1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <memory>
#include "nss.h"
#include "pk11pub.h"
#include "secerr.h"
#include "gtest/gtest.h"
#include "nss_scoped_ptrs.h"
#include "testvectors/cbc-vectors.h"
#include "util.h"
namespace nss_test {
static const uint8_t kInput[99] = {1, 2, 3};
static const uint8_t kKeyData[24] = {'K', 'E', 'Y'};
static SECItem* GetIv() {
static const uint8_t kIvData[16] = {'I', 'V'};
static const SECItem kIv = {siBuffer, const_cast<uint8_t*>(kIvData),
static_cast<unsigned int>(sizeof(kIvData))};
return const_cast<SECItem*>(&kIv);
}
class Pkcs11CbcPadTest : public ::testing::TestWithParam<CK_MECHANISM_TYPE> {
protected:
bool is_padded() const {
switch (GetParam()) {
case CKM_AES_CBC_PAD:
case CKM_DES3_CBC_PAD:
return true;
case CKM_AES_CBC:
case CKM_DES3_CBC:
return false;
default:
ADD_FAILURE() << "Unknown mechanism " << GetParam();
}
return false;
}
uint32_t GetUnpaddedMechanism() const {
switch (GetParam()) {
case CKM_AES_CBC_PAD:
return CKM_AES_CBC;
case CKM_DES3_CBC_PAD:
return CKM_DES3_CBC;
default:
ADD_FAILURE() << "Unknown padded mechanism " << GetParam();
}
return 0;
}
size_t block_size() const {
return static_cast<size_t>(PK11_GetBlockSize(GetParam(), nullptr));
}
size_t GetInputLen(CK_ATTRIBUTE_TYPE op) const {
if (is_padded() && op == CKA_ENCRYPT) {
// Anything goes for encryption when padded.
return sizeof(kInput);
}
// Otherwise, use a strict multiple of the block size.
size_t block_count = sizeof(kInput) / block_size();
EXPECT_LT(1U, block_count) << "need 2 blocks for tests";
return block_count * block_size();
}
ScopedPK11SymKey MakeKey(CK_ATTRIBUTE_TYPE op) {
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
EXPECT_NE(nullptr, slot);
if (!slot) {
return nullptr;
}
unsigned int key_len = 0;
switch (GetParam()) {
case CKM_AES_CBC_PAD:
case CKM_AES_CBC:
key_len = 16; // This doesn't do AES-256 to keep it simple.
break;
case CKM_DES3_CBC_PAD:
case CKM_DES3_CBC:
key_len = 24;
break;
default:
ADD_FAILURE() << "Unknown mechanism " << GetParam();
return nullptr;
}
SECItem key_item = {siBuffer, const_cast<uint8_t*>(kKeyData), key_len};
PK11SymKey* p = PK11_ImportSymKey(slot.get(), GetParam(), PK11_OriginUnwrap,
op, &key_item, nullptr);
EXPECT_NE(nullptr, p);
return ScopedPK11SymKey(p);
}
ScopedPK11Context MakeContext(CK_ATTRIBUTE_TYPE op) {
ScopedPK11SymKey k = MakeKey(op);
PK11Context* ctx =
PK11_CreateContextBySymKey(GetParam(), op, k.get(), GetIv());
EXPECT_NE(nullptr, ctx);
return ScopedPK11Context(ctx);
}
};
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt) {
uint8_t encrypted[sizeof(kInput) + 64]; // Allow for padding and expansion.
size_t input_len = GetInputLen(CKA_ENCRYPT);
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
unsigned int encrypted_len = 0;
SECStatus rv =
PK11_Encrypt(ek.get(), GetParam(), GetIv(), encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
ASSERT_EQ(SECSuccess, rv);
EXPECT_LE(input_len, static_cast<size_t>(encrypted_len));
// Though the decrypted result can't be larger than the input we provided,
// NSS needs extra space to put the padding in.
uint8_t decrypted[sizeof(kInput) + 64];
unsigned int decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted, &decrypted_len,
sizeof(decrypted), encrypted, encrypted_len);
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input_len, static_cast<size_t>(decrypted_len));
EXPECT_EQ(0, memcmp(kInput, decrypted, input_len));
}
TEST_P(Pkcs11CbcPadTest, ContextEncryptDecrypt) {
uint8_t encrypted[sizeof(kInput) + 64]; // Allow for padding and expansion.
size_t input_len = GetInputLen(CKA_ENCRYPT);
ScopedPK11Context ectx = MakeContext(CKA_ENCRYPT);
int encrypted_len = 0;
SECStatus rv = PK11_CipherOp(ectx.get(), encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
ASSERT_EQ(SECSuccess, rv);
EXPECT_LE(0, encrypted_len); // Stupid signed parameters.
unsigned int final_len = 0;
rv = PK11_CipherFinal(ectx.get(), encrypted + encrypted_len, &final_len,
sizeof(encrypted) - encrypted_len);
ASSERT_EQ(SECSuccess, rv);
encrypted_len += final_len;
EXPECT_LE(input_len, static_cast<size_t>(encrypted_len));
uint8_t decrypted[sizeof(kInput) + 64];
int decrypted_len = 0;
ScopedPK11Context dctx = MakeContext(CKA_DECRYPT);
rv = PK11_CipherOp(dctx.get(), decrypted, &decrypted_len, sizeof(decrypted),
encrypted, encrypted_len);
ASSERT_EQ(SECSuccess, rv);
EXPECT_LE(0, decrypted_len);
rv = PK11_CipherFinal(dctx.get(), decrypted + decrypted_len, &final_len,
sizeof(decrypted) - decrypted_len);
ASSERT_EQ(SECSuccess, rv);
decrypted_len += final_len;
EXPECT_EQ(input_len, static_cast<size_t>(decrypted_len));
EXPECT_EQ(0, memcmp(kInput, decrypted, input_len));
}
TEST_P(Pkcs11CbcPadTest, ContextEncryptDecryptTwoParts) {
uint8_t encrypted[sizeof(kInput) + 64];
size_t input_len = GetInputLen(CKA_ENCRYPT);
ScopedPK11Context ectx = MakeContext(CKA_ENCRYPT);
int first_len = 0;
SECStatus rv = PK11_CipherOp(ectx.get(), encrypted, &first_len,
sizeof(encrypted), kInput, block_size());
ASSERT_EQ(SECSuccess, rv);
ASSERT_LE(0, first_len);
int second_len = 0;
rv = PK11_CipherOp(ectx.get(), encrypted + first_len, &second_len,
sizeof(encrypted) - first_len, kInput + block_size(),
input_len - block_size());
ASSERT_EQ(SECSuccess, rv);
ASSERT_LE(0, second_len);
unsigned int final_len = 0;
rv = PK11_CipherFinal(ectx.get(), encrypted + first_len + second_len,
&final_len, sizeof(encrypted) - first_len - second_len);
ASSERT_EQ(SECSuccess, rv);
unsigned int encrypted_len = first_len + second_len + final_len;
ASSERT_LE(input_len, static_cast<size_t>(encrypted_len));
// Now decrypt this in a similar fashion.
uint8_t decrypted[sizeof(kInput) + 64];
ScopedPK11Context dctx = MakeContext(CKA_DECRYPT);
rv = PK11_CipherOp(dctx.get(), decrypted, &first_len, sizeof(decrypted),
encrypted, block_size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_LE(0, first_len);
rv = PK11_CipherOp(dctx.get(), decrypted + first_len, &second_len,
sizeof(decrypted) - first_len, encrypted + block_size(),
encrypted_len - block_size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_LE(0, second_len);
unsigned int decrypted_len = 0;
rv = PK11_CipherFinal(dctx.get(), decrypted + first_len + second_len,
&decrypted_len,
sizeof(decrypted) - first_len - second_len);
ASSERT_EQ(SECSuccess, rv);
decrypted_len += first_len + second_len;
EXPECT_EQ(input_len, static_cast<size_t>(decrypted_len));
EXPECT_EQ(0, memcmp(kInput, decrypted, input_len));
}
TEST_P(Pkcs11CbcPadTest, FailDecryptSimple) {
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
uint8_t output[sizeof(kInput) + 64];
unsigned int output_len = 999;
SECStatus rv =
PK11_Decrypt(dk.get(), GetParam(), GetIv(), output, &output_len,
sizeof(output), kInput, GetInputLen(CKA_DECRYPT));
if (is_padded()) {
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(999U, output_len);
} else {
// Unpadded decryption can't really fail.
EXPECT_EQ(SECSuccess, rv);
}
}
TEST_P(Pkcs11CbcPadTest, FailEncryptSimple) {
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
uint8_t output[3]; // Too small for anything.
unsigned int output_len = 333;
SECStatus rv =
PK11_Encrypt(ek.get(), GetParam(), GetIv(), output, &output_len,
sizeof(output), kInput, GetInputLen(CKA_ENCRYPT));
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(333U, output_len);
}
// It's a bit of a lie to put this in pk11_cbc_unittest, since we
// also test bounds checking in other modes. There doesn't seem
// to be an appropriately-generic place elsewhere.
TEST_F(Pkcs11CbcPadTest, FailEncryptShortParam) {
SECStatus rv = SECFailure;
uint8_t encrypted[sizeof(kInput)];
unsigned int encrypted_len = 0;
size_t input_len = AES_BLOCK_SIZE;
// CK_NSS_GCM_PARAMS is the largest param struct used across AES modes
uint8_t param_buf[sizeof(CK_NSS_GCM_PARAMS)];
SECItem param = {siBuffer, param_buf, sizeof(param_buf)};
SECItem key_item = {siBuffer, const_cast<uint8_t*>(kKeyData), 16};
// Setup (we use the ECB key for other modes)
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ASSERT_NE(nullptr, slot);
ScopedPK11SymKey key(PK11_ImportSymKey(slot.get(), CKM_AES_ECB,
PK11_OriginUnwrap, CKA_ENCRYPT,
&key_item, nullptr));
ASSERT_TRUE(key.get());
// CTR should have a CK_AES_CTR_PARAMS
param.len = sizeof(CK_AES_CTR_PARAMS) - 1;
rv = PK11_Encrypt(key.get(), CKM_AES_CTR, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECFailure, rv);
param.len++;
reinterpret_cast<CK_AES_CTR_PARAMS*>(param.data)->ulCounterBits = 32;
rv = PK11_Encrypt(key.get(), CKM_AES_CTR, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECSuccess, rv);
// GCM should have a CK_NSS_GCM_PARAMS
param.len = sizeof(CK_NSS_GCM_PARAMS) - 1;
rv = PK11_Encrypt(key.get(), CKM_AES_GCM, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECFailure, rv);
param.len++;
reinterpret_cast<CK_NSS_GCM_PARAMS*>(param.data)->pIv = param_buf;
reinterpret_cast<CK_NSS_GCM_PARAMS*>(param.data)->ulIvLen = 12;
reinterpret_cast<CK_NSS_GCM_PARAMS*>(param.data)->pAAD = nullptr;
reinterpret_cast<CK_NSS_GCM_PARAMS*>(param.data)->ulAADLen = 0;
reinterpret_cast<CK_NSS_GCM_PARAMS*>(param.data)->ulTagBits = 128;
rv = PK11_Encrypt(key.get(), CKM_AES_GCM, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECSuccess, rv);
// CBC should have a 16B IV
param.len = AES_BLOCK_SIZE - 1;
rv = PK11_Encrypt(key.get(), CKM_AES_CBC, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECFailure, rv);
param.len++;
rv = PK11_Encrypt(key.get(), CKM_AES_CBC, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECSuccess, rv);
// CTS
param.len = AES_BLOCK_SIZE - 1;
rv = PK11_Encrypt(key.get(), CKM_AES_CTS, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECFailure, rv);
param.len++;
rv = PK11_Encrypt(key.get(), CKM_AES_CTS, ¶m, encrypted, &encrypted_len,
sizeof(encrypted), kInput, input_len);
EXPECT_EQ(SECSuccess, rv);
}
TEST_P(Pkcs11CbcPadTest, ContextFailDecryptSimple) {
ScopedPK11Context dctx = MakeContext(CKA_DECRYPT);
uint8_t output[sizeof(kInput) + 64];
int output_len = 77;
SECStatus rv = PK11_CipherOp(dctx.get(), output, &output_len, sizeof(output),
kInput, GetInputLen(CKA_DECRYPT));
EXPECT_EQ(SECSuccess, rv);
EXPECT_LE(0, output_len) << "this is not an AEAD, so content leaks";
unsigned int final_len = 88;
rv = PK11_CipherFinal(dctx.get(), output, &final_len, sizeof(output));
if (is_padded()) {
EXPECT_EQ(SECFailure, rv);
ASSERT_EQ(88U, final_len) << "final_len should be untouched";
} else {
// Unpadded decryption can't really fail.
EXPECT_EQ(SECSuccess, rv);
}
}
TEST_P(Pkcs11CbcPadTest, ContextFailDecryptInvalidBlockSize) {
ScopedPK11Context dctx = MakeContext(CKA_DECRYPT);
uint8_t output[sizeof(kInput) + 64];
int output_len = 888;
SECStatus rv = PK11_CipherOp(dctx.get(), output, &output_len, sizeof(output),
kInput, GetInputLen(CKA_DECRYPT) - 1);
EXPECT_EQ(SECFailure, rv);
// Because PK11_CipherOp is partial, it can return data on failure.
// This means that it needs to reset its output length to 0 when it starts.
EXPECT_EQ(0, output_len) << "output_len is reset";
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_PaddingTooLong) {
if (!is_padded()) {
return;
}
// Padding that's over the block size
const std::vector<uint8_t> input = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, decrypted_len);
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_ShortPadding1) {
if (!is_padded()) {
return;
}
// Padding that's one byte short
const std::vector<uint8_t> input = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, decrypted_len);
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_ShortPadding2) {
if (!is_padded()) {
return;
}
// Padding that's one byte short
const std::vector<uint8_t> input = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, decrypted_len);
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_ZeroLengthPadding) {
if (!is_padded()) {
return;
}
// Padding of length zero
const std::vector<uint8_t> input = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, decrypted_len);
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_OverflowPadding) {
if (!is_padded()) {
return;
}
// Padding that's much longer than block size
const std::vector<uint8_t> input = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, decrypted_len);
}
TEST_P(Pkcs11CbcPadTest, EncryptDecrypt_ShortValidPadding) {
if (!is_padded()) {
return;
}
// Minimal valid padding
const std::vector<uint8_t> input = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
std::vector<uint8_t> encrypted(input.size());
uint32_t encrypted_len = 0;
ScopedPK11SymKey ek = MakeKey(CKA_ENCRYPT);
SECStatus rv = PK11_Encrypt(ek.get(), GetUnpaddedMechanism(), GetIv(),
encrypted.data(), &encrypted_len,
encrypted.size(), input.data(), input.size());
ASSERT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size(), encrypted_len);
std::vector<uint8_t> decrypted(input.size());
uint32_t decrypted_len = 0;
ScopedPK11SymKey dk = MakeKey(CKA_DECRYPT);
rv = PK11_Decrypt(dk.get(), GetParam(), GetIv(), decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted_len);
EXPECT_EQ(SECSuccess, rv);
EXPECT_EQ(input.size() - 1, decrypted_len);
EXPECT_EQ(0, memcmp(decrypted.data(), input.data(), decrypted_len));
}
INSTANTIATE_TEST_SUITE_P(EncryptDecrypt, Pkcs11CbcPadTest,
::testing::Values(CKM_AES_CBC_PAD, CKM_AES_CBC,
CKM_DES3_CBC_PAD, CKM_DES3_CBC));
class Pkcs11AesCbcWycheproofTest
: public ::testing::TestWithParam<AesCbcTestVector> {
protected:
void RunTest(const AesCbcTestVector vec) {
bool valid = vec.valid;
std::string err = "Test #" + std::to_string(vec.id) + " failed";
std::vector<uint8_t> key = hex_string_to_bytes(vec.key);
std::vector<uint8_t> iv = hex_string_to_bytes(vec.iv);
std::vector<uint8_t> ciphertext = hex_string_to_bytes(vec.ciphertext);
std::vector<uint8_t> msg = hex_string_to_bytes(vec.msg);
std::vector<uint8_t> decrypted(vec.ciphertext.size());
unsigned int decrypted_len = 0;
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ASSERT_NE(nullptr, slot);
// Don't provide a null pointer, even if the length is 0. We don't want to
// fail on trivial checks.
uint8_t tmp;
SECItem iv_item = {siBuffer, iv.data() ? iv.data() : &tmp,
static_cast<unsigned int>(iv.size())};
SECItem key_item = {siBuffer, key.data() ? key.data() : &tmp,
static_cast<unsigned int>(key.size())};
PK11SymKey* pKey = PK11_ImportSymKey(slot.get(), kMech, PK11_OriginUnwrap,
CKA_ENCRYPT, &key_item, nullptr);
ASSERT_NE(nullptr, pKey);
ScopedPK11SymKey spKey = ScopedPK11SymKey(pKey);
SECStatus rv = PK11_Decrypt(spKey.get(), kMech, &iv_item, decrypted.data(),
&decrypted_len, decrypted.size(),
ciphertext.data(), ciphertext.size());
ASSERT_EQ(valid ? SECSuccess : SECFailure, rv) << err;
if (valid) {
EXPECT_EQ(msg.size(), static_cast<size_t>(decrypted_len)) << err;
EXPECT_EQ(0, memcmp(msg.data(), decrypted.data(), decrypted_len)) << err;
}
}
const CK_MECHANISM_TYPE kMech = CKM_AES_CBC_PAD;
};
TEST_P(Pkcs11AesCbcWycheproofTest, TestVectors) { RunTest(GetParam()); }
INSTANTIATE_TEST_SUITE_P(WycheproofTestVector, Pkcs11AesCbcWycheproofTest,
::testing::ValuesIn(kCbcWycheproofVectors));
} // namespace nss_test
|