_shader->gl_SecondaryFragColor));
    DO_AA(RGBA8, {
      src = muldiv256(src, aa);
      secondary = muldiv256(secondary, aa);
    });
    return src + dst - secondary;
  }
  case AA_MASK_BLEND_KEY(GL_ONE, GL_ONE_MINUS_SRC1_COLOR): {
    WideRGBA8 secondary =
        applyColor(dst,
            packColor<uint32_t>(fragment_shader->gl_SecondaryFragColor));
    WideRGBA8 mask = load_clip_mask(buf, span);
    DO_AA(RGBA8, mask = muldiv256(mask, aa));
    return muldiv255(src, mask) + dst - muldiv255(secondary, mask);
  }

  BLEND_CASE(GL_MIN):
    return min(src, dst);
  BLEND_CASE(GL_MAX):
    return max(src, dst);

  // The KHR_blend_equation_advanced spec describes the blend equations such
  // that the unpremultiplied values Cs, Cd, As, Ad and function f combine to
  // the result:
  //     Cr = f(Cs,Cd)*As*Ad + Cs*As*(1-Ad) + Cd*AD*(1-As)
  //     Ar = As*Ad + As*(1-Ad) + Ad*(1-As)
  // However, working with unpremultiplied values requires expensive math to
  // unpremultiply and premultiply again during blending. We can use the fact
  // that premultiplied value P = C*A and simplify the equations such that no
  // unpremultiplied colors are necessary, allowing us to stay with integer
  // math that avoids floating-point conversions in the common case. Some of
  // the blend modes require division or sqrt, in which case we do convert
  // to (possibly transposed/unpacked) floating-point to implement the mode.
  // However, most common modes can still use cheaper premultiplied integer
  // math. As an example, the multiply mode f(Cs,Cd) = Cs*Cd is simplified
  // to:
  //     Cr = Cs*Cd*As*Ad + Cs*As*(1-Ad) + Cd*Ad*(1-As)
  //     .. Pr = Ps*Pd + Ps - Ps*Ad + Pd - Pd*As
  //     Ar = As*Ad + As - As*Ad + Ad - Ad*As
  //     .. Ar = As + Ad - As*Ad
  // Note that the alpha equation is the same for all blend equations, such
  // that so long as the implementation results in As + Ad - As*Ad, we can
  // avoid using separate instructions to compute the alpha result, which is
  // dependent on the math used to implement each blend mode. The exact
  // reductions used to get the final math for every blend mode are too
  // involved to show here in comments, but mostly follows from replacing
  // Cs*As and Cd*Ad with Ps and Ps while factoring out as many common terms
  // as possible.

  BLEND_CASE(GL_MULTIPLY_KHR): {
    WideRGBA8 diff = muldiv255(alphas(src) - (src & RGB_MASK),
                               alphas(dst) - (dst & RGB_MASK));
    return src + dst + (diff & RGB_MASK) - alphas(diff);
  }
  BLEND_CASE(GL_SCREEN_KHR):
    return src + dst - muldiv255(src, dst);
  BLEND_CASE(GL_OVERLAY_KHR): {
    WideRGBA8 srcA = alphas(src);
    WideRGBA8 dstA = alphas(dst);
    WideRGBA8 diff = muldiv255(src, dst) + muldiv255(srcA - src, dstA - dst);
    return src + dst +
           if_then_else(dst * 2 <= dstA, (diff & RGB_MASK) - alphas(diff),
                        -diff);
  }
  BLEND_CASE(GL_DARKEN_KHR):
    return src + dst -
           max(muldiv255(src, alphas(dst)), muldiv255(dst, alphas(src)));
  BLEND_CASE(GL_LIGHTEN_KHR):
    return src + dst -
           min(muldiv255(src, alphas(dst)), muldiv255(dst, alphas(src)));

  BLEND_CASE(GL_COLORDODGE_KHR): {
    // Color-dodge and color-burn require division, so we convert to FP math
    // here, but avoid transposing to a vec4.
    WideRGBA32F srcF = CONVERT(src, WideRGBA32F);
    WideRGBA32F srcA = alphas(srcF);
    WideRGBA32F dstF = CONVERT(dst, WideRGBA32F);
    WideRGBA32F dstA = alphas(dstF);
    return pack_pixels_RGBA8(
        srcA * set_alphas(
                   min(dstA, dstF * srcA * recip_or(srcA - srcF, 255.0f)),
                   dstF) +
            srcF * (255.0f - dstA) + dstF * (255.0f - srcA),
        1.0f / 255.0f);
  }
  BLEND_CASE(GL_COLORBURN_KHR): {
    WideRGBA32F srcF = CONVERT(src, WideRGBA32F);
    WideRGBA32F srcA = alphas(srcF);
    WideRGBA32F dstF = CONVERT(dst, WideRGBA32F);
    WideRGBA32F dstA = alphas(dstF);
    return pack_pixels_RGBA8(
        srcA * set_alphas((dstA - min(dstA, (dstA - dstF) * srcA *
                                                recip_or(srcF, 255.0f))),
                          dstF) +
            srcF * (255.0f - dstA) + dstF * (255.0f - srcA),
        1.0f / 255.0f);
  }
  BLEND_CASE(GL_HARDLIGHT_KHR): {
    WideRGBA8 srcA = alphas(src);
    WideRGBA8 dstA = alphas(dst);
    WideRGBA8 diff = muldiv255(src, dst) + muldiv255(srcA - src, dstA - dst);
    return src + dst +
           if_then_else(src * 2 <= srcA, (diff & RGB_MASK) - alphas(diff),
                        -diff);
  }

  BLEND_CASE(GL_SOFTLIGHT_KHR): {
    // Soft-light requires an unpremultiply that can't be factored out as
    // well as a sqrt, so we convert to FP math here, but avoid transposing
    // to a vec4.
    WideRGBA32F srcF = CONVERT(src, WideRGBA32F);
    WideRGBA32F srcA = alphas(srcF);
    WideRGBA32F dstF = CONVERT(dst, WideRGBA32F);
    WideRGBA32F dstA = alphas(dstF);
    WideRGBA32F dstU = unpremultiply(dstF);
    WideRGBA32F scale = srcF + srcF - srcA;
    return pack_pixels_RGBA8(
        dstF * (255.0f +
                set_alphas(
                    scale *
                        if_then_else(scale < 0.0f, 1.0f - dstU,
                                     min((16.0f * dstU - 12.0f) * dstU + 3.0f,
                                         inversesqrt(dstU) - 1.0f)),
                    WideRGBA32F(0.0f))) +
            srcF * (255.0f - dstA),
        1.0f / 255.0f);
  }
  BLEND_CASE(GL_DIFFERENCE_KHR): {
    WideRGBA8 diff =
        min(muldiv255(dst, alphas(src)), muldiv255(src, alphas(dst)));
    return src + dst - diff - (diff & RGB_MASK);
  }
  BLEND_CASE(GL_EXCLUSION_KHR): {
    WideRGBA8 diff = muldiv255(src, dst);
    return src + dst - diff - (diff & RGB_MASK);
  }

  // The HSL blend modes are non-separable and require complicated use of
  // division. It is advantageous to convert to FP and transpose to vec4
  // math to more easily manipulate the individual color components.
#define DO_HSL(rgb)                                                            \
  do {                                                                         \
    vec4 srcV = unpack(CONVERT(src, PackedRGBA32F));                           \
    vec4 dstV = unpack(CONVERT(dst, PackedRGBA32F));                           \
    Float srcA = srcV.w * (1.0f / 255.0f);                                     \
    Float dstA = dstV.w * (1.0f / 255.0f);                                     \
    Float srcDstA = srcV.w * dstA;                                             \
    vec3 srcC = vec3(srcV) * dstA;                                             \
    vec3 dstC = vec3(dstV) * srcA;                                             \
    return pack_pixels_RGBA8(vec4(rgb + vec3(srcV) - srcC + vec3(dstV) - dstC, \
                                  srcV.w + dstV.w - srcDstA),                  \
                             1.0f);                                            \
  } while (0)

  BLEND_CASE(GL_HSL_HUE_KHR):
    DO_HSL(set_lum_sat(srcC, dstC, dstC, srcDstA));
  BLEND_CASE(GL_HSL_SATURATION_KHR):
    DO_HSL(set_lum_sat(dstC, srcC, dstC, srcDstA));
  BLEND_CASE(GL_HSL_COLOR_KHR):
    DO_HSL(set_lum(srcC, dstC, srcDstA));
  BLEND_CASE(GL_HSL_LUMINOSITY_KHR):
    DO_HSL(set_lum(dstC, srcC, srcDstA));

  // SWGL-specific extended blend modes.
  BLEND_CASE(SWGL_BLEND_DROP_SHADOW): {
    // Premultiplied alpha over blend, but with source color set to source alpha
    // modulated with a constant color.
    WideRGBA8 color = applyColor(alphas(src), swgl_BlendColorRGBA8);
    return color + dst - muldiv255(dst, alphas(color));
  }

  BLEND_CASE(SWGL_BLEND_SUBPIXEL_TEXT):
    // Premultiplied alpha over blend, but treats the source as a subpixel mask
    // modulated with a constant color.
    return applyColor(src, swgl_BlendColorRGBA8) + dst -
           muldiv255(dst, applyColor(src, swgl_BlendAlphaRGBA8));

  default:
    UNREACHABLE;
    // return src;
  }

#undef BLEND_CASE
#undef BLEND_CASE_KEY
  // clang-format on
}

static PREFER_INLINE WideR8 blend_pixels(uint8_t* buf, WideR8 dst, WideR8 src,
                                         int span = 4) {
// clang-format off
#define BLEND_CASE_KEY(key)                          \
  case AA_##key:                                     \
    DO_AA(R8, src = muldiv256(src, aa));             \
    goto key;                                        \
  case AA_MASK_##key:                                \
    DO_AA(R8, src = muldiv256(src, aa));             \
    FALLTHROUGH;                                     \
  case MASK_##key:                                   \
    src = muldiv255(src, load_clip_mask(buf, span)); \
    FALLTHROUGH;                                     \
  case key: key

#define BLEND_CASE(...) BLEND_CASE_KEY(BLEND_KEY(__VA_ARGS__))

  switch (blend_key) {
  BLEND_CASE(GL_ONE, GL_ZERO):
    return src;
  BLEND_CASE(GL_ZERO, GL_SRC_COLOR):
    return muldiv255(src, dst);
  BLEND_CASE(GL_ONE, GL_ONE):
    return src + dst;
  default:
    UNREACHABLE;
    // return src;
  }

#undef BLEND_CASE
#undef BLEND_CASE_KEY
  // clang-format on
}

static ALWAYS_INLINE void commit_span(uint32_t* buf, WideRGBA8 r) {
  unaligned_store(buf, pack(r));
}

static ALWAYS_INLINE void commit_span(uint32_t* buf, WideRGBA8 r, int len) {
  partial_store_span(buf, pack(r), len);
}

static ALWAYS_INLINE WideRGBA8 blend_span(uint32_t* buf, WideRGBA8 r) {
  return blend_pixels(buf, unaligned_load<PackedRGBA8>(buf), r);
}

static ALWAYS_INLINE WideRGBA8 blend_span(uint32_t* buf, WideRGBA8 r, int len) {
  return blend_pixels(buf, partial_load_span<PackedRGBA8>(buf, len), r, len);
}

static ALWAYS_INLINE void commit_span(uint32_t* buf, PackedRGBA8 r) {
  unaligned_store(buf, r);
}

static ALWAYS_INLINE void commit_span(uint32_t* buf, PackedRGBA8 r, int len) {
  partial_store_span(buf, r, len);
}

static ALWAYS_INLINE PackedRGBA8 blend_span(uint32_t* buf, PackedRGBA8 r) {
  return pack(blend_span(buf, unpack(r)));
}

static ALWAYS_INLINE PackedRGBA8 blend_span(uint32_t* buf, PackedRGBA8 r,
                                            int len) {
  return pack(blend_span(buf, unpack(r), len));
}

static ALWAYS_INLINE void commit_span(uint8_t* buf, WideR8 r) {
  unaligned_store(buf, pack(r));
}

static ALWAYS_INLINE void commit_span(uint8_t* buf, WideR8 r, int len) {
  partial_store_span(buf, pack(r), len);
}

static ALWAYS_INLINE WideR8 blend_span(uint8_t* buf, WideR8 r) {
  return blend_pixels(buf, unpack(unaligned_load<PackedR8>(buf)), r);
}

static ALWAYS_INLINE WideR8 blend_span(uint8_t* buf, WideR8 r, int len) {
  return blend_pixels(buf, unpack(partial_load_span<PackedR8>(buf, len)), r,
                      len);
}

static ALWAYS_INLINE void commit_span(uint8_t* buf, PackedR8 r) {
  unaligned_store(buf, r);
}

static ALWAYS_INLINE void commit_span(uint8_t* buf, PackedR8 r, int len) {
  partial_store_span(buf, r, len);
}

static ALWAYS_INLINE PackedR8 blend_span(uint8_t* buf, PackedR8 r) {
  return pack(blend_span(buf, unpack(r)));
}

static ALWAYS_INLINE PackedR8 blend_span(uint8_t* buf, PackedR8 r, int len) {
  return pack(blend_span(buf, unpack(r), len));
}

template <bool BLEND, typename P, typename R>
static ALWAYS_INLINE void commit_blend_span(P* buf, R r) {
  if (BLEND) {
    commit_span(buf, blend_span(buf, r));
  } else {
    commit_span(buf, r);
  }
}

template <bool BLEND, typename P, typename R>
static ALWAYS_INLINE void commit_blend_span(P* buf, R r, int len) {
  if (BLEND) {
    commit_span(buf, blend_span(buf, r, len), len);
  } else {
    commit_span(buf, r, len);
  }
}

template <typename P, typename R>
static ALWAYS_INLINE void commit_blend_solid_span(P* buf, R r, int len) {
  for (P* end = &buf[len & ~3]; buf < end; buf += 4) {
    commit_span(buf, blend_span(buf, r));
  }
  len &= 3;
  if (len > 0) {
    partial_store_span(buf, pack(blend_span(buf, r, len)), len);
  }
}

template <bool BLEND>
static void commit_solid_span(uint32_t* buf, WideRGBA8 r, int len) {
  commit_blend_solid_span(buf, r, len);
}

template <>
ALWAYS_INLINE void commit_solid_span<false>(uint32_t* buf, WideRGBA8 r,
                                            int len) {
  fill_n(buf, len, bit_cast<U32>(pack(r)).x);
}

template <bool BLEND>
static void commit_solid_span(uint8_t* buf, WideR8 r, int len) {
  commit_blend_solid_span(buf, r, len);
}

template <>
ALWAYS_INLINE void commit_solid_span<false>(uint8_t* buf, WideR8 r, int len) {
  PackedR8 p = pack(r);
  if (uintptr_t(buf) & 3) {
    int align = 4 - (uintptr_t(buf) & 3);
    align = min(align, len);
    partial_store_span(buf, p, align);
    buf += align;
    len -= align;
  }
  fill_n((uint32_t*)buf, len / 4, bit_cast<uint32_t>(p));
  buf += len & ~3;
  len &= 3;
  if (len > 0) {
    partial_store_span(buf, p, len);
  }
}