1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/x86/Lowering-x86.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/x86/Assembler-x86.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
LBoxAllocation LIRGeneratorX86::useBoxFixed(MDefinition* mir, Register reg1,
Register reg2, bool useAtStart) {
MOZ_ASSERT(mir->type() == MIRType::Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart),
LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
LAllocation LIRGeneratorX86::useByteOpRegister(MDefinition* mir) {
return useFixed(mir, eax);
}
LAllocation LIRGeneratorX86::useByteOpRegisterAtStart(MDefinition* mir) {
return useFixedAtStart(mir, eax);
}
LAllocation LIRGeneratorX86::useByteOpRegisterOrNonDoubleConstant(
MDefinition* mir) {
return useFixed(mir, eax);
}
LDefinition LIRGeneratorX86::tempByteOpRegister() { return tempFixed(eax); }
void LIRGenerator::visitBox(MBox* box) {
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
LDefinition spectreTemp =
JitOptions.spectreValueMasking ? temp() : LDefinition::BogusTemp();
defineBox(new (alloc()) LBoxFloatingPoint(useRegisterAtStart(inner),
tempCopy(inner, 0), spectreTemp,
inner->type()),
box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box);
return;
}
LBox* lir = new (alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void LIRGenerator::visitUnbox(MUnbox* unbox) {
MDefinition* inner = unbox->getOperand(0);
// An unbox on x86 reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType::Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir =
new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type());
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox* lir = new (alloc()) LUnbox;
bool reusePayloadReg = !JitOptions.spectreValueMasking ||
unbox->type() == MIRType::Int32 ||
unbox->type() == MIRType::Boolean;
if (reusePayloadReg) {
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::ANY));
} else {
lir->setOperand(0, usePayload(inner, LUse::REGISTER));
lir->setOperand(1, useType(inner, LUse::ANY));
}
if (unbox->fallible()) {
assignSnapshot(lir, unbox->bailoutKind());
}
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
if (reusePayloadReg) {
defineReuseInput(lir, unbox, 0);
} else {
define(lir, unbox);
}
}
void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) {
MOZ_ASSERT(opd->type() == MIRType::Value);
LReturn* ins = new (alloc()) LReturn(isGenerator);
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
void LIRGeneratorX86::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(
inputPosition,
LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition,
LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void LIRGeneratorX86::defineInt64Phi(MPhi* phi, size_t lirIndex) {
LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX);
uint32_t lowVreg = getVirtualRegister();
phi->setVirtualRegister(lowVreg);
uint32_t highVreg = getVirtualRegister();
MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX);
low->setDef(0, LDefinition(lowVreg, LDefinition::INT32));
high->setDef(0, LDefinition(highVreg, LDefinition::INT32));
annotate(high);
annotate(low);
}
void LIRGeneratorX86::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition,
LBlock* block, size_t lirIndex) {
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX);
LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX);
low->setOperand(inputPosition,
LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY));
high->setOperand(
inputPosition,
LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY));
}
void LIRGeneratorX86::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir,
MDefinition* input) {
ins->setInt64Operand(0, useInt64RegisterAtStart(input));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorX86::lowerForALUInt64(
LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins,
MDefinition* mir, MDefinition* lhs, MDefinition* rhs) {
ins->setInt64Operand(0, useInt64RegisterAtStart(lhs));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
defineInt64ReuseInput(ins, mir, 0);
}
void LIRGeneratorX86::lowerForMulInt64(LMulI64* ins, MMul* mir,
MDefinition* lhs, MDefinition* rhs) {
bool needsTemp = true;
if (rhs->isConstant()) {
int64_t constant = rhs->toConstant()->toInt64();
int32_t shift = mozilla::FloorLog2(constant);
// See special cases in CodeGeneratorX86Shared::visitMulI64.
if (constant >= -1 && constant <= 2) {
needsTemp = false;
}
if (constant > 0 && int64_t(1) << shift == constant) {
needsTemp = false;
}
}
// MulI64 on x86 needs output to be in edx, eax;
ins->setInt64Operand(
0, useInt64Fixed(lhs, Register64(edx, eax), /*useAtStart = */ true));
ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs));
if (needsTemp) {
ins->setTemp(0, temp());
}
defineInt64Fixed(ins, mir,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
void LIRGenerator::visitCompareExchangeTypedArrayElement(
MCompareExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useFixed(ins->elements(), esi);
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LUse oldval = useFixed(ins->oldval(), eax);
LUse newval = useFixed(ins->newval(), edx);
LDefinition temp = tempFixed(ebx);
auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64(
elements, index, oldval, newval, temp);
defineFixed(lir, ins, LAllocation(AnyRegister(ecx)));
assignSafepoint(lir, ins);
return;
}
lowerCompareExchangeTypedArrayElement(ins, /* useI386ByteRegisters = */ true);
}
void LIRGenerator::visitAtomicExchangeTypedArrayElement(
MAtomicExchangeTypedArrayElement* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LAllocation value = useFixed(ins->value(), edx);
LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx));
auto* lir = new (alloc())
LAtomicExchangeTypedArrayElement64(elements, index, value, temp);
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
assignSafepoint(lir, ins);
return;
}
lowerAtomicExchangeTypedArrayElement(ins, /*useI386ByteRegisters=*/true);
}
void LIRGenerator::visitAtomicTypedArrayElementBinop(
MAtomicTypedArrayElementBinop* ins) {
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr);
if (Scalar::isBigIntType(ins->arrayType())) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->arrayType());
LAllocation value = useFixed(ins->value(), edx);
LInt64Definition temp = tempInt64Fixed(Register64(ecx, ebx));
// Case 1: the result of the operation is not used.
//
// We can omit allocating the result BigInt.
if (ins->isForEffect()) {
LDefinition tempLow = tempFixed(eax);
auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64(
elements, index, value, temp, tempLow);
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
auto* lir = new (alloc())
LAtomicTypedArrayElementBinop64(elements, index, value, temp);
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
assignSafepoint(lir, ins);
return;
}
lowerAtomicTypedArrayElementBinop(ins, /* useI386ByteRegisters = */ true);
}
void LIRGeneratorX86::lowerAtomicLoad64(MLoadUnboxedScalar* ins) {
const LUse elements = useRegister(ins->elements());
const LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->storageType());
auto* lir = new (alloc()) LAtomicLoad64(elements, index, tempFixed(ebx),
tempInt64Fixed(Register64(edx, eax)));
defineFixed(lir, ins, LAllocation(AnyRegister(ecx)));
assignSafepoint(lir, ins);
}
void LIRGeneratorX86::lowerAtomicStore64(MStoreUnboxedScalar* ins) {
LUse elements = useRegister(ins->elements());
LAllocation index =
useRegisterOrIndexConstant(ins->index(), ins->writeType());
LAllocation value = useFixed(ins->value(), edx);
LInt64Definition temp1 = tempInt64Fixed(Register64(ecx, ebx));
LDefinition temp2 = tempFixed(eax);
add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins);
}
void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToDouble* lir = new (alloc())
LWasmUint32ToDouble(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) {
MOZ_ASSERT(ins->input()->type() == MIRType::Int32);
LWasmUint32ToFloat32* lir = new (alloc())
LWasmUint32ToFloat32(useRegisterAtStart(ins->input()), temp());
define(lir, ins);
}
// If the base is a constant, and it is zero or its offset is zero, then
// code generation will fold the values into the access. Allocate the
// pointer to a register only if that can't happen.
static bool OptimizableConstantAccess(MDefinition* base,
const wasm::MemoryAccessDesc& access) {
MOZ_ASSERT(base->isConstant());
MOZ_ASSERT(base->type() == MIRType::Int32);
if (!(base->toConstant()->isInt32(0) || access.offset() == 0)) {
return false;
}
if (access.type() == Scalar::Int64) {
// For int64 accesses on 32-bit systems we will need to add another offset
// of 4 to access the high part of the value; make sure this does not
// overflow the value.
int32_t v;
if (base->toConstant()->isInt32(0)) {
v = access.offset();
} else {
v = base->toConstant()->toInt32();
}
return v <= int32_t(INT32_MAX - INT64HIGH_OFFSET);
}
return true;
}
void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) {
auto* lir = new (alloc()) LWasmHeapBase(useRegisterAtStart(ins->instance()));
define(lir, ins);
}
void LIRGenerator::visitWasmLoad(MWasmLoad* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc())
LWasmAtomicLoadI64(useRegister(memoryBase), useRegister(base),
tempFixed(ecx), tempFixed(ebx));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
LAllocation baseAlloc;
if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
baseAlloc = ins->type() == MIRType::Int64 ? useRegister(base)
: useRegisterAtStart(base);
}
if (ins->type() != MIRType::Int64) {
auto* lir =
new (alloc()) LWasmLoad(baseAlloc, useRegisterAtStart(memoryBase));
define(lir, ins);
return;
}
// "AtStart" register usage does not work for the 64-bit case because we
// clobber two registers for the result and may need two registers for a
// scaled address; we can't guarantee non-interference.
auto* lir = new (alloc()) LWasmLoadI64(baseAlloc, useRegister(memoryBase));
Scalar::Type accessType = ins->access().type();
if (accessType == Scalar::Int8 || accessType == Scalar::Int16 ||
accessType == Scalar::Int32) {
// We use cdq to sign-extend the result and cdq demands these registers.
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
defineInt64(lir, ins);
}
void LIRGenerator::visitWasmStore(MWasmStore* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) {
auto* lir = new (alloc())
LWasmAtomicStoreI64(useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)),
tempFixed(edx), tempFixed(eax));
add(lir, ins);
return;
}
LAllocation baseAlloc;
if (!base->isConstant() || !OptimizableConstantAccess(base, ins->access())) {
baseAlloc = useRegisterAtStart(base);
}
LAllocation valueAlloc;
switch (ins->access().type()) {
case Scalar::Int8:
case Scalar::Uint8:
// See comment for LIRGeneratorX86::useByteOpRegister.
valueAlloc = useFixed(ins->value(), eax);
break;
case Scalar::Int16:
case Scalar::Uint16:
case Scalar::Int32:
case Scalar::Uint32:
case Scalar::Float32:
case Scalar::Float64:
// For now, don't allow constant values. The immediate operand affects
// instruction layout which affects patching.
valueAlloc = useRegisterAtStart(ins->value());
break;
case Scalar::Simd128:
#ifdef ENABLE_WASM_SIMD
valueAlloc = useRegisterAtStart(ins->value());
break;
#else
MOZ_CRASH("unexpected array type");
#endif
case Scalar::Int64: {
LInt64Allocation valueAlloc = useInt64RegisterAtStart(ins->value());
auto* lir = new (alloc())
LWasmStoreI64(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
add(lir, ins);
return;
}
case Scalar::Uint8Clamped:
case Scalar::BigInt64:
case Scalar::BigUint64:
case Scalar::MaxTypedArrayViewType:
MOZ_CRASH("unexpected array type");
}
auto* lir = new (alloc())
LWasmStore(baseAlloc, valueAlloc, useRegisterAtStart(memoryBase));
add(lir, ins);
}
void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc()) LWasmCompareExchangeI64(
useRegisterAtStart(memoryBase), useRegisterAtStart(base),
useInt64FixedAtStart(ins->oldValue(), Register64(edx, eax)),
useInt64FixedAtStart(ins->newValue(), Register64(ecx, ebx)));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
bool byteArray = byteSize(ins->access().type()) == 1;
// Register allocation:
//
// The output may not be used, but eax will be clobbered regardless
// so pin the output to eax.
//
// oldval must be in a register.
//
// newval must be in a register. If the source is a byte array
// then newval must be a register that has a byte size: this must
// be ebx, ecx, or edx (eax is taken).
//
// Bug #1077036 describes some optimization opportunities.
const LAllocation oldval = useRegister(ins->oldValue());
const LAllocation newval =
byteArray ? useFixed(ins->newValue(), ebx) : useRegister(ins->newValue());
LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(
useRegister(base), oldval, newval, useRegister(memoryBase));
lir->setAddrTemp(temp());
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
}
void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) {
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
MDefinition* base = ins->base();
auto* lir = new (alloc()) LWasmAtomicExchangeI64(
useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)), ins->access());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
const LAllocation base = useRegister(ins->base());
const LAllocation value = useRegister(ins->value());
LWasmAtomicExchangeHeap* lir = new (alloc())
LWasmAtomicExchangeHeap(base, value, useRegister(memoryBase));
lir->setAddrTemp(temp());
if (byteSize(ins->access().type()) == 1) {
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
} else {
define(lir, ins);
}
}
void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) {
MDefinition* base = ins->base();
MOZ_ASSERT(base->type() == MIRType::Int32);
MDefinition* memoryBase = ins->memoryBase();
MOZ_ASSERT(memoryBase->type() == MIRType::Pointer);
if (ins->access().type() == Scalar::Int64) {
auto* lir = new (alloc())
LWasmAtomicBinopI64(useRegister(memoryBase), useRegister(base),
useInt64Fixed(ins->value(), Register64(ecx, ebx)),
ins->access(), ins->operation());
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
return;
}
MOZ_ASSERT(ins->access().type() < Scalar::Float32);
bool byteArray = byteSize(ins->access().type()) == 1;
// Case 1: the result of the operation is not used.
//
// We'll emit a single instruction: LOCK ADD, LOCK SUB, LOCK AND,
// LOCK OR, or LOCK XOR. These can all take an immediate.
if (!ins->hasUses()) {
LAllocation value;
if (byteArray && !ins->value()->isConstant()) {
value = useFixed(ins->value(), ebx);
} else {
value = useRegisterOrConstant(ins->value());
}
LWasmAtomicBinopHeapForEffect* lir =
new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), value,
LDefinition::BogusTemp(),
useRegister(memoryBase));
lir->setAddrTemp(temp());
add(lir, ins);
return;
}
// Case 2: the result of the operation is used.
//
// For ADD and SUB we'll use XADD:
//
// movl value, output
// lock xaddl output, mem
//
// For the 8-bit variants XADD needs a byte register for the
// output only, we can still set up with movl; just pin the output
// to eax (or ebx / ecx / edx).
//
// For AND/OR/XOR we need to use a CMPXCHG loop:
//
// movl *mem, eax
// L: mov eax, temp
// andl value, temp
// lock cmpxchg temp, mem ; reads eax also
// jnz L
// ; result in eax
//
// Note the placement of L, cmpxchg will update eax with *mem if
// *mem does not have the expected value, so reloading it at the
// top of the loop would be redundant.
//
// We want to fix eax as the output. We also need a temp for
// the intermediate value.
//
// For the 8-bit variants the temp must have a byte register.
//
// There are optimization opportunities:
// - better 8-bit register allocation and instruction selection, Bug
// #1077036.
bool bitOp = !(ins->operation() == AtomicFetchAddOp ||
ins->operation() == AtomicFetchSubOp);
LDefinition tempDef = LDefinition::BogusTemp();
LAllocation value;
if (byteArray) {
value = useFixed(ins->value(), ebx);
if (bitOp) {
tempDef = tempFixed(ecx);
}
} else if (bitOp || ins->value()->isConstant()) {
value = useRegisterOrConstant(ins->value());
if (bitOp) {
tempDef = temp();
}
} else {
value = useRegisterAtStart(ins->value());
}
LWasmAtomicBinopHeap* lir = new (alloc())
LWasmAtomicBinopHeap(useRegister(base), value, tempDef,
LDefinition::BogusTemp(), useRegister(memoryBase));
lir->setAddrTemp(temp());
if (byteArray || bitOp) {
defineFixed(lir, ins, LAllocation(AnyRegister(eax)));
} else if (ins->value()->isConstant()) {
define(lir, ins);
} else {
defineReuseInput(lir, ins, LWasmAtomicBinopHeap::valueOp);
}
}
void LIRGeneratorX86::lowerDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) {
MOZ_ASSERT(div->lhs()->type() == div->rhs()->type());
MOZ_ASSERT(IsNumberType(div->type()));
MOZ_ASSERT(div->type() == MIRType::Int64);
if (div->isUnsigned()) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
useFixedAtStart(div->instance(), InstanceReg));
defineReturn(lir, div);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useInt64FixedAtStart(div->lhs(), Register64(eax, ebx)),
useInt64FixedAtStart(div->rhs(), Register64(ecx, edx)),
useFixedAtStart(div->instance(), InstanceReg));
defineReturn(lir, div);
}
void LIRGeneratorX86::lowerModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) {
MDefinition* lhs = mod->lhs();
MDefinition* rhs = mod->rhs();
MOZ_ASSERT(lhs->type() == rhs->type());
MOZ_ASSERT(IsNumberType(mod->type()));
MOZ_ASSERT(mod->type() == MIRType::Int64);
MOZ_ASSERT(mod->type() == MIRType::Int64);
if (mod->isUnsigned()) {
LUDivOrModI64* lir = new (alloc())
LUDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
useInt64FixedAtStart(rhs, Register64(ecx, edx)),
useFixedAtStart(mod->instance(), InstanceReg));
defineReturn(lir, mod);
return;
}
LDivOrModI64* lir = new (alloc())
LDivOrModI64(useInt64FixedAtStart(lhs, Register64(eax, ebx)),
useInt64FixedAtStart(rhs, Register64(ecx, edx)),
useFixedAtStart(mod->instance(), InstanceReg));
defineReturn(lir, mod);
}
void LIRGeneratorX86::lowerUDivI64(MDiv* div) {
MOZ_CRASH("We use MWasmBuiltinDivI64 instead.");
}
void LIRGeneratorX86::lowerUModI64(MMod* mod) {
MOZ_CRASH("We use MWasmBuiltinModI64 instead.");
}
void LIRGeneratorX86::lowerBigIntDiv(MBigIntDiv* ins) {
auto* lir = new (alloc()) LBigIntDiv(
useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp());
defineFixed(lir, ins, LAllocation(AnyRegister(edx)));
assignSafepoint(lir, ins);
}
void LIRGeneratorX86::lowerBigIntMod(MBigIntMod* ins) {
auto* lir = new (alloc()) LBigIntMod(
useRegister(ins->lhs()), useRegister(ins->rhs()), tempFixed(eax), temp());
defineFixed(lir, ins, LAllocation(AnyRegister(edx)));
assignSafepoint(lir, ins);
}
void LIRGenerator::visitSubstr(MSubstr* ins) {
// Due to lack of registers on x86, we reuse the string register as
// temporary. As a result we only need two temporary registers and take a
// bogus temporary as fifth argument.
LSubstr* lir = new (alloc())
LSubstr(useRegister(ins->string()), useRegister(ins->begin()),
useRegister(ins->length()), temp(), LDefinition::BogusTemp(),
tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32);
LDefinition temp = tempDouble();
defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd), temp), ins);
}
void LIRGeneratorX86::lowerWasmBuiltinTruncateToInt64(
MWasmBuiltinTruncateToInt64* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) {
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Int64);
MOZ_ASSERT(IsFloatingPointType(ins->type()));
LDefinition maybeTemp =
(ins->isUnsigned() &&
((ins->type() == MIRType::Double && AssemblerX86Shared::HasSSE3()) ||
ins->type() == MIRType::Float32))
? temp()
: LDefinition::BogusTemp();
define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd), maybeTemp),
ins);
}
void LIRGeneratorX86::lowerBuiltinInt64ToFloatingPoint(
MBuiltinInt64ToFloatingPoint* ins) {
MOZ_CRASH("We don't use it for this architecture");
}
void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) {
if (ins->isUnsigned()) {
defineInt64(new (alloc())
LExtendInt32ToInt64(useRegisterAtStart(ins->input())),
ins);
} else {
LExtendInt32ToInt64* lir =
new (alloc()) LExtendInt32ToInt64(useFixedAtStart(ins->input(), eax));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
}
void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) {
// Here we'll end up using cdq which requires input and output in (edx,eax).
LSignExtendInt64* lir = new (alloc()) LSignExtendInt64(
useInt64FixedAtStart(ins->input(), Register64(edx, eax)));
defineInt64Fixed(lir, ins,
LInt64Allocation(LAllocation(AnyRegister(edx)),
LAllocation(AnyRegister(eax))));
}
// On x86 we specialize the only cases where compare is {U,}Int32 and select
// is {U,}Int32.
bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect(
MCompare::CompareType compTy, MIRType insTy) {
return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 ||
compTy == MCompare::Compare_UInt32);
}
void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins,
MDefinition* lhs,
MDefinition* rhs,
MCompare::CompareType compTy,
JSOp jsop) {
MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type()));
auto* lir = new (alloc()) LWasmCompareAndSelect(
useRegister(lhs), useAny(rhs), compTy, jsop,
useRegisterAtStart(ins->trueExpr()), useAny(ins->falseExpr()));
defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex);
}
|