summaryrefslogtreecommitdiffstats
path: root/js/src/irregexp/imported/regexp-compiler-tonode.cc
blob: 8dc7ed629a71eefd6de7bb9f7a4258679ef03b03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "irregexp/imported/regexp-compiler.h"

#include "irregexp/imported/regexp.h"

#ifdef V8_INTL_SUPPORT
#include "irregexp/imported/special-case.h"
#include "unicode/locid.h"
#include "unicode/uniset.h"
#include "unicode/utypes.h"
#endif  // V8_INTL_SUPPORT

namespace v8 {
namespace internal {

using namespace regexp_compiler_constants;  // NOLINT(build/namespaces)

constexpr base::uc32 kMaxCodePoint = 0x10ffff;
constexpr int kMaxUtf16CodeUnit = 0xffff;
constexpr uint32_t kMaxUtf16CodeUnitU = 0xffff;
constexpr int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;

// -------------------------------------------------------------------
// Tree to graph conversion

RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
                               RegExpNode* on_success) {
  ZoneList<TextElement>* elms =
      compiler->zone()->New<ZoneList<TextElement>>(1, compiler->zone());
  elms->Add(TextElement::Atom(this), compiler->zone());
  return compiler->zone()->New<TextNode>(elms, compiler->read_backward(),
                                         on_success);
}

RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
                               RegExpNode* on_success) {
  return compiler->zone()->New<TextNode>(elements(), compiler->read_backward(),
                                         on_success);
}

namespace {

bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
                          const int* special_class, int length) {
  length--;  // Remove final marker.

  DCHECK_EQ(kRangeEndMarker, special_class[length]);
  DCHECK_NE(0, ranges->length());
  DCHECK_NE(0, length);
  DCHECK_NE(0, special_class[0]);

  if (ranges->length() != (length >> 1) + 1) return false;

  CharacterRange range = ranges->at(0);
  if (range.from() != 0) return false;

  for (int i = 0; i < length; i += 2) {
    if (static_cast<base::uc32>(special_class[i]) != (range.to() + 1)) {
      return false;
    }
    range = ranges->at((i >> 1) + 1);
    if (static_cast<base::uc32>(special_class[i + 1]) != range.from()) {
      return false;
    }
  }

  return range.to() == kMaxCodePoint;
}

bool CompareRanges(ZoneList<CharacterRange>* ranges, const int* special_class,
                   int length) {
  length--;  // Remove final marker.

  DCHECK_EQ(kRangeEndMarker, special_class[length]);
  if (ranges->length() * 2 != length) return false;

  for (int i = 0; i < length; i += 2) {
    CharacterRange range = ranges->at(i >> 1);
    if (range.from() != static_cast<base::uc32>(special_class[i]) ||
        range.to() != static_cast<base::uc32>(special_class[i + 1] - 1)) {
      return false;
    }
  }
  return true;
}

}  // namespace

bool RegExpClassRanges::is_standard(Zone* zone) {
  // TODO(lrn): Remove need for this function, by not throwing away information
  // along the way.
  if (is_negated()) {
    return false;
  }
  if (set_.is_standard()) {
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kWhitespace);
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kNotWhitespace);
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kLineTerminatorRanges,
                           kLineTerminatorRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kNotLineTerminator);
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kLineTerminatorRanges,
                    kLineTerminatorRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kLineTerminator);
    return true;
  }
  if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kWord);
    return true;
  }
  if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    set_.set_standard_set_type(StandardCharacterSet::kNotWord);
    return true;
  }
  return false;
}

UnicodeRangeSplitter::UnicodeRangeSplitter(ZoneList<CharacterRange>* base) {
  // The unicode range splitter categorizes given character ranges into:
  // - Code points from the BMP representable by one code unit.
  // - Code points outside the BMP that need to be split into
  // surrogate pairs.
  // - Lone lead surrogates.
  // - Lone trail surrogates.
  // Lone surrogates are valid code points, even though no actual characters.
  // They require special matching to make sure we do not split surrogate pairs.

  for (int i = 0; i < base->length(); i++) AddRange(base->at(i));
}

void UnicodeRangeSplitter::AddRange(CharacterRange range) {
  static constexpr base::uc32 kBmp1Start = 0;
  static constexpr base::uc32 kBmp1End = kLeadSurrogateStart - 1;
  static constexpr base::uc32 kBmp2Start = kTrailSurrogateEnd + 1;
  static constexpr base::uc32 kBmp2End = kNonBmpStart - 1;

  // Ends are all inclusive.
  static_assert(kBmp1Start == 0);
  static_assert(kBmp1Start < kBmp1End);
  static_assert(kBmp1End + 1 == kLeadSurrogateStart);
  static_assert(kLeadSurrogateStart < kLeadSurrogateEnd);
  static_assert(kLeadSurrogateEnd + 1 == kTrailSurrogateStart);
  static_assert(kTrailSurrogateStart < kTrailSurrogateEnd);
  static_assert(kTrailSurrogateEnd + 1 == kBmp2Start);
  static_assert(kBmp2Start < kBmp2End);
  static_assert(kBmp2End + 1 == kNonBmpStart);
  static_assert(kNonBmpStart < kNonBmpEnd);

  static constexpr base::uc32 kStarts[] = {
      kBmp1Start, kLeadSurrogateStart, kTrailSurrogateStart,
      kBmp2Start, kNonBmpStart,
  };

  static constexpr base::uc32 kEnds[] = {
      kBmp1End, kLeadSurrogateEnd, kTrailSurrogateEnd, kBmp2End, kNonBmpEnd,
  };

  CharacterRangeVector* const kTargets[] = {
      &bmp_, &lead_surrogates_, &trail_surrogates_, &bmp_, &non_bmp_,
  };

  static constexpr int kCount = arraysize(kStarts);
  static_assert(kCount == arraysize(kEnds));
  static_assert(kCount == arraysize(kTargets));

  for (int i = 0; i < kCount; i++) {
    if (kStarts[i] > range.to()) break;
    const base::uc32 from = std::max(kStarts[i], range.from());
    const base::uc32 to = std::min(kEnds[i], range.to());
    if (from > to) continue;
    kTargets[i]->emplace_back(CharacterRange::Range(from, to));
  }
}

namespace {

// Translates between new and old V8-isms (SmallVector, ZoneList).
ZoneList<CharacterRange>* ToCanonicalZoneList(
    const UnicodeRangeSplitter::CharacterRangeVector* v, Zone* zone) {
  if (v->empty()) return nullptr;

  ZoneList<CharacterRange>* result =
      zone->New<ZoneList<CharacterRange>>(static_cast<int>(v->size()), zone);
  for (size_t i = 0; i < v->size(); i++) {
    result->Add(v->at(i), zone);
  }

  CharacterRange::Canonicalize(result);
  return result;
}

void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
                      RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
  ZoneList<CharacterRange>* bmp =
      ToCanonicalZoneList(splitter->bmp(), compiler->zone());
  if (bmp == nullptr) return;
  result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
      compiler->zone(), bmp, compiler->read_backward(), on_success)));
}

using UC16Range = uint32_t;  // {from, to} packed into one uint32_t.
constexpr UC16Range ToUC16Range(base::uc16 from, base::uc16 to) {
  return (static_cast<uint32_t>(from) << 16) | to;
}
constexpr base::uc16 ExtractFrom(UC16Range r) {
  return static_cast<base::uc16>(r >> 16);
}
constexpr base::uc16 ExtractTo(UC16Range r) {
  return static_cast<base::uc16>(r);
}

void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
                             RegExpNode* on_success,
                             UnicodeRangeSplitter* splitter) {
  DCHECK(!compiler->one_byte());
  Zone* const zone = compiler->zone();
  ZoneList<CharacterRange>* non_bmp =
      ToCanonicalZoneList(splitter->non_bmp(), zone);
  if (non_bmp == nullptr) return;

  // Translate each 32-bit code point range into the corresponding 16-bit code
  // unit representation consisting of the lead- and trail surrogate.
  //
  // The generated alternatives are grouped by the leading surrogate to avoid
  // emitting excessive code. For example, for
  //
  //  { \ud800[\udc00-\udc01]
  //  , \ud800[\udc05-\udc06]
  //  }
  //
  // there's no need to emit matching code for the leading surrogate \ud800
  // twice. We also create a dedicated grouping for full trailing ranges, i.e.
  // [dc00-dfff].
  ZoneUnorderedMap<UC16Range, ZoneList<CharacterRange>*> grouped_by_leading(
      zone);
  ZoneList<CharacterRange>* leading_with_full_trailing_range =
      zone->New<ZoneList<CharacterRange>>(1, zone);
  const auto AddRange = [&](base::uc16 from_l, base::uc16 to_l,
                            base::uc16 from_t, base::uc16 to_t) {
    const UC16Range leading_range = ToUC16Range(from_l, to_l);
    if (grouped_by_leading.count(leading_range) == 0) {
      if (from_t == kTrailSurrogateStart && to_t == kTrailSurrogateEnd) {
        leading_with_full_trailing_range->Add(
            CharacterRange::Range(from_l, to_l), zone);
        return;
      }
      grouped_by_leading[leading_range] =
          zone->New<ZoneList<CharacterRange>>(2, zone);
    }
    grouped_by_leading[leading_range]->Add(CharacterRange::Range(from_t, to_t),
                                           zone);
  };

  // First, create the grouped ranges.
  CharacterRange::Canonicalize(non_bmp);
  for (int i = 0; i < non_bmp->length(); i++) {
    // Match surrogate pair.
    // E.g. [\u10005-\u11005] becomes
    //      \ud800[\udc05-\udfff]|
    //      [\ud801-\ud803][\udc00-\udfff]|
    //      \ud804[\udc00-\udc05]
    base::uc32 from = non_bmp->at(i).from();
    base::uc32 to = non_bmp->at(i).to();
    base::uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
    base::uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
    base::uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
    base::uc16 to_t = unibrow::Utf16::TrailSurrogate(to);

    if (from_l == to_l) {
      // The lead surrogate is the same.
      AddRange(from_l, to_l, from_t, to_t);
      continue;
    }

    if (from_t != kTrailSurrogateStart) {
      // Add [from_l][from_t-\udfff].
      AddRange(from_l, from_l, from_t, kTrailSurrogateEnd);
      from_l++;
    }
    if (to_t != kTrailSurrogateEnd) {
      // Add [to_l][\udc00-to_t].
      AddRange(to_l, to_l, kTrailSurrogateStart, to_t);
      to_l--;
    }
    if (from_l <= to_l) {
      // Add [from_l-to_l][\udc00-\udfff].
      AddRange(from_l, to_l, kTrailSurrogateStart, kTrailSurrogateEnd);
    }
  }

  // Create the actual TextNode now that ranges are fully grouped.
  if (!leading_with_full_trailing_range->is_empty()) {
    CharacterRange::Canonicalize(leading_with_full_trailing_range);
    result->AddAlternative(GuardedAlternative(TextNode::CreateForSurrogatePair(
        zone, leading_with_full_trailing_range,
        CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
        compiler->read_backward(), on_success)));
  }
  for (const auto& it : grouped_by_leading) {
    CharacterRange leading_range =
        CharacterRange::Range(ExtractFrom(it.first), ExtractTo(it.first));
    ZoneList<CharacterRange>* trailing_ranges = it.second;
    CharacterRange::Canonicalize(trailing_ranges);
    result->AddAlternative(GuardedAlternative(TextNode::CreateForSurrogatePair(
        zone, leading_range, trailing_ranges, compiler->read_backward(),
        on_success)));
  }
}

RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
    RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
    ZoneList<CharacterRange>* match, RegExpNode* on_success,
    bool read_backward) {
  Zone* zone = compiler->zone();
  RegExpNode* match_node = TextNode::CreateForCharacterRanges(
      zone, match, read_backward, on_success);
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  RegExpLookaround::Builder lookaround(false, match_node, stack_register,
                                       position_register);
  RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
      zone, lookbehind, !read_backward, lookaround.on_match_success());
  return lookaround.ForMatch(negative_match);
}

RegExpNode* MatchAndNegativeLookaroundInReadDirection(
    RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
    ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
    bool read_backward) {
  Zone* zone = compiler->zone();
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  RegExpLookaround::Builder lookaround(false, on_success, stack_register,
                                       position_register);
  RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
      zone, lookahead, read_backward, lookaround.on_match_success());
  return TextNode::CreateForCharacterRanges(
      zone, match, read_backward, lookaround.ForMatch(negative_match));
}

void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
                           RegExpNode* on_success,
                           UnicodeRangeSplitter* splitter) {
  ZoneList<CharacterRange>* lead_surrogates =
      ToCanonicalZoneList(splitter->lead_surrogates(), compiler->zone());
  if (lead_surrogates == nullptr) return;
  Zone* zone = compiler->zone();
  // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
  ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
      zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));

  RegExpNode* match;
  if (compiler->read_backward()) {
    // Reading backward. Assert that reading forward, there is no trail
    // surrogate, and then backward match the lead surrogate.
    match = NegativeLookaroundAgainstReadDirectionAndMatch(
        compiler, trail_surrogates, lead_surrogates, on_success, true);
  } else {
    // Reading forward. Forward match the lead surrogate and assert that
    // no trail surrogate follows.
    match = MatchAndNegativeLookaroundInReadDirection(
        compiler, lead_surrogates, trail_surrogates, on_success, false);
  }
  result->AddAlternative(GuardedAlternative(match));
}

void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
                            RegExpNode* on_success,
                            UnicodeRangeSplitter* splitter) {
  ZoneList<CharacterRange>* trail_surrogates =
      ToCanonicalZoneList(splitter->trail_surrogates(), compiler->zone());
  if (trail_surrogates == nullptr) return;
  Zone* zone = compiler->zone();
  // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
  ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
      zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));

  RegExpNode* match;
  if (compiler->read_backward()) {
    // Reading backward. Backward match the trail surrogate and assert that no
    // lead surrogate precedes it.
    match = MatchAndNegativeLookaroundInReadDirection(
        compiler, trail_surrogates, lead_surrogates, on_success, true);
  } else {
    // Reading forward. Assert that reading backward, there is no lead
    // surrogate, and then forward match the trail surrogate.
    match = NegativeLookaroundAgainstReadDirectionAndMatch(
        compiler, lead_surrogates, trail_surrogates, on_success, false);
  }
  result->AddAlternative(GuardedAlternative(match));
}

RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
                              RegExpNode* on_success) {
  // This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
  DCHECK(!compiler->read_backward());
  Zone* zone = compiler->zone();
  // Advance any character. If the character happens to be a lead surrogate and
  // we advanced into the middle of a surrogate pair, it will work out, as
  // nothing will match from there. We will have to advance again, consuming
  // the associated trail surrogate.
  ZoneList<CharacterRange>* range =
      CharacterRange::List(zone, CharacterRange::Range(0, kMaxUtf16CodeUnit));
  return TextNode::CreateForCharacterRanges(zone, range, false, on_success);
}

}  // namespace

#ifdef V8_INTL_SUPPORT
// static
void CharacterRange::UnicodeSimpleCloseOver(icu::UnicodeSet& set) {
  // Remove characters for which closeOver() adds full-case-folding equivalents
  // because we should work only with simple case folding mappings.
  icu::UnicodeSet non_simple = icu::UnicodeSet(set);
  non_simple.retainAll(RegExpCaseFolding::UnicodeNonSimpleCloseOverSet());
  set.removeAll(non_simple);

  set.closeOver(USET_CASE_INSENSITIVE);
  // Full case folding maps single characters to multiple characters.
  // Those are represented as strings in the set. Remove them so that
  // we end up with only simple and common case mappings.
  set.removeAllStrings();

  // Add characters that have non-simple case foldings again (they match
  // themselves).
  set.addAll(non_simple);
}
#endif  // V8_INTL_SUPPORT

// static
void CharacterRange::AddUnicodeCaseEquivalents(ZoneList<CharacterRange>* ranges,
                                               Zone* zone) {
#ifdef V8_INTL_SUPPORT
  DCHECK(IsCanonical(ranges));

  // Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver.
  // See also https://crbug.com/v8/6727.
  // TODO(jgruber): This only covers the special case of the {0,0x10FFFF} range,
  // which we use frequently internally. But large ranges can also easily be
  // created by the user. We might want to have a more general caching mechanism
  // for such ranges.
  if (ranges->length() == 1 && ranges->at(0).IsEverything(kNonBmpEnd)) return;

  // Use ICU to compute the case fold closure over the ranges.
  icu::UnicodeSet set;
  for (int i = 0; i < ranges->length(); i++) {
    set.add(ranges->at(i).from(), ranges->at(i).to());
  }
  // Clear the ranges list without freeing the backing store.
  ranges->Rewind(0);

  UnicodeSimpleCloseOver(set);
  for (int i = 0; i < set.getRangeCount(); i++) {
    ranges->Add(Range(set.getRangeStart(i), set.getRangeEnd(i)), zone);
  }
  // No errors and everything we collected have been ranges.
  Canonicalize(ranges);
#endif  // V8_INTL_SUPPORT
}

RegExpNode* RegExpClassRanges::ToNode(RegExpCompiler* compiler,
                                      RegExpNode* on_success) {
  set_.Canonicalize();
  Zone* const zone = compiler->zone();
  ZoneList<CharacterRange>* ranges = this->ranges(zone);

  if (NeedsUnicodeCaseEquivalents(compiler->flags())) {
    CharacterRange::AddUnicodeCaseEquivalents(ranges, zone);
  }

  if (!IsEitherUnicode(compiler->flags()) || compiler->one_byte() ||
      contains_split_surrogate()) {
    return zone->New<TextNode>(this, compiler->read_backward(), on_success);
  }

  if (is_negated()) {
    // With /v, character classes are never negated.
    // TODO(v8:11935): Change permalink once proposal is in stage 4.
    // https://arai-a.github.io/ecma262-compare/snapshot.html?pr=2418#sec-compileatom
    // Atom :: CharacterClass
    //   4. Assert: cc.[[Invert]] is false.
    // Instead the complement is created when evaluating the class set.
    // The only exception is the "nothing range" (negated everything), which is
    // internally created for an empty set.
    DCHECK_IMPLIES(
        IsUnicodeSets(compiler->flags()),
        ranges->length() == 1 && ranges->first().IsEverything(kMaxCodePoint));
    ZoneList<CharacterRange>* negated =
        zone->New<ZoneList<CharacterRange>>(2, zone);
    CharacterRange::Negate(ranges, negated, zone);
    ranges = negated;
  }

  if (ranges->length() == 0) {
    // The empty character class is used as a 'fail' node.
    RegExpClassRanges* fail = zone->New<RegExpClassRanges>(zone, ranges);
    return zone->New<TextNode>(fail, compiler->read_backward(), on_success);
  }

  if (set_.is_standard() &&
      standard_type() == StandardCharacterSet::kEverything) {
    return UnanchoredAdvance(compiler, on_success);
  }

  // Split ranges in order to handle surrogates correctly:
  // - Surrogate pairs: translate the 32-bit code point into two uc16 code
  //   units (irregexp operates only on code units).
  // - Lone surrogates: these require lookarounds to ensure we don't match in
  //   the middle of a surrogate pair.
  ChoiceNode* result = zone->New<ChoiceNode>(2, zone);
  UnicodeRangeSplitter splitter(ranges);
  AddBmpCharacters(compiler, result, on_success, &splitter);
  AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
  AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
  AddLoneTrailSurrogates(compiler, result, on_success, &splitter);

  static constexpr int kMaxRangesToInline = 32;  // Arbitrary.
  if (ranges->length() > kMaxRangesToInline) result->SetDoNotInline();

  return result;
}

RegExpNode* RegExpClassSetOperand::ToNode(RegExpCompiler* compiler,
                                          RegExpNode* on_success) {
  Zone* zone = compiler->zone();
  const int size = (has_strings() ? static_cast<int>(strings()->size()) : 0) +
                   (ranges()->is_empty() ? 0 : 1);
  if (size == 0) {
    // If neither ranges nor strings are present, the operand is equal to an
    // empty range (matching nothing).
    ZoneList<CharacterRange>* empty =
        zone->template New<ZoneList<CharacterRange>>(0, zone);
    return zone->template New<RegExpClassRanges>(zone, empty)
        ->ToNode(compiler, on_success);
  }
  ZoneList<RegExpTree*>* alternatives =
      zone->template New<ZoneList<RegExpTree*>>(size, zone);
  // Strings are sorted by length first (larger strings before shorter ones).
  // See the comment on CharacterClassStrings.
  // Empty strings (if present) are added after character ranges.
  RegExpTree* empty_string = nullptr;
  if (has_strings()) {
    for (auto string : *strings()) {
      if (string.second->IsEmpty()) {
        empty_string = string.second;
      } else {
        alternatives->Add(string.second, zone);
      }
    }
  }
  if (!ranges()->is_empty()) {
    alternatives->Add(zone->template New<RegExpClassRanges>(zone, ranges()),
                      zone);
  }
  if (empty_string != nullptr) {
    alternatives->Add(empty_string, zone);
  }

  RegExpTree* node = nullptr;
  if (size == 1) {
    DCHECK_EQ(alternatives->length(), 1);
    node = alternatives->first();
  } else {
    node = zone->template New<RegExpDisjunction>(alternatives);
  }
  return node->ToNode(compiler, on_success);
}

RegExpNode* RegExpClassSetExpression::ToNode(RegExpCompiler* compiler,
                                             RegExpNode* on_success) {
  Zone* zone = compiler->zone();
  ZoneList<CharacterRange>* temp_ranges =
      zone->template New<ZoneList<CharacterRange>>(4, zone);
  RegExpClassSetOperand* root = ComputeExpression(this, temp_ranges, zone);
  return root->ToNode(compiler, on_success);
}

void RegExpClassSetOperand::Union(RegExpClassSetOperand* other, Zone* zone) {
  ranges()->AddAll(*other->ranges(), zone);
  if (other->has_strings()) {
    if (strings_ == nullptr) {
      strings_ = zone->template New<CharacterClassStrings>(zone);
    }
    strings()->insert(other->strings()->begin(), other->strings()->end());
  }
}

void RegExpClassSetOperand::Intersect(RegExpClassSetOperand* other,
                                      ZoneList<CharacterRange>* temp_ranges,
                                      Zone* zone) {
  CharacterRange::Intersect(ranges(), other->ranges(), temp_ranges, zone);
  std::swap(*ranges(), *temp_ranges);
  temp_ranges->Rewind(0);
  if (has_strings()) {
    if (!other->has_strings()) {
      strings()->clear();
    } else {
      for (auto iter = strings()->begin(); iter != strings()->end();) {
        if (other->strings()->find(iter->first) == other->strings()->end()) {
          iter = strings()->erase(iter);
        } else {
          iter++;
        }
      }
    }
  }
}

void RegExpClassSetOperand::Subtract(RegExpClassSetOperand* other,
                                     ZoneList<CharacterRange>* temp_ranges,
                                     Zone* zone) {
  CharacterRange::Subtract(ranges(), other->ranges(), temp_ranges, zone);
  std::swap(*ranges(), *temp_ranges);
  temp_ranges->Rewind(0);
  if (has_strings() && other->has_strings()) {
    for (auto iter = strings()->begin(); iter != strings()->end();) {
      if (other->strings()->find(iter->first) != other->strings()->end()) {
        iter = strings()->erase(iter);
      } else {
        iter++;
      }
    }
  }
}

// static
RegExpClassSetOperand* RegExpClassSetExpression::ComputeExpression(
    RegExpTree* root, ZoneList<CharacterRange>* temp_ranges, Zone* zone) {
  DCHECK(temp_ranges->is_empty());
  if (root->IsClassSetOperand()) {
    return root->AsClassSetOperand();
  }
  DCHECK(root->IsClassSetExpression());
  RegExpClassSetExpression* node = root->AsClassSetExpression();
  RegExpClassSetOperand* result =
      ComputeExpression(node->operands()->at(0), temp_ranges, zone);
  switch (node->operation()) {
    case OperationType::kUnion: {
      for (int i = 1; i < node->operands()->length(); i++) {
        RegExpClassSetOperand* op =
            ComputeExpression(node->operands()->at(i), temp_ranges, zone);
        result->Union(op, zone);
      }
      CharacterRange::Canonicalize(result->ranges());
      break;
    }
    case OperationType::kIntersection: {
      for (int i = 1; i < node->operands()->length(); i++) {
        RegExpClassSetOperand* op =
            ComputeExpression(node->operands()->at(i), temp_ranges, zone);
        result->Intersect(op, temp_ranges, zone);
      }
      break;
    }
    case OperationType::kSubtraction: {
      for (int i = 1; i < node->operands()->length(); i++) {
        RegExpClassSetOperand* op =
            ComputeExpression(node->operands()->at(i), temp_ranges, zone);
        result->Subtract(op, temp_ranges, zone);
      }
      break;
    }
  }
  if (node->is_negated()) {
    DCHECK(!result->has_strings());
    CharacterRange::Negate(result->ranges(), temp_ranges, zone);
    std::swap(*result->ranges(), *temp_ranges);
    temp_ranges->Rewind(0);
  }
  // Store the result as single operand of the current node.
  node->operands()->Set(0, result);
  node->operands()->Rewind(1);

  return result;
}

namespace {

int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  base::uc16 character1 = atom1->data().at(0);
  base::uc16 character2 = atom2->data().at(0);
  if (character1 < character2) return -1;
  if (character1 > character2) return 1;
  return 0;
}

#ifdef V8_INTL_SUPPORT

int CompareCaseInsensitive(const icu::UnicodeString& a,
                           const icu::UnicodeString& b) {
  return a.caseCompare(b, U_FOLD_CASE_DEFAULT);
}

int CompareFirstCharCaseInsensitive(RegExpTree* const* a,
                                    RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  return CompareCaseInsensitive(icu::UnicodeString{atom1->data().at(0)},
                                icu::UnicodeString{atom2->data().at(0)});
}

bool Equals(bool ignore_case, const icu::UnicodeString& a,
            const icu::UnicodeString& b) {
  if (a == b) return true;
  if (ignore_case) return CompareCaseInsensitive(a, b) == 0;
  return false;  // Case-sensitive equality already checked above.
}

bool CharAtEquals(bool ignore_case, int index, const RegExpAtom* a,
                  const RegExpAtom* b) {
  return Equals(ignore_case, a->data().at(index), b->data().at(index));
}

#else

unibrow::uchar Canonical(
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    unibrow::uchar c) {
  unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
  int length = canonicalize->get(c, '\0', chars);
  DCHECK_LE(length, 1);
  unibrow::uchar canonical = c;
  if (length == 1) canonical = chars[0];
  return canonical;
}

int CompareCaseInsensitive(
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    unibrow::uchar a, unibrow::uchar b) {
  if (a == b) return 0;
  if (a >= 'a' || b >= 'a') {
    a = Canonical(canonicalize, a);
    b = Canonical(canonicalize, b);
  }
  return static_cast<int>(a) - static_cast<int>(b);
}

int CompareFirstCharCaseInsensitive(
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    RegExpTree* const* a, RegExpTree* const* b) {
  RegExpAtom* atom1 = (*a)->AsAtom();
  RegExpAtom* atom2 = (*b)->AsAtom();
  return CompareCaseInsensitive(canonicalize, atom1->data().at(0),
                                atom2->data().at(0));
}

bool Equals(bool ignore_case,
            unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
            unibrow::uchar a, unibrow::uchar b) {
  if (a == b) return true;
  if (ignore_case) {
    return CompareCaseInsensitive(canonicalize, a, b) == 0;
  }
  return false;  // Case-sensitive equality already checked above.
}

bool CharAtEquals(bool ignore_case,
                  unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
                  int index, const RegExpAtom* a, const RegExpAtom* b) {
  return Equals(ignore_case, canonicalize, a->data().at(index),
                b->data().at(index));
}

#endif  // V8_INTL_SUPPORT

}  // namespace

// We can stable sort runs of atoms, since the order does not matter if they
// start with different characters.
// Returns true if any consecutive atoms were found.
bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();
  bool found_consecutive_atoms = false;
  for (int i = 0; i < length; i++) {
    while (i < length) {
      RegExpTree* alternative = alternatives->at(i);
      if (alternative->IsAtom()) break;
      i++;
    }
    // i is length or it is the index of an atom.
    if (i == length) break;
    int first_atom = i;
    i++;
    while (i < length) {
      RegExpTree* alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      i++;
    }
    // Sort atoms to get ones with common prefixes together.
    // This step is more tricky if we are in a case-independent regexp,
    // because it would change /is|I/ to /I|is/, and order matters when
    // the regexp parts don't match only disjoint starting points. To fix
    // this we have a version of CompareFirstChar that uses case-
    // independent character classes for comparison.
    DCHECK_LT(first_atom, alternatives->length());
    DCHECK_LE(i, alternatives->length());
    DCHECK_LE(first_atom, i);
    if (IsIgnoreCase(compiler->flags())) {
#ifdef V8_INTL_SUPPORT
      alternatives->StableSort(CompareFirstCharCaseInsensitive, first_atom,
                               i - first_atom);
#else
      unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
          compiler->isolate()->regexp_macro_assembler_canonicalize();
      auto compare_closure = [canonicalize](RegExpTree* const* a,
                                            RegExpTree* const* b) {
        return CompareFirstCharCaseInsensitive(canonicalize, a, b);
      };
      alternatives->StableSort(compare_closure, first_atom, i - first_atom);
#endif  // V8_INTL_SUPPORT
    } else {
      alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
    }
    if (i - first_atom > 1) found_consecutive_atoms = true;
  }
  return found_consecutive_atoms;
}

// Optimizes ab|ac|az to a(?:b|c|d).
void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
  Zone* zone = compiler->zone();
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();
  const bool ignore_case = IsIgnoreCase(compiler->flags());

  int write_posn = 0;
  int i = 0;
  while (i < length) {
    RegExpTree* alternative = alternatives->at(i);
    if (!alternative->IsAtom()) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    RegExpAtom* const atom = alternative->AsAtom();
#ifdef V8_INTL_SUPPORT
    icu::UnicodeString common_prefix(atom->data().at(0));
#else
    unibrow::Mapping<unibrow::Ecma262Canonicalize>* const canonicalize =
        compiler->isolate()->regexp_macro_assembler_canonicalize();
    unibrow::uchar common_prefix = atom->data().at(0);
    if (ignore_case) {
      common_prefix = Canonical(canonicalize, common_prefix);
    }
#endif  // V8_INTL_SUPPORT
    int first_with_prefix = i;
    int prefix_length = atom->length();
    i++;
    while (i < length) {
      alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      RegExpAtom* const alt_atom = alternative->AsAtom();
#ifdef V8_INTL_SUPPORT
      icu::UnicodeString new_prefix(alt_atom->data().at(0));
      if (!Equals(ignore_case, new_prefix, common_prefix)) break;
#else
      unibrow::uchar new_prefix = alt_atom->data().at(0);
      if (!Equals(ignore_case, canonicalize, new_prefix, common_prefix)) break;
#endif  // V8_INTL_SUPPORT
      prefix_length = std::min(prefix_length, alt_atom->length());
      i++;
    }
    if (i > first_with_prefix + 2) {
      // Found worthwhile run of alternatives with common prefix of at least one
      // character.  The sorting function above did not sort on more than one
      // character for reasons of correctness, but there may still be a longer
      // common prefix if the terms were similar or presorted in the input.
      // Find out how long the common prefix is.
      int run_length = i - first_with_prefix;
      RegExpAtom* const alt_atom =
          alternatives->at(first_with_prefix)->AsAtom();
      for (int j = 1; j < run_length && prefix_length > 1; j++) {
        RegExpAtom* old_atom =
            alternatives->at(j + first_with_prefix)->AsAtom();
        for (int k = 1; k < prefix_length; k++) {
#ifdef V8_INTL_SUPPORT
          if (!CharAtEquals(ignore_case, k, alt_atom, old_atom)) {
#else
          if (!CharAtEquals(ignore_case, canonicalize, k, alt_atom, old_atom)) {
#endif  // V8_INTL_SUPPORT
            prefix_length = k;
            break;
          }
        }
      }
      RegExpAtom* prefix =
          zone->New<RegExpAtom>(alt_atom->data().SubVector(0, prefix_length));
      ZoneList<RegExpTree*>* pair = zone->New<ZoneList<RegExpTree*>>(2, zone);
      pair->Add(prefix, zone);
      ZoneList<RegExpTree*>* suffixes =
          zone->New<ZoneList<RegExpTree*>>(run_length, zone);
      for (int j = 0; j < run_length; j++) {
        RegExpAtom* old_atom =
            alternatives->at(j + first_with_prefix)->AsAtom();
        int len = old_atom->length();
        if (len == prefix_length) {
          suffixes->Add(zone->New<RegExpEmpty>(), zone);
        } else {
          RegExpTree* suffix = zone->New<RegExpAtom>(
              old_atom->data().SubVector(prefix_length, old_atom->length()));
          suffixes->Add(suffix, zone);
        }
      }
      pair->Add(zone->New<RegExpDisjunction>(suffixes), zone);
      alternatives->at(write_posn++) = zone->New<RegExpAlternative>(pair);
    } else {
      // Just copy any non-worthwhile alternatives.
      for (int j = first_with_prefix; j < i; j++) {
        alternatives->at(write_posn++) = alternatives->at(j);
      }
    }
  }
  alternatives->Rewind(write_posn);  // Trim end of array.
}

// Optimizes b|c|z to [bcz].
void RegExpDisjunction::FixSingleCharacterDisjunctions(
    RegExpCompiler* compiler) {
  Zone* zone = compiler->zone();
  ZoneList<RegExpTree*>* alternatives = this->alternatives();
  int length = alternatives->length();

  int write_posn = 0;
  int i = 0;
  while (i < length) {
    RegExpTree* alternative = alternatives->at(i);
    if (!alternative->IsAtom()) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    RegExpAtom* const atom = alternative->AsAtom();
    if (atom->length() != 1) {
      alternatives->at(write_posn++) = alternatives->at(i);
      i++;
      continue;
    }
    const RegExpFlags flags = compiler->flags();
    DCHECK_IMPLIES(IsEitherUnicode(flags),
                   !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
    bool contains_trail_surrogate =
        unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
    int first_in_run = i;
    i++;
    // Find a run of single-character atom alternatives that have identical
    // flags (case independence and unicode-ness).
    while (i < length) {
      alternative = alternatives->at(i);
      if (!alternative->IsAtom()) break;
      RegExpAtom* const alt_atom = alternative->AsAtom();
      if (alt_atom->length() != 1) break;
      DCHECK_IMPLIES(IsEitherUnicode(flags),
                     !unibrow::Utf16::IsLeadSurrogate(alt_atom->data().at(0)));
      contains_trail_surrogate |=
          unibrow::Utf16::IsTrailSurrogate(alt_atom->data().at(0));
      i++;
    }
    if (i > first_in_run + 1) {
      // Found non-trivial run of single-character alternatives.
      int run_length = i - first_in_run;
      ZoneList<CharacterRange>* ranges =
          zone->New<ZoneList<CharacterRange>>(2, zone);
      for (int j = 0; j < run_length; j++) {
        RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
        DCHECK_EQ(old_atom->length(), 1);
        ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
      }
      RegExpClassRanges::ClassRangesFlags class_ranges_flags;
      if (IsEitherUnicode(flags) && contains_trail_surrogate) {
        class_ranges_flags = RegExpClassRanges::CONTAINS_SPLIT_SURROGATE;
      }
      alternatives->at(write_posn++) =
          zone->New<RegExpClassRanges>(zone, ranges, class_ranges_flags);
    } else {
      // Just copy any trivial alternatives.
      for (int j = first_in_run; j < i; j++) {
        alternatives->at(write_posn++) = alternatives->at(j);
      }
    }
  }
  alternatives->Rewind(write_posn);  // Trim end of array.
}

RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
                                      RegExpNode* on_success) {
  compiler->ToNodeMaybeCheckForStackOverflow();

  ZoneList<RegExpTree*>* alternatives = this->alternatives();

  if (alternatives->length() > 2) {
    bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
    if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
    FixSingleCharacterDisjunctions(compiler);
    if (alternatives->length() == 1) {
      return alternatives->at(0)->ToNode(compiler, on_success);
    }
  }

  int length = alternatives->length();

  ChoiceNode* result =
      compiler->zone()->New<ChoiceNode>(length, compiler->zone());
  for (int i = 0; i < length; i++) {
    GuardedAlternative alternative(
        alternatives->at(i)->ToNode(compiler, on_success));
    result->AddAlternative(alternative);
  }
  return result;
}

RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
                                     RegExpNode* on_success) {
  return ToNode(min(), max(), is_greedy(), body(), compiler, on_success);
}

namespace {
// Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and
//         \B to (?<=\w)(?=\w)|(?<=\W)(?=\W)
RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler,
                                          RegExpNode* on_success,
                                          RegExpAssertion::Type type,
                                          RegExpFlags flags) {
  CHECK(NeedsUnicodeCaseEquivalents(flags));
  Zone* zone = compiler->zone();
  ZoneList<CharacterRange>* word_range =
      zone->New<ZoneList<CharacterRange>>(2, zone);
  CharacterRange::AddClassEscape(StandardCharacterSet::kWord, word_range, true,
                                 zone);
  int stack_register = compiler->UnicodeLookaroundStackRegister();
  int position_register = compiler->UnicodeLookaroundPositionRegister();
  ChoiceNode* result = zone->New<ChoiceNode>(2, zone);
  // Add two choices. The (non-)boundary could start with a word or
  // a non-word-character.
  for (int i = 0; i < 2; i++) {
    bool lookbehind_for_word = i == 0;
    bool lookahead_for_word =
        (type == RegExpAssertion::Type::BOUNDARY) ^ lookbehind_for_word;
    // Look to the left.
    RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success,
                                         stack_register, position_register);
    RegExpNode* backward = TextNode::CreateForCharacterRanges(
        zone, word_range, true, lookbehind.on_match_success());
    // Look to the right.
    RegExpLookaround::Builder lookahead(lookahead_for_word,
                                        lookbehind.ForMatch(backward),
                                        stack_register, position_register);
    RegExpNode* forward = TextNode::CreateForCharacterRanges(
        zone, word_range, false, lookahead.on_match_success());
    result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward)));
  }
  return result;
}
}  // anonymous namespace

RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
                                    RegExpNode* on_success) {
  NodeInfo info;
  Zone* zone = compiler->zone();

  switch (assertion_type()) {
    case Type::START_OF_LINE:
      return AssertionNode::AfterNewline(on_success);
    case Type::START_OF_INPUT:
      return AssertionNode::AtStart(on_success);
    case Type::BOUNDARY:
      return NeedsUnicodeCaseEquivalents(compiler->flags())
                 ? BoundaryAssertionAsLookaround(
                       compiler, on_success, Type::BOUNDARY, compiler->flags())
                 : AssertionNode::AtBoundary(on_success);
    case Type::NON_BOUNDARY:
      return NeedsUnicodeCaseEquivalents(compiler->flags())
                 ? BoundaryAssertionAsLookaround(compiler, on_success,
                                                 Type::NON_BOUNDARY,
                                                 compiler->flags())
                 : AssertionNode::AtNonBoundary(on_success);
    case Type::END_OF_INPUT:
      return AssertionNode::AtEnd(on_success);
    case Type::END_OF_LINE: {
      // Compile $ in multiline regexps as an alternation with a positive
      // lookahead in one side and an end-of-input on the other side.
      // We need two registers for the lookahead.
      int stack_pointer_register = compiler->AllocateRegister();
      int position_register = compiler->AllocateRegister();
      // The ChoiceNode to distinguish between a newline and end-of-input.
      ChoiceNode* result = zone->New<ChoiceNode>(2, zone);
      // Create a newline atom.
      ZoneList<CharacterRange>* newline_ranges =
          zone->New<ZoneList<CharacterRange>>(3, zone);
      CharacterRange::AddClassEscape(StandardCharacterSet::kLineTerminator,
                                     newline_ranges, false, zone);
      RegExpClassRanges* newline_atom =
          zone->New<RegExpClassRanges>(StandardCharacterSet::kLineTerminator);
      TextNode* newline_matcher =
          zone->New<TextNode>(newline_atom, false,
                              ActionNode::PositiveSubmatchSuccess(
                                  stack_pointer_register, position_register,
                                  0,   // No captures inside.
                                  -1,  // Ignored if no captures.
                                  on_success));
      // Create an end-of-input matcher.
      RegExpNode* end_of_line = ActionNode::BeginPositiveSubmatch(
          stack_pointer_register, position_register, newline_matcher);
      // Add the two alternatives to the ChoiceNode.
      GuardedAlternative eol_alternative(end_of_line);
      result->AddAlternative(eol_alternative);
      GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
      result->AddAlternative(end_alternative);
      return result;
    }
    default:
      UNREACHABLE();
  }
}

RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
                                        RegExpNode* on_success) {
  return compiler->zone()->New<BackReferenceNode>(
      RegExpCapture::StartRegister(index()),
      RegExpCapture::EndRegister(index()), flags_, compiler->read_backward(),
      on_success);
}

RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
                                RegExpNode* on_success) {
  return on_success;
}

RegExpNode* RegExpGroup::ToNode(RegExpCompiler* compiler,
                                RegExpNode* on_success) {
  return body_->ToNode(compiler, on_success);
}

RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
                                   int stack_pointer_register,
                                   int position_register,
                                   int capture_register_count,
                                   int capture_register_start)
    : is_positive_(is_positive),
      on_success_(on_success),
      stack_pointer_register_(stack_pointer_register),
      position_register_(position_register) {
  if (is_positive_) {
    on_match_success_ = ActionNode::PositiveSubmatchSuccess(
        stack_pointer_register, position_register, capture_register_count,
        capture_register_start, on_success_);
  } else {
    Zone* zone = on_success_->zone();
    on_match_success_ = zone->New<NegativeSubmatchSuccess>(
        stack_pointer_register, position_register, capture_register_count,
        capture_register_start, zone);
  }
}

RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
  if (is_positive_) {
    return ActionNode::BeginPositiveSubmatch(stack_pointer_register_,
                                             position_register_, match);
  } else {
    Zone* zone = on_success_->zone();
    // We use a ChoiceNode to represent the negative lookaround. The first
    // alternative is the negative match. On success, the end node backtracks.
    // On failure, the second alternative is tried and leads to success.
    // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
    // first exit when calculating quick checks.
    ChoiceNode* choice_node = zone->New<NegativeLookaroundChoiceNode>(
        GuardedAlternative(match), GuardedAlternative(on_success_), zone);
    return ActionNode::BeginNegativeSubmatch(stack_pointer_register_,
                                             position_register_, choice_node);
  }
}

RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
                                     RegExpNode* on_success) {
  int stack_pointer_register = compiler->AllocateRegister();
  int position_register = compiler->AllocateRegister();

  const int registers_per_capture = 2;
  const int register_of_first_capture = 2;
  int register_count = capture_count_ * registers_per_capture;
  int register_start =
      register_of_first_capture + capture_from_ * registers_per_capture;

  RegExpNode* result;
  bool was_reading_backward = compiler->read_backward();
  compiler->set_read_backward(type() == LOOKBEHIND);
  Builder builder(is_positive(), on_success, stack_pointer_register,
                  position_register, register_count, register_start);
  RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
  result = builder.ForMatch(match);
  compiler->set_read_backward(was_reading_backward);
  return result;
}

RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
                                  RegExpNode* on_success) {
  return ToNode(body(), index(), compiler, on_success);
}

RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index,
                                  RegExpCompiler* compiler,
                                  RegExpNode* on_success) {
  DCHECK_NOT_NULL(body);
  int start_reg = RegExpCapture::StartRegister(index);
  int end_reg = RegExpCapture::EndRegister(index);
  if (compiler->read_backward()) std::swap(start_reg, end_reg);
  RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
  RegExpNode* body_node = body->ToNode(compiler, store_end);
  return ActionNode::StorePosition(start_reg, true, body_node);
}

namespace {

class AssertionSequenceRewriter final {
 public:
  // TODO(jgruber): Consider moving this to a separate AST tree rewriter pass
  // instead of sprinkling rewrites into the AST->Node conversion process.
  static void MaybeRewrite(ZoneList<RegExpTree*>* terms, Zone* zone) {
    AssertionSequenceRewriter rewriter(terms, zone);

    static constexpr int kNoIndex = -1;
    int from = kNoIndex;

    for (int i = 0; i < terms->length(); i++) {
      RegExpTree* t = terms->at(i);
      if (from == kNoIndex && t->IsAssertion()) {
        from = i;  // Start a sequence.
      } else if (from != kNoIndex && !t->IsAssertion()) {
        // Terminate and process the sequence.
        if (i - from > 1) rewriter.Rewrite(from, i);
        from = kNoIndex;
      }
    }

    if (from != kNoIndex && terms->length() - from > 1) {
      rewriter.Rewrite(from, terms->length());
    }
  }

  // All assertions are zero width. A consecutive sequence of assertions is
  // order-independent. There's two ways we can optimize here:
  // 1. fold all identical assertions.
  // 2. if any assertion combinations are known to fail (e.g. \b\B), the entire
  //    sequence fails.
  void Rewrite(int from, int to) {
    DCHECK_GT(to, from + 1);

    // Bitfield of all seen assertions.
    uint32_t seen_assertions = 0;
    static_assert(static_cast<int>(RegExpAssertion::Type::LAST_ASSERTION_TYPE) <
                  kUInt32Size * kBitsPerByte);

    for (int i = from; i < to; i++) {
      RegExpAssertion* t = terms_->at(i)->AsAssertion();
      const uint32_t bit = 1 << static_cast<int>(t->assertion_type());

      if (seen_assertions & bit) {
        // Fold duplicates.
        terms_->Set(i, zone_->New<RegExpEmpty>());
      }

      seen_assertions |= bit;
    }

    // Collapse failures.
    const uint32_t always_fails_mask =
        1 << static_cast<int>(RegExpAssertion::Type::BOUNDARY) |
        1 << static_cast<int>(RegExpAssertion::Type::NON_BOUNDARY);
    if ((seen_assertions & always_fails_mask) == always_fails_mask) {
      ReplaceSequenceWithFailure(from, to);
    }
  }

  void ReplaceSequenceWithFailure(int from, int to) {
    // Replace the entire sequence with a single node that always fails.
    // TODO(jgruber): Consider adding an explicit Fail kind. Until then, the
    // negated '*' (everything) range serves the purpose.
    ZoneList<CharacterRange>* ranges =
        zone_->New<ZoneList<CharacterRange>>(0, zone_);
    RegExpClassRanges* cc = zone_->New<RegExpClassRanges>(zone_, ranges);
    terms_->Set(from, cc);

    // Zero out the rest.
    RegExpEmpty* empty = zone_->New<RegExpEmpty>();
    for (int i = from + 1; i < to; i++) terms_->Set(i, empty);
  }

 private:
  AssertionSequenceRewriter(ZoneList<RegExpTree*>* terms, Zone* zone)
      : zone_(zone), terms_(terms) {}

  Zone* zone_;
  ZoneList<RegExpTree*>* terms_;
};

}  // namespace

RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
                                      RegExpNode* on_success) {
  compiler->ToNodeMaybeCheckForStackOverflow();

  ZoneList<RegExpTree*>* children = nodes();

  AssertionSequenceRewriter::MaybeRewrite(children, compiler->zone());

  RegExpNode* current = on_success;
  if (compiler->read_backward()) {
    for (int i = 0; i < children->length(); i++) {
      current = children->at(i)->ToNode(compiler, current);
    }
  } else {
    for (int i = children->length() - 1; i >= 0; i--) {
      current = children->at(i)->ToNode(compiler, current);
    }
  }
  return current;
}

namespace {

void AddClass(const int* elmv, int elmc, ZoneList<CharacterRange>* ranges,
              Zone* zone) {
  elmc--;
  DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
  for (int i = 0; i < elmc; i += 2) {
    DCHECK(elmv[i] < elmv[i + 1]);
    ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
  }
}

void AddClassNegated(const int* elmv, int elmc,
                     ZoneList<CharacterRange>* ranges, Zone* zone) {
  elmc--;
  DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
  DCHECK_NE(0x0000, elmv[0]);
  DCHECK_NE(kMaxCodePoint, elmv[elmc - 1]);
  base::uc16 last = 0x0000;
  for (int i = 0; i < elmc; i += 2) {
    DCHECK(last <= elmv[i] - 1);
    DCHECK(elmv[i] < elmv[i + 1]);
    ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
    last = elmv[i + 1];
  }
  ranges->Add(CharacterRange::Range(last, kMaxCodePoint), zone);
}

}  // namespace

void CharacterRange::AddClassEscape(StandardCharacterSet standard_character_set,
                                    ZoneList<CharacterRange>* ranges,
                                    bool add_unicode_case_equivalents,
                                    Zone* zone) {
  if (add_unicode_case_equivalents &&
      (standard_character_set == StandardCharacterSet::kWord ||
       standard_character_set == StandardCharacterSet::kNotWord)) {
    // See #sec-runtime-semantics-wordcharacters-abstract-operation
    // In case of unicode and ignore_case, we need to create the closure over
    // case equivalent characters before negating.
    ZoneList<CharacterRange>* new_ranges =
        zone->New<ZoneList<CharacterRange>>(2, zone);
    AddClass(kWordRanges, kWordRangeCount, new_ranges, zone);
    AddUnicodeCaseEquivalents(new_ranges, zone);
    if (standard_character_set == StandardCharacterSet::kNotWord) {
      ZoneList<CharacterRange>* negated =
          zone->New<ZoneList<CharacterRange>>(2, zone);
      CharacterRange::Negate(new_ranges, negated, zone);
      new_ranges = negated;
    }
    ranges->AddAll(*new_ranges, zone);
    return;
  }

  switch (standard_character_set) {
    case StandardCharacterSet::kWhitespace:
      AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kNotWhitespace:
      AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kWord:
      AddClass(kWordRanges, kWordRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kNotWord:
      AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kDigit:
      AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kNotDigit:
      AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
      break;
    // This is the set of characters matched by the $ and ^ symbols
    // in multiline mode.
    case StandardCharacterSet::kLineTerminator:
      AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone);
      break;
    case StandardCharacterSet::kNotLineTerminator:
      AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges,
                      zone);
      break;
    // This is not a character range as defined by the spec but a
    // convenient shorthand for a character class that matches any
    // character.
    case StandardCharacterSet::kEverything:
      ranges->Add(CharacterRange::Everything(), zone);
      break;
  }
}

// static
void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
                                        ZoneList<CharacterRange>* ranges,
                                        bool is_one_byte) {
  CharacterRange::Canonicalize(ranges);
  int range_count = ranges->length();
#ifdef V8_INTL_SUPPORT
  icu::UnicodeSet others;
  for (int i = 0; i < range_count; i++) {
    CharacterRange range = ranges->at(i);
    base::uc32 from = range.from();
    if (from > kMaxUtf16CodeUnit) continue;
    base::uc32 to = std::min({range.to(), kMaxUtf16CodeUnitU});
    // Nothing to be done for surrogates.
    if (from >= kLeadSurrogateStart && to <= kTrailSurrogateEnd) continue;
    if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
      if (from > kMaxOneByteCharCode) continue;
      if (to > kMaxOneByteCharCode) to = kMaxOneByteCharCode;
    }
    others.add(from, to);
  }

  // Compute the set of additional characters that should be added,
  // using UnicodeSet::closeOver. ECMA 262 defines slightly different
  // case-folding rules than Unicode, so some characters that are
  // added by closeOver do not match anything other than themselves in
  // JS. For example, 'ſ' (U+017F LATIN SMALL LETTER LONG S) is the
  // same case-insensitive character as 's' or 'S' according to
  // Unicode, but does not match any other character in JS. To handle
  // this case, we add such characters to the IgnoreSet and filter
  // them out. We filter twice: once before calling closeOver (to
  // prevent 'ſ' from adding 's'), and once after calling closeOver
  // (to prevent 's' from adding 'ſ'). See regexp/special-case.h for
  // more information.
  icu::UnicodeSet already_added(others);
  others.removeAll(RegExpCaseFolding::IgnoreSet());
  others.closeOver(USET_CASE_INSENSITIVE);
  others.removeAll(RegExpCaseFolding::IgnoreSet());
  others.removeAll(already_added);

  // Add others to the ranges
  for (int32_t i = 0; i < others.getRangeCount(); i++) {
    UChar32 from = others.getRangeStart(i);
    UChar32 to = others.getRangeEnd(i);
    if (from == to) {
      ranges->Add(CharacterRange::Singleton(from), zone);
    } else {
      ranges->Add(CharacterRange::Range(from, to), zone);
    }
  }
#else
  for (int i = 0; i < range_count; i++) {
    CharacterRange range = ranges->at(i);
    base::uc32 bottom = range.from();
    if (bottom > kMaxUtf16CodeUnit) continue;
    base::uc32 top = std::min({range.to(), kMaxUtf16CodeUnitU});
    // Nothing to be done for surrogates.
    if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue;
    if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
      if (bottom > kMaxOneByteCharCode) continue;
      if (top > kMaxOneByteCharCode) top = kMaxOneByteCharCode;
    }
    unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    if (top == bottom) {
      // If this is a singleton we just expand the one character.
      int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
      for (int i = 0; i < length; i++) {
        base::uc32 chr = chars[i];
        if (chr != bottom) {
          ranges->Add(CharacterRange::Singleton(chars[i]), zone);
        }
      }
    } else {
      // If this is a range we expand the characters block by block, expanding
      // contiguous subranges (blocks) one at a time.  The approach is as
      // follows.  For a given start character we look up the remainder of the
      // block that contains it (represented by the end point), for instance we
      // find 'z' if the character is 'c'.  A block is characterized by the
      // property that all characters uncanonicalize in the same way, except
      // that each entry in the result is incremented by the distance from the
      // first element.  So a-z is a block because 'a' uncanonicalizes to ['a',
      // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].  Once
      // we've found the end point we look up its uncanonicalization and
      // produce a range for each element.  For instance for [c-f] we look up
      // ['z', 'Z'] and produce [c-f] and [C-F].  We then only add a range if
      // it is not already contained in the input, so [c-f] will be skipped but
      // [C-F] will be added.  If this range is not completely contained in a
      // block we do this for all the blocks covered by the range (handling
      // characters that is not in a block as a "singleton block").
      unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
      base::uc32 pos = bottom;
      while (pos <= top) {
        int length =
            isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
        base::uc32 block_end;
        if (length == 0) {
          block_end = pos;
        } else {
          DCHECK_EQ(1, length);
          block_end = equivalents[0];
        }
        int end = (block_end > top) ? top : block_end;
        length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
                                                         equivalents);
        for (int i = 0; i < length; i++) {
          base::uc32 c = equivalents[i];
          base::uc32 range_from = c - (block_end - pos);
          base::uc32 range_to = c - (block_end - end);
          if (!(bottom <= range_from && range_to <= top)) {
            ranges->Add(CharacterRange::Range(range_from, range_to), zone);
          }
        }
        pos = end + 1;
      }
    }
  }
#endif  // V8_INTL_SUPPORT
}

bool CharacterRange::IsCanonical(const ZoneList<CharacterRange>* ranges) {
  DCHECK_NOT_NULL(ranges);
  int n = ranges->length();
  if (n <= 1) return true;
  base::uc32 max = ranges->at(0).to();
  for (int i = 1; i < n; i++) {
    CharacterRange next_range = ranges->at(i);
    if (next_range.from() <= max + 1) return false;
    max = next_range.to();
  }
  return true;
}

ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
  if (ranges_ == nullptr) {
    ranges_ = zone->New<ZoneList<CharacterRange>>(2, zone);
    CharacterRange::AddClassEscape(standard_set_type_.value(), ranges_, false,
                                   zone);
  }
  return ranges_;
}

namespace {

// Move a number of elements in a zonelist to another position
// in the same list. Handles overlapping source and target areas.
void MoveRanges(ZoneList<CharacterRange>* list, int from, int to, int count) {
  // Ranges are potentially overlapping.
  if (from < to) {
    for (int i = count - 1; i >= 0; i--) {
      list->at(to + i) = list->at(from + i);
    }
  } else {
    for (int i = 0; i < count; i++) {
      list->at(to + i) = list->at(from + i);
    }
  }
}

int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count,
                               CharacterRange insert) {
  // Inserts a range into list[0..count[, which must be sorted
  // by from value and non-overlapping and non-adjacent, using at most
  // list[0..count] for the result. Returns the number of resulting
  // canonicalized ranges. Inserting a range may collapse existing ranges into
  // fewer ranges, so the return value can be anything in the range 1..count+1.
  base::uc32 from = insert.from();
  base::uc32 to = insert.to();
  int start_pos = 0;
  int end_pos = count;
  for (int i = count - 1; i >= 0; i--) {
    CharacterRange current = list->at(i);
    if (current.from() > to + 1) {
      end_pos = i;
    } else if (current.to() + 1 < from) {
      start_pos = i + 1;
      break;
    }
  }

  // Inserted range overlaps, or is adjacent to, ranges at positions
  // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
  // not affected by the insertion.
  // If start_pos == end_pos, the range must be inserted before start_pos.
  // if start_pos < end_pos, the entire range from start_pos to end_pos
  // must be merged with the insert range.

  if (start_pos == end_pos) {
    // Insert between existing ranges at position start_pos.
    if (start_pos < count) {
      MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
    }
    list->at(start_pos) = insert;
    return count + 1;
  }
  if (start_pos + 1 == end_pos) {
    // Replace single existing range at position start_pos.
    CharacterRange to_replace = list->at(start_pos);
    int new_from = std::min(to_replace.from(), from);
    int new_to = std::max(to_replace.to(), to);
    list->at(start_pos) = CharacterRange::Range(new_from, new_to);
    return count;
  }
  // Replace a number of existing ranges from start_pos to end_pos - 1.
  // Move the remaining ranges down.

  int new_from = std::min(list->at(start_pos).from(), from);
  int new_to = std::max(list->at(end_pos - 1).to(), to);
  if (end_pos < count) {
    MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
  }
  list->at(start_pos) = CharacterRange::Range(new_from, new_to);
  return count - (end_pos - start_pos) + 1;
}

}  // namespace

void CharacterSet::Canonicalize() {
  // Special/default classes are always considered canonical. The result
  // of calling ranges() will be sorted.
  if (ranges_ == nullptr) return;
  CharacterRange::Canonicalize(ranges_);
}

// static
void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
  if (character_ranges->length() <= 1) return;
  // Check whether ranges are already canonical (increasing, non-overlapping,
  // non-adjacent).
  int n = character_ranges->length();
  base::uc32 max = character_ranges->at(0).to();
  int i = 1;
  while (i < n) {
    CharacterRange current = character_ranges->at(i);
    if (current.from() <= max + 1) {
      break;
    }
    max = current.to();
    i++;
  }
  // Canonical until the i'th range. If that's all of them, we are done.
  if (i == n) return;

  // The ranges at index i and forward are not canonicalized. Make them so by
  // doing the equivalent of insertion sort (inserting each into the previous
  // list, in order).
  // Notice that inserting a range can reduce the number of ranges in the
  // result due to combining of adjacent and overlapping ranges.
  int read = i;           // Range to insert.
  int num_canonical = i;  // Length of canonicalized part of list.
  do {
    num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical,
                                               character_ranges->at(read));
    read++;
  } while (read < n);
  character_ranges->Rewind(num_canonical);

  DCHECK(CharacterRange::IsCanonical(character_ranges));
}

// static
void CharacterRange::Negate(const ZoneList<CharacterRange>* ranges,
                            ZoneList<CharacterRange>* negated_ranges,
                            Zone* zone) {
  DCHECK(CharacterRange::IsCanonical(ranges));
  DCHECK_EQ(0, negated_ranges->length());
  int range_count = ranges->length();
  base::uc32 from = 0;
  int i = 0;
  if (range_count > 0 && ranges->at(0).from() == 0) {
    from = ranges->at(0).to() + 1;
    i = 1;
  }
  while (i < range_count) {
    CharacterRange range = ranges->at(i);
    negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
    from = range.to() + 1;
    i++;
  }
  if (from < kMaxCodePoint) {
    negated_ranges->Add(CharacterRange::Range(from, kMaxCodePoint), zone);
  }
}

// static
void CharacterRange::Intersect(const ZoneList<CharacterRange>* lhs,
                               const ZoneList<CharacterRange>* rhs,
                               ZoneList<CharacterRange>* intersection,
                               Zone* zone) {
  DCHECK(CharacterRange::IsCanonical(lhs));
  DCHECK(CharacterRange::IsCanonical(rhs));
  DCHECK_EQ(0, intersection->length());
  int lhs_index = 0;
  int rhs_index = 0;
  while (lhs_index < lhs->length() && rhs_index < rhs->length()) {
    // Skip non-overlapping ranges.
    if (lhs->at(lhs_index).to() < rhs->at(rhs_index).from()) {
      lhs_index++;
      continue;
    }
    if (rhs->at(rhs_index).to() < lhs->at(lhs_index).from()) {
      rhs_index++;
      continue;
    }

    base::uc32 from =
        std::max(lhs->at(lhs_index).from(), rhs->at(rhs_index).from());
    base::uc32 to = std::min(lhs->at(lhs_index).to(), rhs->at(rhs_index).to());
    intersection->Add(CharacterRange::Range(from, to), zone);
    if (to == lhs->at(lhs_index).to()) {
      lhs_index++;
    } else {
      rhs_index++;
    }
  }

  DCHECK(IsCanonical(intersection));
}

namespace {

// Advance |index| and set |from| and |to| to the new range, if not out of
// bounds of |range|, otherwise |from| is set to a code point beyond the legal
// unicode character range.
void SafeAdvanceRange(const ZoneList<CharacterRange>* range, int* index,
                      base::uc32* from, base::uc32* to) {
  ++(*index);
  if (*index < range->length()) {
    *from = range->at(*index).from();
    *to = range->at(*index).to();
  } else {
    *from = kMaxCodePoint + 1;
  }
}

}  // namespace

// static
void CharacterRange::Subtract(const ZoneList<CharacterRange>* src,
                              const ZoneList<CharacterRange>* to_remove,
                              ZoneList<CharacterRange>* result, Zone* zone) {
  DCHECK(CharacterRange::IsCanonical(src));
  DCHECK(CharacterRange::IsCanonical(to_remove));
  DCHECK_EQ(0, result->length());

  if (src->is_empty()) return;

  int src_index = 0;
  int to_remove_index = 0;
  base::uc32 from = src->at(src_index).from();
  base::uc32 to = src->at(src_index).to();
  while (src_index < src->length() && to_remove_index < to_remove->length()) {
    CharacterRange remove_range = to_remove->at(to_remove_index);
    if (remove_range.to() < from) {
      // (a) Non-overlapping case, ignore current to_remove range.
      //            |-------|
      // |-------|
      to_remove_index++;
    } else if (to < remove_range.from()) {
      // (b) Non-overlapping case, add full current range to result.
      // |-------|
      //            |-------|
      result->Add(CharacterRange::Range(from, to), zone);
      SafeAdvanceRange(src, &src_index, &from, &to);
    } else if (from >= remove_range.from() && to <= remove_range.to()) {
      // (c) Current to_remove range fully covers current range.
      //   |---|
      // |-------|
      SafeAdvanceRange(src, &src_index, &from, &to);
    } else if (from < remove_range.from() && to > remove_range.to()) {
      // (d) Split current range.
      // |-------|
      //   |---|
      result->Add(CharacterRange::Range(from, remove_range.from() - 1), zone);
      from = remove_range.to() + 1;
      to_remove_index++;
    } else if (from < remove_range.from()) {
      // (e) End current range.
      // |-------|
      //    |-------|
      to = remove_range.from() - 1;
      result->Add(CharacterRange::Range(from, to), zone);
      SafeAdvanceRange(src, &src_index, &from, &to);
    } else if (to > remove_range.to()) {
      // (f) Modify start of current range.
      //    |-------|
      // |-------|
      from = remove_range.to() + 1;
      to_remove_index++;
    } else {
      UNREACHABLE();
    }
  }
  // The last range needs special treatment after |to_remove| is exhausted, as
  // |from| might have been modified by the last |to_remove| range and |to| was
  // not yet known (i.e. cases d and f).
  if (from <= to) {
    result->Add(CharacterRange::Range(from, to), zone);
  }
  src_index++;

  // Add remaining ranges after |to_remove| is exhausted.
  for (; src_index < src->length(); src_index++) {
    result->Add(src->at(src_index), zone);
  }

  DCHECK(IsCanonical(result));
}

// static
void CharacterRange::ClampToOneByte(ZoneList<CharacterRange>* ranges) {
  DCHECK(IsCanonical(ranges));

  // Drop all ranges that don't contain one-byte code units, and clamp the last
  // range s.t. it likewise only contains one-byte code units. Note this relies
  // on `ranges` being canonicalized, i.e. sorted and non-overlapping.

  static constexpr base::uc32 max_char = String::kMaxOneByteCharCodeU;
  int n = ranges->length();
  for (; n > 0; n--) {
    CharacterRange& r = ranges->at(n - 1);
    if (r.from() <= max_char) {
      r.to_ = std::min(r.to_, max_char);
      break;
    }
  }

  ranges->Rewind(n);
}

// static
bool CharacterRange::Equals(const ZoneList<CharacterRange>* lhs,
                            const ZoneList<CharacterRange>* rhs) {
  DCHECK(IsCanonical(lhs));
  DCHECK(IsCanonical(rhs));
  if (lhs->length() != rhs->length()) return false;

  for (int i = 0; i < lhs->length(); i++) {
    if (lhs->at(i) != rhs->at(i)) return false;
  }

  return true;
}

namespace {

// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
class RegExpExpansionLimiter {
 public:
  static const int kMaxExpansionFactor = 6;
  RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
      : compiler_(compiler),
        saved_expansion_factor_(compiler->current_expansion_factor()),
        ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
    DCHECK_LT(0, factor);
    if (ok_to_expand_) {
      if (factor > kMaxExpansionFactor) {
        // Avoid integer overflow of the current expansion factor.
        ok_to_expand_ = false;
        compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
      } else {
        int new_factor = saved_expansion_factor_ * factor;
        ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
        compiler->set_current_expansion_factor(new_factor);
      }
    }
  }

  ~RegExpExpansionLimiter() {
    compiler_->set_current_expansion_factor(saved_expansion_factor_);
  }

  bool ok_to_expand() { return ok_to_expand_; }

 private:
  RegExpCompiler* compiler_;
  int saved_expansion_factor_;
  bool ok_to_expand_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};

}  // namespace

RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy,
                                     RegExpTree* body, RegExpCompiler* compiler,
                                     RegExpNode* on_success,
                                     bool not_at_start) {
  // x{f, t} becomes this:
  //
  //             (r++)<-.
  //               |     `
  //               |     (x)
  //               v     ^
  //      (r=0)-->(?)---/ [if r < t]
  //               |
  //   [if r >= f] \----> ...
  //

  // 15.10.2.5 RepeatMatcher algorithm.
  // The parser has already eliminated the case where max is 0.  In the case
  // where max_match is zero the parser has removed the quantifier if min was
  // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.

  // If we know that we cannot match zero length then things are a little
  // simpler since we don't need to make the special zero length match check
  // from step 2.1.  If the min and max are small we can unroll a little in
  // this case.
  static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
  static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
  if (max == 0) return on_success;  // This can happen due to recursion.
  bool body_can_be_empty = (body->min_match() == 0);
  int body_start_reg = RegExpCompiler::kNoRegister;
  Interval capture_registers = body->CaptureRegisters();
  bool needs_capture_clearing = !capture_registers.is_empty();
  Zone* zone = compiler->zone();

  if (body_can_be_empty) {
    body_start_reg = compiler->AllocateRegister();
  } else if (compiler->optimize() && !needs_capture_clearing) {
    // Only unroll if there are no captures and the body can't be
    // empty.
    {
      RegExpExpansionLimiter limiter(compiler, min + ((max != min) ? 1 : 0));
      if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
        int new_max = (max == kInfinity) ? max : max - min;
        // Recurse once to get the loop or optional matches after the fixed
        // ones.
        RegExpNode* answer =
            ToNode(0, new_max, is_greedy, body, compiler, on_success, true);
        // Unroll the forced matches from 0 to min.  This can cause chains of
        // TextNodes (which the parser does not generate).  These should be
        // combined if it turns out they hinder good code generation.
        for (int i = 0; i < min; i++) {
          answer = body->ToNode(compiler, answer);
        }
        return answer;
      }
    }
    if (max <= kMaxUnrolledMaxMatches && min == 0) {
      DCHECK_LT(0, max);  // Due to the 'if' above.
      RegExpExpansionLimiter limiter(compiler, max);
      if (limiter.ok_to_expand()) {
        // Unroll the optional matches up to max.
        RegExpNode* answer = on_success;
        for (int i = 0; i < max; i++) {
          ChoiceNode* alternation = zone->New<ChoiceNode>(2, zone);
          if (is_greedy) {
            alternation->AddAlternative(
                GuardedAlternative(body->ToNode(compiler, answer)));
            alternation->AddAlternative(GuardedAlternative(on_success));
          } else {
            alternation->AddAlternative(GuardedAlternative(on_success));
            alternation->AddAlternative(
                GuardedAlternative(body->ToNode(compiler, answer)));
          }
          answer = alternation;
          if (not_at_start && !compiler->read_backward()) {
            alternation->set_not_at_start();
          }
        }
        return answer;
      }
    }
  }
  bool has_min = min > 0;
  bool has_max = max < RegExpTree::kInfinity;
  bool needs_counter = has_min || has_max;
  int reg_ctr = needs_counter ? compiler->AllocateRegister()
                              : RegExpCompiler::kNoRegister;
  LoopChoiceNode* center = zone->New<LoopChoiceNode>(
      body->min_match() == 0, compiler->read_backward(), min, zone);
  if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
  RegExpNode* loop_return =
      needs_counter ? static_cast<RegExpNode*>(
                          ActionNode::IncrementRegister(reg_ctr, center))
                    : static_cast<RegExpNode*>(center);
  if (body_can_be_empty) {
    // If the body can be empty we need to check if it was and then
    // backtrack.
    loop_return =
        ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return);
  }
  RegExpNode* body_node = body->ToNode(compiler, loop_return);
  if (body_can_be_empty) {
    // If the body can be empty we need to store the start position
    // so we can bail out if it was empty.
    body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
  }
  if (needs_capture_clearing) {
    // Before entering the body of this loop we need to clear captures.
    body_node = ActionNode::ClearCaptures(capture_registers, body_node);
  }
  GuardedAlternative body_alt(body_node);
  if (has_max) {
    Guard* body_guard = zone->New<Guard>(reg_ctr, Guard::LT, max);
    body_alt.AddGuard(body_guard, zone);
  }
  GuardedAlternative rest_alt(on_success);
  if (has_min) {
    Guard* rest_guard = compiler->zone()->New<Guard>(reg_ctr, Guard::GEQ, min);
    rest_alt.AddGuard(rest_guard, zone);
  }
  if (is_greedy) {
    center->AddLoopAlternative(body_alt);
    center->AddContinueAlternative(rest_alt);
  } else {
    center->AddContinueAlternative(rest_alt);
    center->AddLoopAlternative(body_alt);
  }
  if (needs_counter) {
    return ActionNode::SetRegisterForLoop(reg_ctr, 0, center);
  } else {
    return center;
  }
}

}  // namespace internal
}  // namespace v8