1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
<!DOCTYPE html>
<html>
<head>
<title>
waveshaper.html
</title>
<script src="/resources/testharness.js"></script>
<script src="/resources/testharnessreport.js"></script>
<script src="../../resources/audit-util.js"></script>
<script src="../../resources/audit.js"></script>
<script src="../../resources/buffer-loader.js"></script>
</head>
<body>
<script id="layout-test-code">
let audit = Audit.createTaskRunner();
let sampleRate = 44100;
let lengthInSeconds = 4;
let numberOfRenderFrames = sampleRate * lengthInSeconds;
let numberOfCurveFrames = 65536;
let inputBuffer;
let waveShapingCurve;
let context;
function generateInputBuffer() {
// Create mono input buffer.
let buffer =
context.createBuffer(1, numberOfRenderFrames, context.sampleRate);
let data = buffer.getChannelData(0);
// Generate an input vector with values from -1 -> +1 over a duration of
// lengthInSeconds. This exercises the full nominal input range and will
// touch every point of the shaping curve.
for (let i = 0; i < numberOfRenderFrames; ++i) {
let x = i / numberOfRenderFrames; // 0 -> 1
x = 2 * x - 1; // -1 -> +1
data[i] = x;
}
return buffer;
}
// Generates a symmetric curve: Math.atan(5 * x) / (0.5 * Math.PI)
// (with x == 0 corresponding to the center of the array)
// This curve is arbitrary, but would be useful in the real-world.
// To some extent, the actual curve we choose is not important in this
// test, since the input vector walks through all possible curve values.
function generateWaveShapingCurve() {
let curve = new Float32Array(numberOfCurveFrames);
let n = numberOfCurveFrames;
let n2 = n / 2;
for (let i = 0; i < n; ++i) {
let x = (i - n2) / n2;
let y = Math.atan(5 * x) / (0.5 * Math.PI);
}
return curve;
}
function checkShapedCurve(buffer, should) {
let inputData = inputBuffer.getChannelData(0);
let outputData = buffer.getChannelData(0);
let success = true;
// Go through every sample and make sure it has been shaped exactly
// according to the shaping curve we gave it.
for (let i = 0; i < buffer.length; ++i) {
let input = inputData[i];
// Calculate an index based on input -1 -> +1 with 0 being at the
// center of the curve data.
let index = Math.floor(numberOfCurveFrames * 0.5 * (input + 1));
// Clip index to the input range of the curve.
// This takes care of input outside of nominal range -1 -> +1
index = index < 0 ? 0 : index;
index =
index > numberOfCurveFrames - 1 ? numberOfCurveFrames - 1 : index;
let expectedOutput = waveShapingCurve[index];
let output = outputData[i];
if (output != expectedOutput) {
success = false;
break;
}
}
should(
success, 'WaveShaperNode applied non-linear distortion correctly')
.beTrue();
}
audit.define('test', function(task, should) {
// Create offline audio context.
context = new OfflineAudioContext(1, numberOfRenderFrames, sampleRate);
// source -> waveshaper -> destination
let source = context.createBufferSource();
let waveshaper = context.createWaveShaper();
source.connect(waveshaper);
waveshaper.connect(context.destination);
// Create an input test vector.
inputBuffer = generateInputBuffer();
source.buffer = inputBuffer;
// We'll apply non-linear distortion according to this shaping curve.
waveShapingCurve = generateWaveShapingCurve();
waveshaper.curve = waveShapingCurve;
source.start(0);
context.startRendering()
.then(buffer => checkShapedCurve(buffer, should))
.then(task.done.bind(task));
});
audit.run();
</script>
</body>
</html>
|