blob: d895afab7be7ba4f191865d64e0ebb1f4359fae1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/vad/gmm.h"
#include <math.h>
#include "modules/audio_processing/vad/noise_gmm_tables.h"
#include "modules/audio_processing/vad/voice_gmm_tables.h"
#include "test/gtest.h"
namespace webrtc {
TEST(GmmTest, EvaluateGmm) {
GmmParameters noise_gmm;
GmmParameters voice_gmm;
// Setup noise GMM.
noise_gmm.dimension = kNoiseGmmDim;
noise_gmm.num_mixtures = kNoiseGmmNumMixtures;
noise_gmm.weight = kNoiseGmmWeights;
noise_gmm.mean = &kNoiseGmmMean[0][0];
noise_gmm.covar_inverse = &kNoiseGmmCovarInverse[0][0][0];
// Setup voice GMM.
voice_gmm.dimension = kVoiceGmmDim;
voice_gmm.num_mixtures = kVoiceGmmNumMixtures;
voice_gmm.weight = kVoiceGmmWeights;
voice_gmm.mean = &kVoiceGmmMean[0][0];
voice_gmm.covar_inverse = &kVoiceGmmCovarInverse[0][0][0];
// Test vectors. These are the mean of the GMM means.
const double kXVoice[kVoiceGmmDim] = {-1.35893162459863, 602.862491970368,
178.022069191324};
const double kXNoise[kNoiseGmmDim] = {-2.33443722724409, 2827.97828765184,
141.114178166812};
// Expected pdf values. These values are computed in MATLAB using EvalGmm.m
const double kPdfNoise = 1.88904409403101e-07;
const double kPdfVoice = 1.30453996982266e-06;
// Relative error should be smaller that the following value.
const double kAcceptedRelativeErr = 1e-10;
// Test Voice.
double pdf = EvaluateGmm(kXVoice, voice_gmm);
EXPECT_GT(pdf, 0);
double relative_error = fabs(pdf - kPdfVoice) / kPdfVoice;
EXPECT_LE(relative_error, kAcceptedRelativeErr);
// Test Noise.
pdf = EvaluateGmm(kXNoise, noise_gmm);
EXPECT_GT(pdf, 0);
relative_error = fabs(pdf - kPdfNoise) / kPdfNoise;
EXPECT_LE(relative_error, kAcceptedRelativeErr);
}
} // namespace webrtc
|