1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::BorderRadius;
use api::units::*;
use euclid::{Point2D, Rect, Box2D, Size2D, Vector2D, point2, point3};
use euclid::{default, Transform2D, Transform3D, Scale};
use malloc_size_of::{MallocShallowSizeOf, MallocSizeOf, MallocSizeOfOps};
use plane_split::{Clipper, Polygon};
use std::{i32, f32, fmt, ptr};
use std::borrow::Cow;
use std::num::NonZeroUsize;
use std::os::raw::c_void;
use std::sync::Arc;
use std::mem::replace;
// Matches the definition of SK_ScalarNearlyZero in Skia.
const NEARLY_ZERO: f32 = 1.0 / 4096.0;
/// A typesafe helper that separates new value construction from
/// vector growing, allowing LLVM to ideally construct the element in place.
pub struct Allocation<'a, T: 'a> {
vec: &'a mut Vec<T>,
index: usize,
}
impl<'a, T> Allocation<'a, T> {
// writing is safe because alloc() ensured enough capacity
// and `Allocation` holds a mutable borrow to prevent anyone else
// from breaking this invariant.
#[inline(always)]
pub fn init(self, value: T) -> usize {
unsafe {
ptr::write(self.vec.as_mut_ptr().add(self.index), value);
self.vec.set_len(self.index + 1);
}
self.index
}
}
/// An entry into a vector, similar to `std::collections::hash_map::Entry`.
pub enum VecEntry<'a, T: 'a> {
Vacant(Allocation<'a, T>),
Occupied(&'a mut T),
}
impl<'a, T> VecEntry<'a, T> {
#[inline(always)]
pub fn set(self, value: T) {
match self {
VecEntry::Vacant(alloc) => { alloc.init(value); }
VecEntry::Occupied(slot) => { *slot = value; }
}
}
}
pub trait VecHelper<T> {
/// Growns the vector by a single entry, returning the allocation.
fn alloc(&mut self) -> Allocation<T>;
/// Either returns an existing elemenet, or grows the vector by one.
/// Doesn't expect indices to be higher than the current length.
fn entry(&mut self, index: usize) -> VecEntry<T>;
/// Equivalent to `mem::replace(&mut vec, Vec::new())`
fn take(&mut self) -> Self;
/// Call clear and return self (useful for chaining with calls that move the vector).
fn cleared(self) -> Self;
/// Functionally equivalent to `mem::replace(&mut vec, Vec::new())` but tries
/// to keep the allocation in the caller if it is empty or replace it with a
/// pre-allocated vector.
fn take_and_preallocate(&mut self) -> Self;
}
impl<T> VecHelper<T> for Vec<T> {
fn alloc(&mut self) -> Allocation<T> {
let index = self.len();
if self.capacity() == index {
self.reserve(1);
}
Allocation {
vec: self,
index,
}
}
fn entry(&mut self, index: usize) -> VecEntry<T> {
if index < self.len() {
VecEntry::Occupied(unsafe {
self.get_unchecked_mut(index)
})
} else {
assert_eq!(index, self.len());
VecEntry::Vacant(self.alloc())
}
}
fn take(&mut self) -> Self {
replace(self, Vec::new())
}
fn cleared(mut self) -> Self {
self.clear();
self
}
fn take_and_preallocate(&mut self) -> Self {
let len = self.len();
if len == 0 {
self.clear();
return Vec::new();
}
replace(self, Vec::with_capacity(len + 8))
}
}
// Represents an optimized transform where there is only
// a scale and translation (which are guaranteed to maintain
// an axis align rectangle under transformation). The
// scaling is applied first, followed by the translation.
// TODO(gw): We should try and incorporate F <-> T units here,
// but it's a bit tricky to do that now with the
// way the current spatial tree works.
#[repr(C)]
#[derive(Debug, Clone, Copy, MallocSizeOf, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ScaleOffset {
pub scale: euclid::Vector2D<f32, euclid::UnknownUnit>,
pub offset: euclid::Vector2D<f32, euclid::UnknownUnit>,
}
impl ScaleOffset {
pub fn new(sx: f32, sy: f32, tx: f32, ty: f32) -> Self {
ScaleOffset {
scale: Vector2D::new(sx, sy),
offset: Vector2D::new(tx, ty),
}
}
pub fn identity() -> Self {
ScaleOffset {
scale: Vector2D::new(1.0, 1.0),
offset: Vector2D::zero(),
}
}
// Construct a ScaleOffset from a transform. Returns
// None if the matrix is not a pure scale / translation.
pub fn from_transform<F, T>(
m: &Transform3D<f32, F, T>,
) -> Option<ScaleOffset> {
// To check that we have a pure scale / translation:
// Every field must match an identity matrix, except:
// - Any value present in tx,ty
// - Any value present in sx,sy
if m.m12.abs() > NEARLY_ZERO ||
m.m13.abs() > NEARLY_ZERO ||
m.m14.abs() > NEARLY_ZERO ||
m.m21.abs() > NEARLY_ZERO ||
m.m23.abs() > NEARLY_ZERO ||
m.m24.abs() > NEARLY_ZERO ||
m.m31.abs() > NEARLY_ZERO ||
m.m32.abs() > NEARLY_ZERO ||
(m.m33 - 1.0).abs() > NEARLY_ZERO ||
m.m34.abs() > NEARLY_ZERO ||
m.m43.abs() > NEARLY_ZERO ||
(m.m44 - 1.0).abs() > NEARLY_ZERO {
return None;
}
Some(ScaleOffset {
scale: Vector2D::new(m.m11, m.m22),
offset: Vector2D::new(m.m41, m.m42),
})
}
pub fn from_offset(offset: default::Vector2D<f32>) -> Self {
ScaleOffset {
scale: Vector2D::new(1.0, 1.0),
offset,
}
}
pub fn from_scale(scale: default::Vector2D<f32>) -> Self {
ScaleOffset {
scale,
offset: Vector2D::new(0.0, 0.0),
}
}
pub fn inverse(&self) -> Self {
ScaleOffset {
scale: Vector2D::new(
1.0 / self.scale.x,
1.0 / self.scale.y,
),
offset: Vector2D::new(
-self.offset.x / self.scale.x,
-self.offset.y / self.scale.y,
),
}
}
pub fn offset(&self, offset: default::Vector2D<f32>) -> Self {
self.accumulate(
&ScaleOffset {
scale: Vector2D::new(1.0, 1.0),
offset,
}
)
}
pub fn scale(&self, scale: f32) -> Self {
self.accumulate(
&ScaleOffset {
scale: Vector2D::new(scale, scale),
offset: Vector2D::zero(),
}
)
}
/// Produce a ScaleOffset that includes both self and other.
/// The 'self' ScaleOffset is applied after other.
/// This is equivalent to `Transform3D::pre_transform`.
pub fn accumulate(&self, other: &ScaleOffset) -> Self {
ScaleOffset {
scale: Vector2D::new(
self.scale.x * other.scale.x,
self.scale.y * other.scale.y,
),
offset: Vector2D::new(
self.offset.x + self.scale.x * other.offset.x,
self.offset.y + self.scale.y * other.offset.y,
),
}
}
pub fn map_rect<F, T>(&self, rect: &Box2D<f32, F>) -> Box2D<f32, T> {
// TODO(gw): The logic below can return an unexpected result if the supplied
// rect is invalid (has size < 0). Since Gecko currently supplied
// invalid rects in some cases, adding a max(0) here ensures that
// mapping an invalid rect retains the property that rect.is_empty()
// will return true (the mapped rect output will have size 0 instead
// of a negative size). In future we could catch / assert / fix
// these invalid rects earlier, and assert here instead.
let w = rect.width().max(0.0);
let h = rect.height().max(0.0);
let mut x0 = rect.min.x * self.scale.x + self.offset.x;
let mut y0 = rect.min.y * self.scale.y + self.offset.y;
let mut sx = w * self.scale.x;
let mut sy = h * self.scale.y;
// Handle negative scale. Previously, branchless float math was used to find the
// min / max vertices and size. However, that sequence of operations was producind
// additional floating point accuracy on android emulator builds, causing one test
// to fail an assert. Instead, we retain the same math as previously, and adjust
// the origin / size if required.
if self.scale.x < 0.0 {
x0 += sx;
sx = -sx;
}
if self.scale.y < 0.0 {
y0 += sy;
sy = -sy;
}
Box2D::from_origin_and_size(
Point2D::new(x0, y0),
Size2D::new(sx, sy),
)
}
pub fn unmap_rect<F, T>(&self, rect: &Box2D<f32, F>) -> Box2D<f32, T> {
// TODO(gw): The logic below can return an unexpected result if the supplied
// rect is invalid (has size < 0). Since Gecko currently supplied
// invalid rects in some cases, adding a max(0) here ensures that
// mapping an invalid rect retains the property that rect.is_empty()
// will return true (the mapped rect output will have size 0 instead
// of a negative size). In future we could catch / assert / fix
// these invalid rects earlier, and assert here instead.
let w = rect.width().max(0.0);
let h = rect.height().max(0.0);
let mut x0 = (rect.min.x - self.offset.x) / self.scale.x;
let mut y0 = (rect.min.y - self.offset.y) / self.scale.y;
let mut sx = w / self.scale.x;
let mut sy = h / self.scale.y;
// Handle negative scale. Previously, branchless float math was used to find the
// min / max vertices and size. However, that sequence of operations was producind
// additional floating point accuracy on android emulator builds, causing one test
// to fail an assert. Instead, we retain the same math as previously, and adjust
// the origin / size if required.
if self.scale.x < 0.0 {
x0 += sx;
sx = -sx;
}
if self.scale.y < 0.0 {
y0 += sy;
sy = -sy;
}
Box2D::from_origin_and_size(
Point2D::new(x0, y0),
Size2D::new(sx, sy),
)
}
pub fn map_vector<F, T>(&self, vector: &Vector2D<f32, F>) -> Vector2D<f32, T> {
Vector2D::new(
vector.x * self.scale.x,
vector.y * self.scale.y,
)
}
pub fn unmap_vector<F, T>(&self, vector: &Vector2D<f32, F>) -> Vector2D<f32, T> {
Vector2D::new(
vector.x / self.scale.x,
vector.y / self.scale.y,
)
}
pub fn map_point<F, T>(&self, point: &Point2D<f32, F>) -> Point2D<f32, T> {
Point2D::new(
point.x * self.scale.x + self.offset.x,
point.y * self.scale.y + self.offset.y,
)
}
pub fn unmap_point<F, T>(&self, point: &Point2D<f32, F>) -> Point2D<f32, T> {
Point2D::new(
(point.x - self.offset.x) / self.scale.x,
(point.y - self.offset.y) / self.scale.y,
)
}
pub fn to_transform<F, T>(&self) -> Transform3D<f32, F, T> {
Transform3D::new(
self.scale.x,
0.0,
0.0,
0.0,
0.0,
self.scale.y,
0.0,
0.0,
0.0,
0.0,
1.0,
0.0,
self.offset.x,
self.offset.y,
0.0,
1.0,
)
}
}
// TODO: Implement these in euclid!
pub trait MatrixHelpers<Src, Dst> {
/// A port of the preserves2dAxisAlignment function in Skia.
/// Defined in the SkMatrix44 class.
fn preserves_2d_axis_alignment(&self) -> bool;
fn has_perspective_component(&self) -> bool;
fn has_2d_inverse(&self) -> bool;
/// Check if the matrix post-scaling on either the X or Y axes could cause geometry
/// transformed by this matrix to have scaling exceeding the supplied limit.
fn exceeds_2d_scale(&self, limit: f64) -> bool;
fn inverse_project(&self, target: &Point2D<f32, Dst>) -> Option<Point2D<f32, Src>>;
fn inverse_rect_footprint(&self, rect: &Box2D<f32, Dst>) -> Option<Box2D<f32, Src>>;
fn transform_kind(&self) -> TransformedRectKind;
fn is_simple_translation(&self) -> bool;
fn is_simple_2d_translation(&self) -> bool;
fn is_2d_scale_translation(&self) -> bool;
/// Return the determinant of the 2D part of the matrix.
fn determinant_2d(&self) -> f32;
/// This function returns a point in the `Src` space that projects into zero XY.
/// It ignores the Z coordinate and is usable for "flattened" transformations,
/// since they are not generally inversible.
fn inverse_project_2d_origin(&self) -> Option<Point2D<f32, Src>>;
/// Turn Z transformation into identity. This is useful when crossing "flat"
/// transform styled stacking contexts upon traversing the coordinate systems.
fn flatten_z_output(&mut self);
fn cast_unit<NewSrc, NewDst>(&self) -> Transform3D<f32, NewSrc, NewDst>;
}
impl<Src, Dst> MatrixHelpers<Src, Dst> for Transform3D<f32, Src, Dst> {
fn preserves_2d_axis_alignment(&self) -> bool {
if self.m14 != 0.0 || self.m24 != 0.0 {
return false;
}
let mut col0 = 0;
let mut col1 = 0;
let mut row0 = 0;
let mut row1 = 0;
if self.m11.abs() > NEARLY_ZERO {
col0 += 1;
row0 += 1;
}
if self.m12.abs() > NEARLY_ZERO {
col1 += 1;
row0 += 1;
}
if self.m21.abs() > NEARLY_ZERO {
col0 += 1;
row1 += 1;
}
if self.m22.abs() > NEARLY_ZERO {
col1 += 1;
row1 += 1;
}
col0 < 2 && col1 < 2 && row0 < 2 && row1 < 2
}
fn has_perspective_component(&self) -> bool {
self.m14.abs() > NEARLY_ZERO ||
self.m24.abs() > NEARLY_ZERO ||
self.m34.abs() > NEARLY_ZERO ||
(self.m44 - 1.0).abs() > NEARLY_ZERO
}
fn has_2d_inverse(&self) -> bool {
self.determinant_2d() != 0.0
}
fn exceeds_2d_scale(&self, limit: f64) -> bool {
let limit2 = (limit * limit) as f32;
self.m11 * self.m11 + self.m12 * self.m12 > limit2 ||
self.m21 * self.m21 + self.m22 * self.m22 > limit2
}
/// Find out a point in `Src` that would be projected into the `target`.
fn inverse_project(&self, target: &Point2D<f32, Dst>) -> Option<Point2D<f32, Src>> {
// form the linear equation for the hyperplane intersection
let m = Transform2D::<f32, Src, Dst>::new(
self.m11 - target.x * self.m14, self.m12 - target.y * self.m14,
self.m21 - target.x * self.m24, self.m22 - target.y * self.m24,
self.m41 - target.x * self.m44, self.m42 - target.y * self.m44,
);
let inv = m.inverse()?;
// we found the point, now check if it maps to the positive hemisphere
if inv.m31 * self.m14 + inv.m32 * self.m24 + self.m44 > 0.0 {
Some(Point2D::new(inv.m31, inv.m32))
} else {
None
}
}
fn inverse_rect_footprint(&self, rect: &Box2D<f32, Dst>) -> Option<Box2D<f32, Src>> {
Some(Box2D::from_points(&[
self.inverse_project(&rect.top_left())?,
self.inverse_project(&rect.top_right())?,
self.inverse_project(&rect.bottom_left())?,
self.inverse_project(&rect.bottom_right())?,
]))
}
fn transform_kind(&self) -> TransformedRectKind {
if self.preserves_2d_axis_alignment() {
TransformedRectKind::AxisAligned
} else {
TransformedRectKind::Complex
}
}
fn is_simple_translation(&self) -> bool {
if (self.m11 - 1.0).abs() > NEARLY_ZERO ||
(self.m22 - 1.0).abs() > NEARLY_ZERO ||
(self.m33 - 1.0).abs() > NEARLY_ZERO ||
(self.m44 - 1.0).abs() > NEARLY_ZERO {
return false;
}
self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO &&
self.m14.abs() < NEARLY_ZERO && self.m21.abs() < NEARLY_ZERO &&
self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO &&
self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO &&
self.m34.abs() < NEARLY_ZERO
}
fn is_simple_2d_translation(&self) -> bool {
if !self.is_simple_translation() {
return false;
}
self.m43.abs() < NEARLY_ZERO
}
/* is this...
* X 0 0 0
* 0 Y 0 0
* 0 0 1 0
* a b 0 1
*/
fn is_2d_scale_translation(&self) -> bool {
(self.m33 - 1.0).abs() < NEARLY_ZERO &&
(self.m44 - 1.0).abs() < NEARLY_ZERO &&
self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO && self.m14.abs() < NEARLY_ZERO &&
self.m21.abs() < NEARLY_ZERO && self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO &&
self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO && self.m34.abs() < NEARLY_ZERO &&
self.m43.abs() < NEARLY_ZERO
}
fn determinant_2d(&self) -> f32 {
self.m11 * self.m22 - self.m12 * self.m21
}
fn inverse_project_2d_origin(&self) -> Option<Point2D<f32, Src>> {
let det = self.determinant_2d();
if det != 0.0 {
let x = (self.m21 * self.m42 - self.m41 * self.m22) / det;
let y = (self.m12 * self.m41 - self.m11 * self.m42) / det;
Some(Point2D::new(x, y))
} else {
None
}
}
fn flatten_z_output(&mut self) {
self.m13 = 0.0;
self.m23 = 0.0;
self.m33 = 1.0;
self.m43 = 0.0;
//Note: we used to zero out m3? as well, see "reftests/flatten-all-flat.yaml" test
}
fn cast_unit<NewSrc, NewDst>(&self) -> Transform3D<f32, NewSrc, NewDst> {
Transform3D::new(
self.m11, self.m12, self.m13, self.m14,
self.m21, self.m22, self.m23, self.m24,
self.m31, self.m32, self.m33, self.m34,
self.m41, self.m42, self.m43, self.m44,
)
}
}
pub trait PointHelpers<U>
where
Self: Sized,
{
fn snap(&self) -> Self;
}
impl<U> PointHelpers<U> for Point2D<f32, U> {
fn snap(&self) -> Self {
Point2D::new(
(self.x + 0.5).floor(),
(self.y + 0.5).floor(),
)
}
}
pub trait RectHelpers<U>
where
Self: Sized,
{
fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self;
fn snap(&self) -> Self;
}
impl<U> RectHelpers<U> for Rect<f32, U> {
fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self {
Rect::new(
Point2D::new(x0, y0),
Size2D::new(x1 - x0, y1 - y0),
)
}
fn snap(&self) -> Self {
let origin = Point2D::new(
(self.origin.x + 0.5).floor(),
(self.origin.y + 0.5).floor(),
);
Rect::new(
origin,
Size2D::new(
(self.origin.x + self.size.width + 0.5).floor() - origin.x,
(self.origin.y + self.size.height + 0.5).floor() - origin.y,
),
)
}
}
impl<U> RectHelpers<U> for Box2D<f32, U> {
fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self {
Box2D {
min: Point2D::new(x0, y0),
max: Point2D::new(x1, y1),
}
}
fn snap(&self) -> Self {
self.round()
}
}
pub trait VectorHelpers<U>
where
Self: Sized,
{
fn snap(&self) -> Self;
}
impl<U> VectorHelpers<U> for Vector2D<f32, U> {
fn snap(&self) -> Self {
Vector2D::new(
(self.x + 0.5).floor(),
(self.y + 0.5).floor(),
)
}
}
pub fn lerp(a: f32, b: f32, t: f32) -> f32 {
(b - a) * t + a
}
#[repr(u32)]
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TransformedRectKind {
AxisAligned = 0,
Complex = 1,
}
#[inline(always)]
pub fn pack_as_float(value: u32) -> f32 {
value as f32 + 0.5
}
#[inline]
fn extract_inner_rect_impl<U>(
rect: &Box2D<f32, U>,
radii: &BorderRadius,
k: f32,
) -> Option<Box2D<f32, U>> {
// `k` defines how much border is taken into account
// We enforce the offsets to be rounded to pixel boundaries
// by `ceil`-ing and `floor`-ing them
let xl = (k * radii.top_left.width.max(radii.bottom_left.width)).ceil();
let xr = (rect.width() - k * radii.top_right.width.max(radii.bottom_right.width)).floor();
let yt = (k * radii.top_left.height.max(radii.top_right.height)).ceil();
let yb =
(rect.height() - k * radii.bottom_left.height.max(radii.bottom_right.height)).floor();
if xl <= xr && yt <= yb {
Some(Box2D::from_origin_and_size(
Point2D::new(rect.min.x + xl, rect.min.y + yt),
Size2D::new(xr - xl, yb - yt),
))
} else {
None
}
}
/// Return an aligned rectangle that is inside the clip region and doesn't intersect
/// any of the bounding rectangles of the rounded corners.
pub fn extract_inner_rect_safe<U>(
rect: &Box2D<f32, U>,
radii: &BorderRadius,
) -> Option<Box2D<f32, U>> {
// value of `k==1.0` is used for extraction of the corner rectangles
// see `SEGMENT_CORNER_*` in `clip_shared.glsl`
extract_inner_rect_impl(rect, radii, 1.0)
}
#[cfg(test)]
use euclid::vec3;
#[cfg(test)]
pub mod test {
use super::*;
use euclid::default::{Point2D, Size2D, Transform3D};
use euclid::{Angle, approxeq::ApproxEq};
use std::f32::consts::PI;
use crate::clip::{is_left_of_line, polygon_contains_point};
use crate::prim_store::PolygonKey;
use api::FillRule;
#[test]
fn inverse_project() {
let m0 = Transform3D::identity();
let p0 = Point2D::new(1.0, 2.0);
// an identical transform doesn't need any inverse projection
assert_eq!(m0.inverse_project(&p0), Some(p0));
let m1 = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-PI / 3.0));
// rotation by 60 degrees would imply scaling of X component by a factor of 2
assert_eq!(m1.inverse_project(&p0), Some(Point2D::new(2.0, 2.0)));
}
#[test]
fn inverse_project_footprint() {
let m = Transform3D::new(
0.477499992, 0.135000005, -1.0, 0.000624999986,
-0.642787635, 0.766044438, 0.0, 0.0,
0.766044438, 0.642787635, 0.0, 0.0,
1137.10986, 113.71286, 402.0, 0.748749971,
);
let r = Box2D::from_size(Size2D::new(804.0, 804.0));
{
let points = &[
r.top_left(),
r.top_right(),
r.bottom_left(),
r.bottom_right(),
];
let mi = m.inverse().unwrap();
// In this section, we do the forward and backward transformation
// to confirm that its bijective.
// We also do the inverse projection path, and confirm it functions the same way.
info!("Points:");
for p in points {
let pp = m.transform_point2d_homogeneous(*p);
let p3 = pp.to_point3d().unwrap();
let pi = mi.transform_point3d_homogeneous(p3);
let px = pi.to_point2d().unwrap();
let py = m.inverse_project(&pp.to_point2d().unwrap()).unwrap();
info!("\t{:?} -> {:?} -> {:?} -> ({:?} -> {:?}, {:?})", p, pp, p3, pi, px, py);
assert!(px.approx_eq_eps(p, &Point2D::new(0.001, 0.001)));
assert!(py.approx_eq_eps(p, &Point2D::new(0.001, 0.001)));
}
}
// project
let rp = project_rect(&m, &r, &Box2D::from_size(Size2D::new(1000.0, 1000.0))).unwrap();
info!("Projected {:?}", rp);
// one of the points ends up in the negative hemisphere
assert_eq!(m.inverse_project(&rp.min), None);
// inverse
if let Some(ri) = m.inverse_rect_footprint(&rp) {
// inverse footprint should be larger, since it doesn't know the original Z
assert!(ri.contains_box(&r), "Inverse {:?}", ri);
}
}
fn validate_convert(xref: &LayoutTransform) {
let so = ScaleOffset::from_transform(xref).unwrap();
let xf = so.to_transform();
assert!(xref.approx_eq(&xf));
}
#[test]
fn negative_scale_map_unmap() {
let xref = LayoutTransform::scale(1.0, -1.0, 1.0)
.pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0));
let so = ScaleOffset::from_transform(&xref).unwrap();
let local_rect = Box2D {
min: LayoutPoint::new(50.0, -100.0),
max: LayoutPoint::new(250.0, 300.0),
};
let mapped_rect = so.map_rect::<LayoutPixel, DevicePixel>(&local_rect);
let xf_rect = project_rect(
&xref,
&local_rect,
&LayoutRect::max_rect(),
).unwrap();
assert!(mapped_rect.min.x.approx_eq(&xf_rect.min.x));
assert!(mapped_rect.min.y.approx_eq(&xf_rect.min.y));
assert!(mapped_rect.max.x.approx_eq(&xf_rect.max.x));
assert!(mapped_rect.max.y.approx_eq(&xf_rect.max.y));
let unmapped_rect = so.unmap_rect::<DevicePixel, LayoutPixel>(&mapped_rect);
assert!(unmapped_rect.min.x.approx_eq(&local_rect.min.x));
assert!(unmapped_rect.min.y.approx_eq(&local_rect.min.y));
assert!(unmapped_rect.max.x.approx_eq(&local_rect.max.x));
assert!(unmapped_rect.max.y.approx_eq(&local_rect.max.y));
}
#[test]
fn scale_offset_convert() {
let xref = LayoutTransform::translation(130.0, 200.0, 0.0);
validate_convert(&xref);
let xref = LayoutTransform::scale(13.0, 8.0, 1.0);
validate_convert(&xref);
let xref = LayoutTransform::scale(0.5, 0.5, 1.0)
.pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0));
validate_convert(&xref);
let xref = LayoutTransform::scale(30.0, 11.0, 1.0)
.then_translate(vec3(50.0, 240.0, 0.0));
validate_convert(&xref);
}
fn validate_inverse(xref: &LayoutTransform) {
let s0 = ScaleOffset::from_transform(xref).unwrap();
let s1 = s0.inverse().accumulate(&s0);
assert!((s1.scale.x - 1.0).abs() < NEARLY_ZERO &&
(s1.scale.y - 1.0).abs() < NEARLY_ZERO &&
s1.offset.x.abs() < NEARLY_ZERO &&
s1.offset.y.abs() < NEARLY_ZERO,
"{:?}",
s1);
}
#[test]
fn scale_offset_inverse() {
let xref = LayoutTransform::translation(130.0, 200.0, 0.0);
validate_inverse(&xref);
let xref = LayoutTransform::scale(13.0, 8.0, 1.0);
validate_inverse(&xref);
let xref = LayoutTransform::translation(124.0, 38.0, 0.0).
then_scale(0.5, 0.5, 1.0);
validate_inverse(&xref);
let xref = LayoutTransform::scale(30.0, 11.0, 1.0)
.then_translate(vec3(50.0, 240.0, 0.0));
validate_inverse(&xref);
}
fn validate_accumulate(x0: &LayoutTransform, x1: &LayoutTransform) {
let x = x1.then(&x0);
let s0 = ScaleOffset::from_transform(x0).unwrap();
let s1 = ScaleOffset::from_transform(x1).unwrap();
let s = s0.accumulate(&s1).to_transform();
assert!(x.approx_eq(&s), "{:?}\n{:?}", x, s);
}
#[test]
fn scale_offset_accumulate() {
let x0 = LayoutTransform::translation(130.0, 200.0, 0.0);
let x1 = LayoutTransform::scale(7.0, 3.0, 1.0);
validate_accumulate(&x0, &x1);
}
#[test]
fn inverse_project_2d_origin() {
let mut m = Transform3D::identity();
assert_eq!(m.inverse_project_2d_origin(), Some(Point2D::zero()));
m.m11 = 0.0;
assert_eq!(m.inverse_project_2d_origin(), None);
m.m21 = -2.0;
m.m22 = 0.0;
m.m12 = -0.5;
m.m41 = 1.0;
m.m42 = 0.5;
let origin = m.inverse_project_2d_origin().unwrap();
assert_eq!(origin, Point2D::new(1.0, 0.5));
assert_eq!(m.transform_point2d(origin), Some(Point2D::zero()));
}
#[test]
fn polygon_clip_is_left_of_point() {
// Define points of a line through (1, -3) and (-2, 6) to test against.
// If the triplet consisting of these two points and the test point
// form a counter-clockwise triangle, then the test point is on the
// left. The easiest way to visualize this is with an "ascending"
// line from low-Y to high-Y.
let p0_x = 1.0;
let p0_y = -3.0;
let p1_x = -2.0;
let p1_y = 6.0;
// Test some points to the left of the line.
assert!(is_left_of_line(-9.0, 0.0, p0_x, p0_y, p1_x, p1_y) > 0.0);
assert!(is_left_of_line(-1.0, 1.0, p0_x, p0_y, p1_x, p1_y) > 0.0);
assert!(is_left_of_line(1.0, -4.0, p0_x, p0_y, p1_x, p1_y) > 0.0);
// Test some points on the line.
assert!(is_left_of_line(-3.0, 9.0, p0_x, p0_y, p1_x, p1_y) == 0.0);
assert!(is_left_of_line(0.0, 0.0, p0_x, p0_y, p1_x, p1_y) == 0.0);
assert!(is_left_of_line(100.0, -300.0, p0_x, p0_y, p1_x, p1_y) == 0.0);
// Test some points to the right of the line.
assert!(is_left_of_line(0.0, 1.0, p0_x, p0_y, p1_x, p1_y) < 0.0);
assert!(is_left_of_line(-4.0, 13.0, p0_x, p0_y, p1_x, p1_y) < 0.0);
assert!(is_left_of_line(5.0, -12.0, p0_x, p0_y, p1_x, p1_y) < 0.0);
}
#[test]
fn polygon_clip_contains_point() {
// We define the points of a self-overlapping polygon, which we will
// use to create polygons with different windings and fill rules.
let p0 = LayoutPoint::new(4.0, 4.0);
let p1 = LayoutPoint::new(6.0, 4.0);
let p2 = LayoutPoint::new(4.0, 7.0);
let p3 = LayoutPoint::new(2.0, 1.0);
let p4 = LayoutPoint::new(8.0, 1.0);
let p5 = LayoutPoint::new(6.0, 7.0);
let poly_clockwise_nonzero = PolygonKey::new(
&[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Nonzero
);
let poly_clockwise_evenodd = PolygonKey::new(
&[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Evenodd
);
let poly_counter_clockwise_nonzero = PolygonKey::new(
&[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Nonzero
);
let poly_counter_clockwise_evenodd = PolygonKey::new(
&[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Evenodd
);
// We define a rect that provides a bounding clip area of
// the polygon.
let rect = LayoutRect::from_size(LayoutSize::new(10.0, 10.0));
// And we'll test three points of interest.
let p_inside_once = LayoutPoint::new(5.0, 3.0);
let p_inside_twice = LayoutPoint::new(5.0, 5.0);
let p_outside = LayoutPoint::new(9.0, 9.0);
// We should get the same results for both clockwise and
// counter-clockwise polygons.
// For nonzero polygons, the inside twice point is considered inside.
for poly_nonzero in vec![poly_clockwise_nonzero, poly_counter_clockwise_nonzero].iter() {
assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_nonzero), true);
assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_nonzero), true);
assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_nonzero), false);
}
// For evenodd polygons, the inside twice point is considered outside.
for poly_evenodd in vec![poly_clockwise_evenodd, poly_counter_clockwise_evenodd].iter() {
assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_evenodd), true);
assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_evenodd), false);
assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_evenodd), false);
}
}
}
pub trait MaxRect {
fn max_rect() -> Self;
}
impl MaxRect for DeviceIntRect {
fn max_rect() -> Self {
DeviceIntRect::from_origin_and_size(
DeviceIntPoint::new(i32::MIN / 2, i32::MIN / 2),
DeviceIntSize::new(i32::MAX, i32::MAX),
)
}
}
impl<U> MaxRect for Rect<f32, U> {
fn max_rect() -> Self {
// Having an unlimited bounding box is fine up until we try
// to cast it to `i32`, where we get `-2147483648` for any
// values larger than or equal to 2^31.
//
// Note: clamping to i32::MIN and i32::MAX is not a solution,
// with explanation left as an exercise for the reader.
const MAX_COORD: f32 = 1.0e9;
Rect::new(
Point2D::new(-MAX_COORD, -MAX_COORD),
Size2D::new(2.0 * MAX_COORD, 2.0 * MAX_COORD),
)
}
}
impl<U> MaxRect for Box2D<f32, U> {
fn max_rect() -> Self {
// Having an unlimited bounding box is fine up until we try
// to cast it to `i32`, where we get `-2147483648` for any
// values larger than or equal to 2^31.
//
// Note: clamping to i32::MIN and i32::MAX is not a solution,
// with explanation left as an exercise for the reader.
const MAX_COORD: f32 = 1.0e9;
Box2D::new(
Point2D::new(-MAX_COORD, -MAX_COORD),
Point2D::new(MAX_COORD, MAX_COORD),
)
}
}
/// An enum that tries to avoid expensive transformation matrix calculations
/// when possible when dealing with non-perspective axis-aligned transformations.
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum FastTransform<Src, Dst> {
/// A simple offset, which can be used without doing any matrix math.
Offset(Vector2D<f32, Src>),
/// A 2D transformation with an inverse.
Transform {
transform: Transform3D<f32, Src, Dst>,
inverse: Option<Transform3D<f32, Dst, Src>>,
is_2d: bool,
},
}
impl<Src, Dst> Clone for FastTransform<Src, Dst> {
fn clone(&self) -> Self {
*self
}
}
impl<Src, Dst> Copy for FastTransform<Src, Dst> { }
impl<Src, Dst> FastTransform<Src, Dst> {
pub fn identity() -> Self {
FastTransform::Offset(Vector2D::zero())
}
pub fn with_vector(offset: Vector2D<f32, Src>) -> Self {
FastTransform::Offset(offset)
}
pub fn with_scale_offset(scale_offset: ScaleOffset) -> Self {
if scale_offset.scale == Vector2D::new(1.0, 1.0) {
FastTransform::Offset(Vector2D::from_untyped(scale_offset.offset))
} else {
FastTransform::Transform {
transform: scale_offset.to_transform(),
inverse: Some(scale_offset.inverse().to_transform()),
is_2d: true,
}
}
}
#[inline(always)]
pub fn with_transform(transform: Transform3D<f32, Src, Dst>) -> Self {
if transform.is_simple_2d_translation() {
return FastTransform::Offset(Vector2D::new(transform.m41, transform.m42));
}
let inverse = transform.inverse();
let is_2d = transform.is_2d();
FastTransform::Transform { transform, inverse, is_2d}
}
pub fn to_transform(&self) -> Cow<Transform3D<f32, Src, Dst>> {
match *self {
FastTransform::Offset(offset) => Cow::Owned(
Transform3D::translation(offset.x, offset.y, 0.0)
),
FastTransform::Transform { ref transform, .. } => Cow::Borrowed(transform),
}
}
/// Return true if this is an identity transform
#[allow(unused)]
pub fn is_identity(&self)-> bool {
match *self {
FastTransform::Offset(offset) => {
offset == Vector2D::zero()
}
FastTransform::Transform { ref transform, .. } => {
*transform == Transform3D::identity()
}
}
}
pub fn then<NewDst>(&self, other: &FastTransform<Dst, NewDst>) -> FastTransform<Src, NewDst> {
match *self {
FastTransform::Offset(offset) => match *other {
FastTransform::Offset(other_offset) => {
FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0))
}
FastTransform::Transform { transform: ref other_transform, .. } => {
FastTransform::with_transform(
other_transform
.with_source::<Src>()
.pre_translate(offset.to_3d())
)
}
}
FastTransform::Transform { ref transform, ref inverse, is_2d } => match *other {
FastTransform::Offset(other_offset) => {
FastTransform::with_transform(
transform
.then_translate(other_offset.to_3d())
.with_destination::<NewDst>()
)
}
FastTransform::Transform { transform: ref other_transform, inverse: ref other_inverse, is_2d: other_is_2d } => {
FastTransform::Transform {
transform: transform.then(other_transform),
inverse: inverse.as_ref().and_then(|self_inv|
other_inverse.as_ref().map(|other_inv| other_inv.then(self_inv))
),
is_2d: is_2d & other_is_2d,
}
}
}
}
}
pub fn pre_transform<NewSrc>(
&self,
other: &FastTransform<NewSrc, Src>
) -> FastTransform<NewSrc, Dst> {
other.then(self)
}
pub fn pre_translate(&self, other_offset: Vector2D<f32, Src>) -> Self {
match *self {
FastTransform::Offset(offset) =>
FastTransform::Offset(offset + other_offset),
FastTransform::Transform { transform, .. } =>
FastTransform::with_transform(transform.pre_translate(other_offset.to_3d()))
}
}
pub fn then_translate(&self, other_offset: Vector2D<f32, Dst>) -> Self {
match *self {
FastTransform::Offset(offset) => {
FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0))
}
FastTransform::Transform { ref transform, .. } => {
let transform = transform.then_translate(other_offset.to_3d());
FastTransform::with_transform(transform)
}
}
}
#[inline(always)]
pub fn is_backface_visible(&self) -> bool {
match *self {
FastTransform::Offset(..) => false,
FastTransform::Transform { inverse: None, .. } => false,
//TODO: fix this properly by taking "det|M33| * det|M34| > 0"
// see https://www.w3.org/Bugs/Public/show_bug.cgi?id=23014
FastTransform::Transform { inverse: Some(ref inverse), .. } => inverse.m33 < 0.0,
}
}
#[inline(always)]
pub fn transform_point2d(&self, point: Point2D<f32, Src>) -> Option<Point2D<f32, Dst>> {
match *self {
FastTransform::Offset(offset) => {
let new_point = point + offset;
Some(Point2D::from_untyped(new_point.to_untyped()))
}
FastTransform::Transform { ref transform, .. } => transform.transform_point2d(point),
}
}
#[inline(always)]
pub fn project_point2d(&self, point: Point2D<f32, Src>) -> Option<Point2D<f32, Dst>> {
match* self {
FastTransform::Offset(..) => self.transform_point2d(point),
FastTransform::Transform{ref transform, ..} => {
// Find a value for z that will transform to 0.
// The transformed value of z is computed as:
// z' = point.x * self.m13 + point.y * self.m23 + z * self.m33 + self.m43
// Solving for z when z' = 0 gives us:
let z = -(point.x * transform.m13 + point.y * transform.m23 + transform.m43) / transform.m33;
transform.transform_point3d(point3(point.x, point.y, z)).map(| p3 | point2(p3.x, p3.y))
}
}
}
#[inline(always)]
pub fn inverse(&self) -> Option<FastTransform<Dst, Src>> {
match *self {
FastTransform::Offset(offset) =>
Some(FastTransform::Offset(Vector2D::new(-offset.x, -offset.y))),
FastTransform::Transform { transform, inverse: Some(inverse), is_2d, } =>
Some(FastTransform::Transform {
transform: inverse,
inverse: Some(transform),
is_2d
}),
FastTransform::Transform { inverse: None, .. } => None,
}
}
}
impl<Src, Dst> From<Transform3D<f32, Src, Dst>> for FastTransform<Src, Dst> {
fn from(transform: Transform3D<f32, Src, Dst>) -> Self {
FastTransform::with_transform(transform)
}
}
impl<Src, Dst> From<Vector2D<f32, Src>> for FastTransform<Src, Dst> {
fn from(vector: Vector2D<f32, Src>) -> Self {
FastTransform::with_vector(vector)
}
}
pub type LayoutFastTransform = FastTransform<LayoutPixel, LayoutPixel>;
pub type LayoutToWorldFastTransform = FastTransform<LayoutPixel, WorldPixel>;
pub fn project_rect<F, T>(
transform: &Transform3D<f32, F, T>,
rect: &Box2D<f32, F>,
bounds: &Box2D<f32, T>,
) -> Option<Box2D<f32, T>>
where F: fmt::Debug
{
let homogens = [
transform.transform_point2d_homogeneous(rect.top_left()),
transform.transform_point2d_homogeneous(rect.top_right()),
transform.transform_point2d_homogeneous(rect.bottom_left()),
transform.transform_point2d_homogeneous(rect.bottom_right()),
];
// Note: we only do the full frustum collision when the polygon approaches the camera plane.
// Otherwise, it will be clamped to the screen bounds anyway.
if homogens.iter().any(|h| h.w <= 0.0 || h.w.is_nan()) {
let mut clipper = Clipper::new();
let polygon = Polygon::from_rect(rect.to_rect().cast().cast_unit(), 1);
let planes = match Clipper::<usize>::frustum_planes(
&transform.cast_unit().cast(),
Some(bounds.to_rect().cast_unit().to_f64()),
) {
Ok(planes) => planes,
Err(..) => return None,
};
for plane in planes {
clipper.add(plane);
}
let results = clipper.clip(polygon);
if results.is_empty() {
return None
}
Some(Box2D::from_points(results
.into_iter()
// filter out parts behind the view plane
.flat_map(|poly| &poly.points)
.map(|p| {
let mut homo = transform.transform_point2d_homogeneous(p.to_2d().to_f32().cast_unit());
homo.w = homo.w.max(0.00000001); // avoid infinite values
homo.to_point2d().unwrap()
})
))
} else {
// we just checked for all the points to be in positive hemisphere, so `unwrap` is valid
Some(Box2D::from_points(&[
homogens[0].to_point2d().unwrap(),
homogens[1].to_point2d().unwrap(),
homogens[2].to_point2d().unwrap(),
homogens[3].to_point2d().unwrap(),
]))
}
}
/// Run the first callback over all elements in the array. If the callback returns true,
/// the element is removed from the array and moved to a second callback.
///
/// This is a simple implementation waiting for Vec::drain_filter to be stable.
/// When that happens, code like:
///
/// let filter = |op| {
/// match *op {
/// Enum::Foo | Enum::Bar => true,
/// Enum::Baz => false,
/// }
/// };
/// drain_filter(
/// &mut ops,
/// filter,
/// |op| {
/// match op {
/// Enum::Foo => { foo(); }
/// Enum::Bar => { bar(); }
/// Enum::Baz => { unreachable!(); }
/// }
/// },
/// );
///
/// Can be rewritten as:
///
/// let filter = |op| {
/// match *op {
/// Enum::Foo | Enum::Bar => true,
/// Enum::Baz => false,
/// }
/// };
/// for op in ops.drain_filter(filter) {
/// match op {
/// Enum::Foo => { foo(); }
/// Enum::Bar => { bar(); }
/// Enum::Baz => { unreachable!(); }
/// }
/// }
///
/// See https://doc.rust-lang.org/std/vec/struct.Vec.html#method.drain_filter
pub fn drain_filter<T, Filter, Action>(
vec: &mut Vec<T>,
mut filter: Filter,
mut action: Action,
)
where
Filter: FnMut(&mut T) -> bool,
Action: FnMut(T)
{
let mut i = 0;
while i != vec.len() {
if filter(&mut vec[i]) {
action(vec.remove(i));
} else {
i += 1;
}
}
}
#[derive(Debug)]
pub struct Recycler {
pub num_allocations: usize,
}
impl Recycler {
/// Maximum extra capacity that a recycled vector is allowed to have. If the actual capacity
/// is larger, we re-allocate the vector storage with lower capacity.
const MAX_EXTRA_CAPACITY_PERCENT: usize = 200;
/// Minimum extra capacity to keep when re-allocating the vector storage.
const MIN_EXTRA_CAPACITY_PERCENT: usize = 20;
/// Minimum sensible vector length to consider for re-allocation.
const MIN_VECTOR_LENGTH: usize = 16;
pub fn new() -> Self {
Recycler {
num_allocations: 0,
}
}
/// Clear a vector for re-use, while retaining the backing memory buffer. May shrink the buffer
/// if it's currently much larger than was actually used.
pub fn recycle_vec<T>(&mut self, vec: &mut Vec<T>) {
let extra_capacity = (vec.capacity() - vec.len()) * 100 / vec.len().max(Self::MIN_VECTOR_LENGTH);
if extra_capacity > Self::MAX_EXTRA_CAPACITY_PERCENT {
// Reduce capacity of the buffer if it is a lot larger than it needs to be. This prevents
// a frame with exceptionally large allocations to cause subsequent frames to retain
// more memory than they need.
//TODO: use `shrink_to` when it's stable
*vec = Vec::with_capacity(vec.len() + vec.len() * Self::MIN_EXTRA_CAPACITY_PERCENT / 100);
self.num_allocations += 1;
} else {
vec.clear();
}
}
}
/// Record the size of a data structure to preallocate a similar size
/// at the next frame and avoid growing it too many time.
#[derive(Copy, Clone, Debug)]
pub struct Preallocator {
size: usize,
}
impl Preallocator {
pub fn new(initial_size: usize) -> Self {
Preallocator {
size: initial_size,
}
}
/// Record the size of a vector to preallocate it the next frame.
pub fn record_vec<T>(&mut self, vec: &Vec<T>) {
let len = vec.len();
if len > self.size {
self.size = len;
} else {
self.size = (self.size + len) / 2;
}
}
/// The size that we'll preallocate the vector with.
pub fn preallocation_size(&self) -> usize {
// Round up to multiple of 16 to avoid small tiny
// variations causing reallocations.
(self.size + 15) & !15
}
/// Preallocate vector storage.
///
/// The preallocated amount depends on the length recorded in the last
/// record_vec call.
pub fn preallocate_vec<T>(&self, vec: &mut Vec<T>) {
let len = vec.len();
let cap = self.preallocation_size();
if len < cap {
vec.reserve(cap - len);
}
}
}
impl Default for Preallocator {
fn default() -> Self {
Self::new(0)
}
}
/// Arc wrapper to support measurement via MallocSizeOf.
///
/// Memory reporting for Arcs is tricky because of the risk of double-counting.
/// One way to measure them is to keep a table of pointers that have already been
/// traversed. The other way is to use knowledge of the program structure to
/// identify which Arc instances should be measured and which should be skipped to
/// avoid double-counting.
///
/// This struct implements the second approach. It identifies the "main" pointer
/// to the Arc-ed resource, and measures the buffer as if it were an owned pointer.
/// The programmer should ensure that there is at most one PrimaryArc for a given
/// underlying ArcInner.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct PrimaryArc<T>(pub Arc<T>);
impl<T> ::std::ops::Deref for PrimaryArc<T> {
type Target = Arc<T>;
#[inline]
fn deref(&self) -> &Arc<T> {
&self.0
}
}
impl<T> MallocShallowSizeOf for PrimaryArc<T> {
fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
unsafe {
// This is a bit sketchy, but std::sync::Arc doesn't expose the
// base pointer.
let raw_arc_ptr: *const Arc<T> = &self.0;
let raw_ptr_ptr: *const *const c_void = raw_arc_ptr as _;
let raw_ptr = *raw_ptr_ptr;
(ops.size_of_op)(raw_ptr)
}
}
}
impl<T: MallocSizeOf> MallocSizeOf for PrimaryArc<T> {
fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize {
self.shallow_size_of(ops) + (**self).size_of(ops)
}
}
/// Computes the scale factors of this matrix; that is,
/// the amounts each basis vector is scaled by.
///
/// This code comes from gecko gfx/2d/Matrix.h with the following
/// modifications:
///
/// * Removed `xMajor` parameter.
/// * All arithmetics is done with double precision.
pub fn scale_factors<Src, Dst>(
mat: &Transform3D<f32, Src, Dst>
) -> (f32, f32) {
let m11 = mat.m11 as f64;
let m12 = mat.m12 as f64;
// Determinant is just of the 2D component.
let det = m11 * mat.m22 as f64 - m12 * mat.m21 as f64;
if det == 0.0 {
return (0.0, 0.0);
}
// ignore mirroring
let det = det.abs();
let major = (m11 * m11 + m12 * m12).sqrt();
let minor = if major != 0.0 { det / major } else { 0.0 };
(major as f32, minor as f32)
}
#[test]
fn scale_factors_large() {
// https://bugzilla.mozilla.org/show_bug.cgi?id=1748499
let mat = Transform3D::<f32, (), ()>::new(
1.6534229920333123e27, 3.673100922561787e27, 0.0, 0.0,
-3.673100922561787e27, 1.6534229920333123e27, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
-828140552192.0, -1771307401216.0, 0.0, 1.0,
);
let (major, minor) = scale_factors(&mat);
assert!(major.is_normal() && minor.is_normal());
}
/// Clamp scaling factor to a power of two.
///
/// This code comes from gecko gfx/thebes/gfxUtils.cpp with the following
/// modification:
///
/// * logs are taken in base 2 instead of base e.
pub fn clamp_to_scale_factor(val: f32, round_down: bool) -> f32 {
// Arbitary scale factor limitation. We can increase this
// for better scaling performance at the cost of worse
// quality.
const SCALE_RESOLUTION: f32 = 2.0;
// Negative scaling is just a flip and irrelevant to
// our resolution calculation.
let val = val.abs();
let (val, inverse) = if val < 1.0 {
(1.0 / val, true)
} else {
(val, false)
};
let power = val.log2() / SCALE_RESOLUTION.log2();
// If power is within 1e-5 of an integer, round to nearest to
// prevent floating point errors, otherwise round up to the
// next integer value.
let power = if (power - power.round()).abs() < 1e-5 {
power.round()
} else if inverse != round_down {
// Use floor when we are either inverted or rounding down, but
// not both.
power.floor()
} else {
// Otherwise, ceil when we are not inverted and not rounding
// down, or we are inverted and rounding down.
power.ceil()
};
let scale = SCALE_RESOLUTION.powf(power);
if inverse {
1.0 / scale
} else {
scale
}
}
/// Rounds a value up to the nearest multiple of mul
pub fn round_up_to_multiple(val: usize, mul: NonZeroUsize) -> usize {
match val % mul.get() {
0 => val,
rem => val - rem + mul.get(),
}
}
#[macro_export]
macro_rules! c_str {
($lit:expr) => {
unsafe {
std::ffi::CStr::from_ptr(concat!($lit, "\0").as_ptr()
as *const std::os::raw::c_char)
}
}
}
/// This is inspired by the `weak-table` crate.
/// It holds a Vec of weak pointers that are garbage collected as the Vec
pub struct WeakTable {
inner: Vec<std::sync::Weak<Vec<u8>>>
}
impl WeakTable {
pub fn new() -> WeakTable {
WeakTable { inner: Vec::new() }
}
pub fn insert(&mut self, x: std::sync::Weak<Vec<u8>>) {
if self.inner.len() == self.inner.capacity() {
self.remove_expired();
// We want to make sure that we change capacity()
// even if remove_expired() removes some entries
// so that we don't repeatedly hit remove_expired()
if self.inner.len() * 3 < self.inner.capacity() {
// We use a different multiple for shrinking then
// expanding so that we we don't accidentally
// oscilate.
self.inner.shrink_to_fit();
} else {
// Otherwise double our size
self.inner.reserve(self.inner.len())
}
}
self.inner.push(x);
}
fn remove_expired(&mut self) {
self.inner.retain(|x| x.strong_count() > 0)
}
pub fn iter(&self) -> impl Iterator<Item = Arc<Vec<u8>>> + '_ {
self.inner.iter().filter_map(|x| x.upgrade())
}
}
#[test]
fn weak_table() {
let mut tbl = WeakTable::new();
let mut things = Vec::new();
let target_count = 50;
for _ in 0..target_count {
things.push(Arc::new(vec![4]));
}
for i in &things {
tbl.insert(Arc::downgrade(i))
}
assert_eq!(tbl.inner.len(), target_count);
drop(things);
assert_eq!(tbl.iter().count(), 0);
// make sure that we shrink the table if it gets too big
// by adding a bunch of dead items
for _ in 0..target_count*2 {
tbl.insert(Arc::downgrade(&Arc::new(vec![5])))
}
assert!(tbl.inner.capacity() <= 4);
}
|