1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef frontend_SyntaxParseHandler_h
#define frontend_SyntaxParseHandler_h
#include "mozilla/Assertions.h"
#include "mozilla/Maybe.h" // mozilla::Maybe
#include <string.h>
#include "jstypes.h"
#include "frontend/CompilationStencil.h" // CompilationState
#include "frontend/FunctionSyntaxKind.h" // FunctionSyntaxKind
#include "frontend/NameAnalysisTypes.h" // PrivateNameKind
#include "frontend/ParseNode.h"
#include "frontend/ParserAtom.h" // TaggedParserAtomIndex
#include "frontend/TokenStream.h"
namespace js {
namespace frontend {
// Parse handler used when processing the syntax in a block of code, to generate
// the minimal information which is required to detect syntax errors and allow
// bytecode to be emitted for outer functions.
//
// When parsing, we start at the top level with a full parse, and when possible
// only check the syntax for inner functions, so that they can be lazily parsed
// into bytecode when/if they first run. Checking the syntax of a function is
// several times faster than doing a full parse/emit, and lazy parsing improves
// both performance and memory usage significantly when pages contain large
// amounts of code that never executes (which happens often).
class SyntaxParseHandler {
// Remember the last encountered name or string literal during syntax parses.
TaggedParserAtomIndex lastAtom;
TokenPos lastStringPos;
public:
enum Node {
NodeFailure = 0,
NodeGeneric,
NodeGetProp,
NodeStringExprStatement,
NodeReturn,
NodeBreak,
NodeThrow,
NodeEmptyStatement,
NodeVarDeclaration,
NodeLexicalDeclaration,
// A non-arrow function expression with block body, from bog-standard
// ECMAScript.
NodeFunctionExpression,
NodeFunctionArrow,
NodeFunctionStatement,
// This is needed for proper assignment-target handling. ES6 formally
// requires function calls *not* pass IsValidSimpleAssignmentTarget,
// but at last check there were still sites with |f() = 5| and similar
// in code not actually executed (or at least not executed enough to be
// noticed).
NodeFunctionCall,
NodeOptionalFunctionCall,
// Node representing normal names which don't require any special
// casing.
NodeName,
// Nodes representing the names "arguments" and "eval".
NodeArgumentsName,
NodeEvalName,
// Node representing the "async" name, which may actually be a
// contextual keyword.
NodePotentialAsyncKeyword,
// Node representing private names.
NodePrivateName,
NodeDottedProperty,
NodeOptionalDottedProperty,
NodeElement,
NodeOptionalElement,
// A distinct node for [PrivateName], to make detecting delete this.#x
// detectable in syntax parse
NodePrivateMemberAccess,
NodeOptionalPrivateMemberAccess,
// Destructuring target patterns can't be parenthesized: |([a]) = [3];|
// must be a syntax error. (We can't use NodeGeneric instead of these
// because that would trigger invalid-left-hand-side ReferenceError
// semantics when SyntaxError semantics are desired.)
NodeParenthesizedArray,
NodeParenthesizedObject,
// In rare cases a parenthesized |node| doesn't have the same semantics
// as |node|. Each such node has a special Node value, and we use a
// different Node value to represent the parenthesized form. See also
// is{Unp,P}arenthesized*(Node), parenthesize(Node), and the various
// functions that deal in NodeUnparenthesized* below.
// Valuable for recognizing potential destructuring patterns.
NodeUnparenthesizedArray,
NodeUnparenthesizedObject,
// The directive prologue at the start of a FunctionBody or ScriptBody
// is the longest sequence (possibly empty) of string literal
// expression statements at the start of a function. Thus we need this
// to treat |"use strict";| as a possible Use Strict Directive and
// |("use strict");| as a useless statement.
NodeUnparenthesizedString,
// For destructuring patterns an assignment element with
// an initializer expression is not allowed be parenthesized.
// i.e. |{x = 1} = obj|
NodeUnparenthesizedAssignment,
// This node is necessary to determine if the base operand in an
// exponentiation operation is an unparenthesized unary expression.
// We want to reject |-2 ** 3|, but still need to allow |(-2) ** 3|.
NodeUnparenthesizedUnary,
// This node is necessary to determine if the LHS of a property access is
// super related.
NodeSuperBase
};
#define DECLARE_TYPE(typeName, longTypeName, asMethodName) \
using longTypeName = Node;
FOR_EACH_PARSENODE_SUBCLASS(DECLARE_TYPE)
#undef DECLARE_TYPE
using NullNode = Node;
bool isNonArrowFunctionExpression(Node node) const {
return node == NodeFunctionExpression;
}
bool isPropertyOrPrivateMemberAccess(Node node) {
return node == NodeDottedProperty || node == NodeElement ||
node == NodePrivateMemberAccess;
}
bool isOptionalPropertyOrPrivateMemberAccess(Node node) {
return node == NodeOptionalDottedProperty || node == NodeOptionalElement ||
node == NodeOptionalPrivateMemberAccess;
}
bool isFunctionCall(Node node) {
// Note: super() is a special form, *not* a function call.
return node == NodeFunctionCall;
}
static bool isUnparenthesizedDestructuringPattern(Node node) {
return node == NodeUnparenthesizedArray ||
node == NodeUnparenthesizedObject;
}
static bool isParenthesizedDestructuringPattern(Node node) {
// Technically this isn't a destructuring target at all -- the grammar
// doesn't treat it as such. But we need to know when this happens to
// consider it a SyntaxError rather than an invalid-left-hand-side
// ReferenceError.
return node == NodeParenthesizedArray || node == NodeParenthesizedObject;
}
public:
SyntaxParseHandler(FrontendContext* fc, CompilationState& compilationState) {
MOZ_ASSERT(!compilationState.input.isDelazifying());
}
static NullNode null() { return NodeFailure; }
#define DECLARE_AS(typeName, longTypeName, asMethodName) \
static longTypeName asMethodName(Node node) { return node; }
FOR_EACH_PARSENODE_SUBCLASS(DECLARE_AS)
#undef DECLARE_AS
NameNodeType newName(TaggedParserAtomIndex name, const TokenPos& pos) {
lastAtom = name;
if (name == TaggedParserAtomIndex::WellKnown::arguments()) {
return NodeArgumentsName;
}
if (pos.begin + strlen("async") == pos.end &&
name == TaggedParserAtomIndex::WellKnown::async()) {
return NodePotentialAsyncKeyword;
}
if (name == TaggedParserAtomIndex::WellKnown::eval()) {
return NodeEvalName;
}
return NodeName;
}
UnaryNodeType newComputedName(Node expr, uint32_t start, uint32_t end) {
return NodeGeneric;
}
UnaryNodeType newSyntheticComputedName(Node expr, uint32_t start,
uint32_t end) {
return NodeGeneric;
}
NameNodeType newObjectLiteralPropertyName(TaggedParserAtomIndex atom,
const TokenPos& pos) {
return NodeName;
}
NameNodeType newPrivateName(TaggedParserAtomIndex atom, const TokenPos& pos) {
return NodePrivateName;
}
NumericLiteralType newNumber(double value, DecimalPoint decimalPoint,
const TokenPos& pos) {
return NodeGeneric;
}
BigIntLiteralType newBigInt() { return NodeGeneric; }
BooleanLiteralType newBooleanLiteral(bool cond, const TokenPos& pos) {
return NodeGeneric;
}
NameNodeType newStringLiteral(TaggedParserAtomIndex atom,
const TokenPos& pos) {
lastAtom = atom;
lastStringPos = pos;
return NodeUnparenthesizedString;
}
NameNodeType newTemplateStringLiteral(TaggedParserAtomIndex atom,
const TokenPos& pos) {
return NodeGeneric;
}
CallSiteNodeType newCallSiteObject(uint32_t begin) { return NodeGeneric; }
void addToCallSiteObject(CallSiteNodeType callSiteObj, Node rawNode,
Node cookedNode) {}
ThisLiteralType newThisLiteral(const TokenPos& pos, Node thisName) {
return NodeGeneric;
}
NullLiteralType newNullLiteral(const TokenPos& pos) { return NodeGeneric; }
RawUndefinedLiteralType newRawUndefinedLiteral(const TokenPos& pos) {
return NodeGeneric;
}
RegExpLiteralType newRegExp(Node reobj, const TokenPos& pos) {
return NodeGeneric;
}
ConditionalExpressionType newConditional(Node cond, Node thenExpr,
Node elseExpr) {
return NodeGeneric;
}
UnaryNodeType newDelete(uint32_t begin, Node expr) {
return NodeUnparenthesizedUnary;
}
UnaryNodeType newTypeof(uint32_t begin, Node kid) {
return NodeUnparenthesizedUnary;
}
UnaryNodeType newUnary(ParseNodeKind kind, uint32_t begin, Node kid) {
return NodeUnparenthesizedUnary;
}
UnaryNodeType newUpdate(ParseNodeKind kind, uint32_t begin, Node kid) {
return NodeGeneric;
}
UnaryNodeType newSpread(uint32_t begin, Node kid) { return NodeGeneric; }
Node appendOrCreateList(ParseNodeKind kind, Node left, Node right,
ParseContext* pc) {
return NodeGeneric;
}
// Expressions
ListNodeType newArrayLiteral(uint32_t begin) {
return NodeUnparenthesizedArray;
}
[[nodiscard]] bool addElision(ListNodeType literal, const TokenPos& pos) {
return true;
}
[[nodiscard]] bool addSpreadElement(ListNodeType literal, uint32_t begin,
Node inner) {
return true;
}
void addArrayElement(ListNodeType literal, Node element) {}
ListNodeType newArguments(const TokenPos& pos) { return NodeGeneric; }
CallNodeType newCall(Node callee, Node args, JSOp callOp) {
return NodeFunctionCall;
}
CallNodeType newOptionalCall(Node callee, Node args, JSOp callOp) {
return NodeOptionalFunctionCall;
}
CallNodeType newSuperCall(Node callee, Node args, bool isSpread) {
return NodeGeneric;
}
CallNodeType newTaggedTemplate(Node tag, Node args, JSOp callOp) {
return NodeGeneric;
}
ListNodeType newObjectLiteral(uint32_t begin) {
return NodeUnparenthesizedObject;
}
#ifdef ENABLE_RECORD_TUPLE
ListNodeType newRecordLiteral(uint32_t begin) { return NodeGeneric; }
ListNodeType newTupleLiteral(uint32_t begin) { return NodeGeneric; }
#endif
ListNodeType newClassMemberList(uint32_t begin) { return NodeGeneric; }
ClassNamesType newClassNames(Node outer, Node inner, const TokenPos& pos) {
return NodeGeneric;
}
ClassNodeType newClass(Node name, Node heritage, Node methodBlock,
#ifdef ENABLE_DECORATORS
ListNodeType decorators,
#endif
const TokenPos& pos) {
return NodeGeneric;
}
LexicalScopeNodeType newLexicalScope(Node body) {
return NodeLexicalDeclaration;
}
ClassBodyScopeNodeType newClassBodyScope(Node body) {
return NodeLexicalDeclaration;
}
NewTargetNodeType newNewTarget(NullaryNodeType newHolder,
NullaryNodeType targetHolder,
NameNodeType newTargetName) {
return NodeGeneric;
}
NullaryNodeType newPosHolder(const TokenPos& pos) { return NodeGeneric; }
UnaryNodeType newSuperBase(Node thisName, const TokenPos& pos) {
return NodeSuperBase;
}
[[nodiscard]] bool addPrototypeMutation(ListNodeType literal, uint32_t begin,
Node expr) {
return true;
}
BinaryNodeType newPropertyDefinition(Node key, Node val) {
return NodeGeneric;
}
void addPropertyDefinition(ListNodeType literal, BinaryNodeType propdef) {}
[[nodiscard]] bool addPropertyDefinition(ListNodeType literal, Node key,
Node expr) {
return true;
}
[[nodiscard]] bool addShorthand(ListNodeType literal, NameNodeType name,
NameNodeType expr) {
return true;
}
[[nodiscard]] bool addSpreadProperty(ListNodeType literal, uint32_t begin,
Node inner) {
return true;
}
[[nodiscard]] bool addObjectMethodDefinition(ListNodeType literal, Node key,
FunctionNodeType funNode,
AccessorType atype) {
return true;
}
[[nodiscard]] Node newDefaultClassConstructor(Node key,
FunctionNodeType funNode) {
return NodeGeneric;
}
[[nodiscard]] Node newClassMethodDefinition(
Node key, FunctionNodeType funNode, AccessorType atype, bool isStatic,
mozilla::Maybe<FunctionNodeType> initializerIfPrivate
#ifdef ENABLE_DECORATORS
,
ListNodeType decorators
#endif
) {
return NodeGeneric;
}
[[nodiscard]] Node newClassFieldDefinition(Node name,
FunctionNodeType initializer,
bool isStatic
#ifdef ENABLE_DECORATORS
,
ListNodeType decorators,
bool hasAccessor
#endif
) {
return NodeGeneric;
}
[[nodiscard]] Node newStaticClassBlock(FunctionNodeType block) {
return NodeGeneric;
}
[[nodiscard]] bool addClassMemberDefinition(ListNodeType memberList,
Node member) {
return true;
}
UnaryNodeType newYieldExpression(uint32_t begin, Node value) {
return NodeGeneric;
}
UnaryNodeType newYieldStarExpression(uint32_t begin, Node value) {
return NodeGeneric;
}
UnaryNodeType newAwaitExpression(uint32_t begin, Node value) {
return NodeUnparenthesizedUnary;
}
UnaryNodeType newOptionalChain(uint32_t begin, Node value) {
return NodeGeneric;
}
// Statements
ListNodeType newStatementList(const TokenPos& pos) { return NodeGeneric; }
void addStatementToList(ListNodeType list, Node stmt) {}
void setListEndPosition(ListNodeType list, const TokenPos& pos) {}
void addCaseStatementToList(ListNodeType list, CaseClauseType caseClause) {}
[[nodiscard]] bool prependInitialYield(ListNodeType stmtList, Node genName) {
return true;
}
NullaryNodeType newEmptyStatement(const TokenPos& pos) {
return NodeEmptyStatement;
}
BinaryNodeType newImportAssertion(Node keyNode, Node valueNode) {
return NodeGeneric;
}
BinaryNodeType newModuleRequest(Node moduleSpec, Node importAssertionList,
const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newImportDeclaration(Node importSpecSet, Node moduleRequest,
const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newImportSpec(Node importNameNode, Node bindingName) {
return NodeGeneric;
}
UnaryNodeType newImportNamespaceSpec(uint32_t begin, Node bindingName) {
return NodeGeneric;
}
UnaryNodeType newExportDeclaration(Node kid, const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newExportFromDeclaration(uint32_t begin, Node exportSpecSet,
Node moduleRequest) {
return NodeGeneric;
}
BinaryNodeType newExportDefaultDeclaration(Node kid, Node maybeBinding,
const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newExportSpec(Node bindingName, Node exportName) {
return NodeGeneric;
}
UnaryNodeType newExportNamespaceSpec(uint32_t begin, Node exportName) {
return NodeGeneric;
}
NullaryNodeType newExportBatchSpec(const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newImportMeta(NullaryNodeType importHolder,
NullaryNodeType metaHolder) {
return NodeGeneric;
}
BinaryNodeType newCallImport(NullaryNodeType importHolder, Node singleArg) {
return NodeGeneric;
}
BinaryNodeType newCallImportSpec(Node specifierArg, Node optionalArg) {
return NodeGeneric;
}
BinaryNodeType newSetThis(Node thisName, Node value) { return value; }
UnaryNodeType newExprStatement(Node expr, uint32_t end) {
return expr == NodeUnparenthesizedString ? NodeStringExprStatement
: NodeGeneric;
}
TernaryNodeType newIfStatement(uint32_t begin, Node cond, Node thenBranch,
Node elseBranch) {
return NodeGeneric;
}
BinaryNodeType newDoWhileStatement(Node body, Node cond,
const TokenPos& pos) {
return NodeGeneric;
}
BinaryNodeType newWhileStatement(uint32_t begin, Node cond, Node body) {
return NodeGeneric;
}
SwitchStatementType newSwitchStatement(
uint32_t begin, Node discriminant,
LexicalScopeNodeType lexicalForCaseList, bool hasDefault) {
return NodeGeneric;
}
CaseClauseType newCaseOrDefault(uint32_t begin, Node expr, Node body) {
return NodeGeneric;
}
ContinueStatementType newContinueStatement(TaggedParserAtomIndex label,
const TokenPos& pos) {
return NodeGeneric;
}
BreakStatementType newBreakStatement(TaggedParserAtomIndex label,
const TokenPos& pos) {
return NodeBreak;
}
UnaryNodeType newReturnStatement(Node expr, const TokenPos& pos) {
return NodeReturn;
}
UnaryNodeType newExpressionBody(Node expr) { return NodeReturn; }
BinaryNodeType newWithStatement(uint32_t begin, Node expr, Node body) {
return NodeGeneric;
}
LabeledStatementType newLabeledStatement(TaggedParserAtomIndex label,
Node stmt, uint32_t begin) {
return NodeGeneric;
}
UnaryNodeType newThrowStatement(Node expr, const TokenPos& pos) {
return NodeThrow;
}
TernaryNodeType newTryStatement(uint32_t begin, Node body,
LexicalScopeNodeType catchScope,
Node finallyBlock) {
return NodeGeneric;
}
DebuggerStatementType newDebuggerStatement(const TokenPos& pos) {
return NodeGeneric;
}
NameNodeType newPropertyName(TaggedParserAtomIndex name,
const TokenPos& pos) {
lastAtom = name;
return NodeGeneric;
}
PropertyAccessType newPropertyAccess(Node expr, NameNodeType key) {
return NodeDottedProperty;
}
PropertyAccessType newOptionalPropertyAccess(Node expr, NameNodeType key) {
return NodeOptionalDottedProperty;
}
PropertyByValueType newPropertyByValue(Node lhs, Node index, uint32_t end) {
MOZ_ASSERT(!isPrivateName(index));
return NodeElement;
}
PropertyByValueType newOptionalPropertyByValue(Node lhs, Node index,
uint32_t end) {
return NodeOptionalElement;
}
PrivateMemberAccessType newPrivateMemberAccess(Node lhs, Node privateName,
uint32_t end) {
return NodePrivateMemberAccess;
}
PrivateMemberAccessType newOptionalPrivateMemberAccess(Node lhs,
Node privateName,
uint32_t end) {
return NodeOptionalPrivateMemberAccess;
}
[[nodiscard]] bool setupCatchScope(LexicalScopeNodeType lexicalScope,
Node catchName, Node catchBody) {
return true;
}
[[nodiscard]] bool setLastFunctionFormalParameterDefault(
FunctionNodeType funNode, Node defaultValue) {
return true;
}
void checkAndSetIsDirectRHSAnonFunction(Node pn) {}
ParamsBodyNodeType newParamsBody(const TokenPos& pos) { return NodeGeneric; }
FunctionNodeType newFunction(FunctionSyntaxKind syntaxKind,
const TokenPos& pos) {
switch (syntaxKind) {
case FunctionSyntaxKind::Statement:
return NodeFunctionStatement;
case FunctionSyntaxKind::Arrow:
return NodeFunctionArrow;
default:
// All non-arrow function expressions are initially presumed to have
// block body. This will be overridden later *if* the function
// expression permissibly has an AssignmentExpression body.
return NodeFunctionExpression;
}
}
void setFunctionFormalParametersAndBody(FunctionNodeType funNode,
ParamsBodyNodeType paramsBody) {}
void setFunctionBody(FunctionNodeType funNode, LexicalScopeNodeType body) {}
void setFunctionBox(FunctionNodeType funNode, FunctionBox* funbox) {}
void addFunctionFormalParameter(FunctionNodeType funNode, Node argpn) {}
ForNodeType newForStatement(uint32_t begin, TernaryNodeType forHead,
Node body, unsigned iflags) {
return NodeGeneric;
}
TernaryNodeType newForHead(Node init, Node test, Node update,
const TokenPos& pos) {
return NodeGeneric;
}
TernaryNodeType newForInOrOfHead(ParseNodeKind kind, Node target,
Node iteratedExpr, const TokenPos& pos) {
return NodeGeneric;
}
AssignmentNodeType finishInitializerAssignment(NameNodeType nameNode,
Node init) {
return NodeUnparenthesizedAssignment;
}
void setBeginPosition(Node pn, Node oth) {}
void setBeginPosition(Node pn, uint32_t begin) {}
void setEndPosition(Node pn, Node oth) {}
void setEndPosition(Node pn, uint32_t end) {}
uint32_t getFunctionNameOffset(Node func, TokenStreamAnyChars& ts) {
// XXX This offset isn't relevant to the offending function name. But
// we may not *have* that function name around, because of how lazy
// parsing works -- the actual name could be outside
// |tokenStream.userbuf|'s observed region. So the current offset
// is the best we can do.
return ts.currentToken().pos.begin;
}
ListNodeType newList(ParseNodeKind kind, const TokenPos& pos) {
MOZ_ASSERT(kind != ParseNodeKind::VarStmt);
MOZ_ASSERT(kind != ParseNodeKind::LetDecl);
MOZ_ASSERT(kind != ParseNodeKind::ConstDecl);
MOZ_ASSERT(kind != ParseNodeKind::ParamsBody);
return NodeGeneric;
}
ListNodeType newList(ParseNodeKind kind, Node kid) {
return newList(kind, TokenPos());
}
DeclarationListNodeType newDeclarationList(ParseNodeKind kind,
const TokenPos& pos) {
if (kind == ParseNodeKind::VarStmt) {
return NodeVarDeclaration;
}
MOZ_ASSERT(kind == ParseNodeKind::LetDecl ||
kind == ParseNodeKind::ConstDecl);
return NodeLexicalDeclaration;
}
ListNodeType newCommaExpressionList(Node kid) { return NodeGeneric; }
void addList(ListNodeType list, Node kid) {
MOZ_ASSERT(list == NodeGeneric || list == NodeUnparenthesizedArray ||
list == NodeUnparenthesizedObject ||
list == NodeVarDeclaration || list == NodeLexicalDeclaration ||
list == NodeFunctionCall);
}
CallNodeType newNewExpression(uint32_t begin, Node ctor, Node args,
bool isSpread) {
return NodeGeneric;
}
AssignmentNodeType newAssignment(ParseNodeKind kind, Node lhs, Node rhs) {
return kind == ParseNodeKind::AssignExpr ? NodeUnparenthesizedAssignment
: NodeGeneric;
}
AssignmentNodeType newInitExpr(Node lhs, Node rhs) { return NodeGeneric; }
bool isUnparenthesizedAssignment(Node node) {
return node == NodeUnparenthesizedAssignment;
}
bool isUnparenthesizedUnaryExpression(Node node) {
return node == NodeUnparenthesizedUnary;
}
bool isReturnStatement(Node node) { return node == NodeReturn; }
bool isStatementPermittedAfterReturnStatement(Node pn) {
return pn == NodeFunctionStatement || isNonArrowFunctionExpression(pn) ||
pn == NodeVarDeclaration || pn == NodeBreak || pn == NodeThrow ||
pn == NodeEmptyStatement;
}
bool isSuperBase(Node pn) { return pn == NodeSuperBase; }
void setListHasNonConstInitializer(ListNodeType literal) {}
[[nodiscard]] Node parenthesize(Node node) {
// A number of nodes have different behavior upon parenthesization, but
// only in some circumstances. Convert these nodes to special
// parenthesized forms.
if (node == NodeUnparenthesizedArray) {
return NodeParenthesizedArray;
}
if (node == NodeUnparenthesizedObject) {
return NodeParenthesizedObject;
}
// Other nodes need not be recognizable after parenthesization; convert
// them to a generic node.
if (node == NodeUnparenthesizedString ||
node == NodeUnparenthesizedAssignment ||
node == NodeUnparenthesizedUnary) {
return NodeGeneric;
}
// Convert parenthesized |async| to a normal name node.
if (node == NodePotentialAsyncKeyword) {
return NodeName;
}
// In all other cases, the parenthesized form of |node| is equivalent
// to the unparenthesized form: return |node| unchanged.
return node;
}
template <typename NodeType>
[[nodiscard]] NodeType setLikelyIIFE(NodeType node) {
return node; // Remain in syntax-parse mode.
}
bool isName(Node node) {
return node == NodeName || node == NodeArgumentsName ||
node == NodeEvalName || node == NodePotentialAsyncKeyword;
}
bool isArgumentsName(Node node) { return node == NodeArgumentsName; }
bool isEvalName(Node node) { return node == NodeEvalName; }
bool isAsyncKeyword(Node node) { return node == NodePotentialAsyncKeyword; }
bool isPrivateName(Node node) { return node == NodePrivateName; }
bool isPrivateMemberAccess(Node node) {
return node == NodePrivateMemberAccess;
}
TaggedParserAtomIndex maybeDottedProperty(Node node) {
// Note: |super.apply(...)| is a special form that calls an "apply"
// method retrieved from one value, but using a *different* value as
// |this|. It's not really eligible for the funapply/funcall
// optimizations as they're currently implemented (assuming a single
// value is used for both retrieval and |this|).
if (node != NodeDottedProperty && node != NodeOptionalDottedProperty) {
return TaggedParserAtomIndex::null();
}
return lastAtom;
}
TaggedParserAtomIndex isStringExprStatement(Node pn, TokenPos* pos) {
if (pn == NodeStringExprStatement) {
*pos = lastStringPos;
return lastAtom;
}
return TaggedParserAtomIndex::null();
}
bool reuseLazyInnerFunctions() { return false; }
bool reuseClosedOverBindings() { return false; }
TaggedParserAtomIndex nextLazyClosedOverBinding() {
MOZ_CRASH(
"SyntaxParseHandler::canSkipLazyClosedOverBindings must return false");
}
void setPrivateNameKind(Node node, PrivateNameKind kind) {}
};
} // namespace frontend
} // namespace js
#endif /* frontend_SyntaxParseHandler_h */
|