1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/*
* Copyright 2019 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/task_queue/task_queue_test.h"
#include <memory>
#include "absl/cleanup/cleanup.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "rtc_base/event.h"
#include "rtc_base/ref_counter.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
// Avoids a dependency to system_wrappers.
void SleepFor(TimeDelta duration) {
rtc::ScopedAllowBaseSyncPrimitivesForTesting allow;
rtc::Event event;
event.Wait(duration);
}
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
const std::unique_ptr<webrtc::TaskQueueFactory>& factory,
absl::string_view task_queue_name,
TaskQueueFactory::Priority priority = TaskQueueFactory::Priority::NORMAL) {
return factory->CreateTaskQueue(task_queue_name, priority);
}
TEST_P(TaskQueueTest, Construct) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
auto queue = CreateTaskQueue(factory, "Construct");
EXPECT_FALSE(queue->IsCurrent());
}
TEST_P(TaskQueueTest, PostAndCheckCurrent) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostAndCheckCurrent");
// We're not running a task, so `queue` shouldn't be current.
// Note that because rtc::Thread also supports the TQ interface and
// TestMainImpl::Init wraps the main test thread (bugs.webrtc.org/9714), that
// means that TaskQueueBase::Current() will still return a valid value.
EXPECT_FALSE(queue->IsCurrent());
queue->PostTask([&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
});
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostCustomTask) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event ran;
auto queue = CreateTaskQueue(factory, "PostCustomImplementation");
class CustomTask {
public:
explicit CustomTask(rtc::Event* ran) : ran_(ran) {}
void operator()() { ran_->Set(); }
private:
rtc::Event* const ran_;
} my_task(&ran);
queue->PostTask(my_task);
EXPECT_TRUE(ran.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayedZero) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostDelayedZero");
queue->PostDelayedTask([&event] { event.Set(); }, TimeDelta::Zero());
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostFromQueue) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostFromQueue");
queue->PostTask(
[&event, &queue] { queue->PostTask([&event] { event.Set(); }); });
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayed) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event event;
auto queue =
CreateTaskQueue(factory, "PostDelayed", TaskQueueFactory::Priority::HIGH);
int64_t start = rtc::TimeMillis();
queue->PostDelayedTask(
[&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
},
TimeDelta::Millis(100));
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
int64_t end = rtc::TimeMillis();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 90u);
EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290.
}
TEST_P(TaskQueueTest, PostMultipleDelayed) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
auto queue = CreateTaskQueue(factory, "PostMultipleDelayed");
std::vector<rtc::Event> events(100);
for (int i = 0; i < 100; ++i) {
rtc::Event* event = &events[i];
queue->PostDelayedTask(
[event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event->Set();
},
TimeDelta::Millis(i));
}
for (rtc::Event& e : events)
EXPECT_TRUE(e.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayedAfterDestruct) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event run;
rtc::Event deleted;
auto queue = CreateTaskQueue(factory, "PostDelayedAfterDestruct");
absl::Cleanup cleanup = [&deleted] { deleted.Set(); };
queue->PostDelayedTask([&run, cleanup = std::move(cleanup)] { run.Set(); },
TimeDelta::Millis(100));
// Destroy the queue.
queue = nullptr;
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(TimeDelta::Seconds(1)));
EXPECT_FALSE(run.Wait(TimeDelta::Zero())); // and should not run.
}
TEST_P(TaskQueueTest, PostDelayedHighPrecisionAfterDestruct) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event run;
rtc::Event deleted;
auto queue =
CreateTaskQueue(factory, "PostDelayedHighPrecisionAfterDestruct");
absl::Cleanup cleanup = [&deleted] { deleted.Set(); };
queue->PostDelayedHighPrecisionTask(
[&run, cleanup = std::move(cleanup)] { run.Set(); },
TimeDelta::Millis(100));
// Destroy the queue.
queue = nullptr;
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(TimeDelta::Seconds(1)));
EXPECT_FALSE(run.Wait(TimeDelta::Zero())); // and should not run.
}
TEST_P(TaskQueueTest, PostedUnexecutedClosureDestroyedOnTaskQueue) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
auto queue =
CreateTaskQueue(factory, "PostedUnexecutedClosureDestroyedOnTaskQueue");
TaskQueueBase* queue_ptr = queue.get();
queue->PostTask([] { SleepFor(TimeDelta::Millis(100)); });
// Give the task queue a chance to start executing the first lambda.
SleepFor(TimeDelta::Millis(10));
// Then ensure the next lambda (which is likely not executing yet) is
// destroyed in the task queue context when the queue is deleted.
auto cleanup = absl::Cleanup(
[queue_ptr] { EXPECT_EQ(queue_ptr, TaskQueueBase::Current()); });
queue->PostTask([cleanup = std::move(cleanup)] {});
queue = nullptr;
}
TEST_P(TaskQueueTest, PostedExecutedClosureDestroyedOnTaskQueue) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
auto queue =
CreateTaskQueue(factory, "PostedExecutedClosureDestroyedOnTaskQueue");
TaskQueueBase* queue_ptr = queue.get();
// Ensure an executed lambda is destroyed on the task queue.
rtc::Event finished;
queue->PostTask([cleanup = absl::Cleanup([queue_ptr, &finished] {
EXPECT_EQ(queue_ptr, TaskQueueBase::Current());
finished.Set();
})] {});
finished.Wait(rtc::Event::kForever);
}
TEST_P(TaskQueueTest, PostAndReuse) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
rtc::Event event;
auto post_queue = CreateTaskQueue(factory, "PostQueue");
auto reply_queue = CreateTaskQueue(factory, "ReplyQueue");
int call_count = 0;
class ReusedTask {
public:
ReusedTask(int* counter, TaskQueueBase* reply_queue, rtc::Event* event)
: counter_(*counter), reply_queue_(reply_queue), event_(*event) {
EXPECT_EQ(counter_, 0);
}
ReusedTask(ReusedTask&&) = default;
ReusedTask& operator=(ReusedTask&&) = delete;
void operator()() && {
if (++counter_ == 1) {
reply_queue_->PostTask(std::move(*this));
// At this point, the object is in the moved-from state.
} else {
EXPECT_EQ(counter_, 2);
EXPECT_TRUE(reply_queue_->IsCurrent());
event_.Set();
}
}
private:
int& counter_;
TaskQueueBase* const reply_queue_;
rtc::Event& event_;
};
ReusedTask task(&call_count, reply_queue.get(), &event);
post_queue->PostTask(std::move(task));
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostALot) {
// Waits until DecrementCount called `count` times. Thread safe.
class BlockingCounter {
public:
explicit BlockingCounter(int initial_count) : count_(initial_count) {}
void DecrementCount() {
if (count_.DecRef() == rtc::RefCountReleaseStatus::kDroppedLastRef) {
event_.Set();
}
}
bool Wait(TimeDelta give_up_after) { return event_.Wait(give_up_after); }
private:
webrtc_impl::RefCounter count_;
rtc::Event event_;
};
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
static constexpr int kTaskCount = 0xffff;
rtc::Event posting_done;
BlockingCounter all_destroyed(kTaskCount);
int tasks_executed = 0;
auto task_queue = CreateTaskQueue(factory, "PostALot");
task_queue->PostTask([&] {
// Post tasks from the queue to guarantee that the 1st task won't be
// executed before the last one is posted.
for (int i = 0; i < kTaskCount; ++i) {
absl::Cleanup cleanup = [&] { all_destroyed.DecrementCount(); };
task_queue->PostTask([&tasks_executed, cleanup = std::move(cleanup)] {
++tasks_executed;
});
}
posting_done.Set();
});
// Before destroying the task queue wait until all child tasks are posted.
posting_done.Wait(rtc::Event::kForever);
// Destroy the task queue.
task_queue = nullptr;
// Expect all tasks are destroyed eventually. In some task queue
// implementations that might happen on a different thread after task queue is
// destroyed.
EXPECT_TRUE(all_destroyed.Wait(TimeDelta::Minutes(1)));
EXPECT_LE(tasks_executed, kTaskCount);
}
// Test posting two tasks that have shared state not protected by a
// lock. The TaskQueue should guarantee memory read-write order and
// FIFO task execution order, so the second task should always see the
// changes that were made by the first task.
//
// If the TaskQueue doesn't properly synchronize the execution of
// tasks, there will be a data race, which is undefined behavior. The
// EXPECT calls may randomly catch this, but to make the most of this
// unit test, run it under TSan or some other tool that is able to
// directly detect data races.
TEST_P(TaskQueueTest, PostTwoWithSharedUnprotectedState) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()(nullptr);
struct SharedState {
// First task will set this value to 1 and second will assert it.
int state = 0;
} state;
auto queue = CreateTaskQueue(factory, "PostTwoWithSharedUnprotectedState");
rtc::Event done;
queue->PostTask([&state, &queue, &done] {
// Post tasks from queue to guarantee, that 1st task won't be
// executed before the second one will be posted.
queue->PostTask([&state] { state.state = 1; });
queue->PostTask([&state, &done] {
EXPECT_EQ(state.state, 1);
done.Set();
});
// Check, that state changing tasks didn't start yet.
EXPECT_EQ(state.state, 0);
});
EXPECT_TRUE(done.Wait(TimeDelta::Seconds(1)));
}
// TaskQueueTest is a set of tests for any implementation of the TaskQueueBase.
// Tests are instantiated next to the concrete implementation(s).
// https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#creating-value-parameterized-abstract-tests
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(TaskQueueTest);
} // namespace
} // namespace webrtc
|