summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/pacing/pacing_controller.cc
blob: 3ba7598cc229c1e289e655d03713721d771668ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/*
 *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/pacing/pacing_controller.h"

#include <algorithm>
#include <memory>
#include <utility>
#include <vector>

#include "absl/strings/match.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/clock.h"

namespace webrtc {
namespace {
// Time limit in milliseconds between packet bursts.
constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis(5);
constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500);
// TODO(sprang): Consider dropping this limit.
// The maximum debt level, in terms of time, capped when sending packets.
constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500);
constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2);

bool IsDisabled(const FieldTrialsView& field_trials, absl::string_view key) {
  return absl::StartsWith(field_trials.Lookup(key), "Disabled");
}

bool IsEnabled(const FieldTrialsView& field_trials, absl::string_view key) {
  return absl::StartsWith(field_trials.Lookup(key), "Enabled");
}

}  // namespace

const TimeDelta PacingController::kMaxExpectedQueueLength =
    TimeDelta::Millis(2000);
const TimeDelta PacingController::kPausedProcessInterval =
    kCongestedPacketInterval;
const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1);
const TimeDelta PacingController::kTargetPaddingDuration = TimeDelta::Millis(5);
const TimeDelta PacingController::kMaxPaddingReplayDuration =
    TimeDelta::Millis(50);
const TimeDelta PacingController::kMaxEarlyProbeProcessing =
    TimeDelta::Millis(1);

PacingController::PacingController(Clock* clock,
                                   PacketSender* packet_sender,
                                   const FieldTrialsView& field_trials)
    : clock_(clock),
      packet_sender_(packet_sender),
      field_trials_(field_trials),
      drain_large_queues_(
          !IsDisabled(field_trials_, "WebRTC-Pacer-DrainQueue")),
      send_padding_if_silent_(
          IsEnabled(field_trials_, "WebRTC-Pacer-PadInSilence")),
      pace_audio_(IsEnabled(field_trials_, "WebRTC-Pacer-BlockAudio")),
      ignore_transport_overhead_(
          IsEnabled(field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")),
      fast_retransmissions_(
          IsEnabled(field_trials_, "WebRTC-Pacer-FastRetransmissions")),
      min_packet_limit_(kDefaultMinPacketLimit),
      transport_overhead_per_packet_(DataSize::Zero()),
      send_burst_interval_(TimeDelta::Zero()),
      last_timestamp_(clock_->CurrentTime()),
      paused_(false),
      media_debt_(DataSize::Zero()),
      padding_debt_(DataSize::Zero()),
      pacing_rate_(DataRate::Zero()),
      adjusted_media_rate_(DataRate::Zero()),
      padding_rate_(DataRate::Zero()),
      prober_(field_trials_),
      probing_send_failure_(false),
      last_process_time_(clock->CurrentTime()),
      last_send_time_(last_process_time_),
      seen_first_packet_(false),
      packet_queue_(/*creation_time=*/last_process_time_),
      congested_(false),
      queue_time_limit_(kMaxExpectedQueueLength),
      account_for_audio_(false),
      include_overhead_(false),
      circuit_breaker_threshold_(1 << 16) {
  if (!drain_large_queues_) {
    RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
                           "pushback experiment must be enabled.";
  }
  FieldTrialParameter<int> min_packet_limit_ms("", min_packet_limit_.ms());
  ParseFieldTrial({&min_packet_limit_ms},
                  field_trials_.Lookup("WebRTC-Pacer-MinPacketLimitMs"));
  min_packet_limit_ = TimeDelta::Millis(min_packet_limit_ms.Get());
  UpdateBudgetWithElapsedTime(min_packet_limit_);
}

PacingController::~PacingController() = default;

void PacingController::CreateProbeClusters(
    rtc::ArrayView<const ProbeClusterConfig> probe_cluster_configs) {
  for (const ProbeClusterConfig probe_cluster_config : probe_cluster_configs) {
    prober_.CreateProbeCluster(probe_cluster_config);
  }
}

void PacingController::Pause() {
  if (!paused_)
    RTC_LOG(LS_INFO) << "PacedSender paused.";
  paused_ = true;
  packet_queue_.SetPauseState(true, CurrentTime());
}

void PacingController::Resume() {
  if (paused_)
    RTC_LOG(LS_INFO) << "PacedSender resumed.";
  paused_ = false;
  packet_queue_.SetPauseState(false, CurrentTime());
}

bool PacingController::IsPaused() const {
  return paused_;
}

void PacingController::SetCongested(bool congested) {
  if (congested_ && !congested) {
    UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(CurrentTime()));
  }
  congested_ = congested;
}

void PacingController::SetCircuitBreakerThreshold(int num_iterations) {
  circuit_breaker_threshold_ = num_iterations;
}

void PacingController::RemovePacketsForSsrc(uint32_t ssrc) {
  packet_queue_.RemovePacketsForSsrc(ssrc);
}

bool PacingController::IsProbing() const {
  return prober_.is_probing();
}

Timestamp PacingController::CurrentTime() const {
  Timestamp time = clock_->CurrentTime();
  if (time < last_timestamp_) {
    RTC_LOG(LS_WARNING)
        << "Non-monotonic clock behavior observed. Previous timestamp: "
        << last_timestamp_.ms() << ", new timestamp: " << time.ms();
    RTC_DCHECK_GE(time, last_timestamp_);
    time = last_timestamp_;
  }
  last_timestamp_ = time;
  return time;
}

void PacingController::SetProbingEnabled(bool enabled) {
  RTC_CHECK(!seen_first_packet_);
  prober_.SetEnabled(enabled);
}

void PacingController::SetPacingRates(DataRate pacing_rate,
                                      DataRate padding_rate) {
  static constexpr DataRate kMaxRate = DataRate::KilobitsPerSec(100'000);
  RTC_CHECK_GT(pacing_rate, DataRate::Zero());
  RTC_CHECK_GE(padding_rate, DataRate::Zero());
  if (padding_rate > pacing_rate) {
    RTC_LOG(LS_WARNING) << "Padding rate " << padding_rate.kbps()
                        << "kbps is higher than the pacing rate "
                        << pacing_rate.kbps() << "kbps, capping.";
    padding_rate = pacing_rate;
  }

  if (pacing_rate > kMaxRate || padding_rate > kMaxRate) {
    RTC_LOG(LS_WARNING) << "Very high pacing rates ( > " << kMaxRate.kbps()
                        << " kbps) configured: pacing = " << pacing_rate.kbps()
                        << " kbps, padding = " << padding_rate.kbps()
                        << " kbps.";
  }
  pacing_rate_ = pacing_rate;
  padding_rate_ = padding_rate;
  MaybeUpdateMediaRateDueToLongQueue(CurrentTime());

  RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps=" << pacing_rate_.kbps()
                      << " padding_budget_kbps=" << padding_rate.kbps();
}

void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
  RTC_DCHECK(pacing_rate_ > DataRate::Zero())
      << "SetPacingRate must be called before InsertPacket.";
  RTC_CHECK(packet->packet_type());

  prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size()));

  const Timestamp now = CurrentTime();
  if (packet_queue_.Empty()) {
    // If queue is empty, we need to "fast-forward" the last process time,
    // so that we don't use passed time as budget for sending the first new
    // packet.
    Timestamp target_process_time = now;
    Timestamp next_send_time = NextSendTime();
    if (next_send_time.IsFinite()) {
      // There was already a valid planned send time, such as a keep-alive.
      // Use that as last process time only if it's prior to now.
      target_process_time = std::min(now, next_send_time);
    }
    UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_process_time));
  }
  packet_queue_.Push(now, std::move(packet));
  seen_first_packet_ = true;

  // Queue length has increased, check if we need to change the pacing rate.
  MaybeUpdateMediaRateDueToLongQueue(now);
}

void PacingController::SetAccountForAudioPackets(bool account_for_audio) {
  account_for_audio_ = account_for_audio;
}

void PacingController::SetIncludeOverhead() {
  include_overhead_ = true;
}

void PacingController::SetTransportOverhead(DataSize overhead_per_packet) {
  if (ignore_transport_overhead_)
    return;
  transport_overhead_per_packet_ = overhead_per_packet;
}

void PacingController::SetSendBurstInterval(TimeDelta burst_interval) {
  send_burst_interval_ = burst_interval;
}

TimeDelta PacingController::ExpectedQueueTime() const {
  RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero());
  return QueueSizeData() / adjusted_media_rate_;
}

size_t PacingController::QueueSizePackets() const {
  return rtc::checked_cast<size_t>(packet_queue_.SizeInPackets());
}

const std::array<int, kNumMediaTypes>&
PacingController::SizeInPacketsPerRtpPacketMediaType() const {
  return packet_queue_.SizeInPacketsPerRtpPacketMediaType();
}

DataSize PacingController::QueueSizeData() const {
  DataSize size = packet_queue_.SizeInPayloadBytes();
  if (include_overhead_) {
    size += static_cast<int64_t>(packet_queue_.SizeInPackets()) *
            transport_overhead_per_packet_;
  }
  return size;
}

DataSize PacingController::CurrentBufferLevel() const {
  return std::max(media_debt_, padding_debt_);
}

absl::optional<Timestamp> PacingController::FirstSentPacketTime() const {
  return first_sent_packet_time_;
}

Timestamp PacingController::OldestPacketEnqueueTime() const {
  return packet_queue_.OldestEnqueueTime();
}

TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) {
  // If no previous processing, or last process was "in the future" because of
  // early probe processing, then there is no elapsed time to add budget for.
  if (last_process_time_.IsMinusInfinity() || now < last_process_time_) {
    return TimeDelta::Zero();
  }
  TimeDelta elapsed_time = now - last_process_time_;
  last_process_time_ = now;
  if (elapsed_time > kMaxElapsedTime) {
    RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms()
                        << " ms) longer than expected, limiting to "
                        << kMaxElapsedTime.ms();
    elapsed_time = kMaxElapsedTime;
  }
  return elapsed_time;
}

bool PacingController::ShouldSendKeepalive(Timestamp now) const {
  if (send_padding_if_silent_ || paused_ || congested_ || !seen_first_packet_) {
    // We send a padding packet every 500 ms to ensure we won't get stuck in
    // congested state due to no feedback being received.
    if (now - last_send_time_ >= kCongestedPacketInterval) {
      return true;
    }
  }
  return false;
}

Timestamp PacingController::NextSendTime() const {
  const Timestamp now = CurrentTime();
  Timestamp next_send_time = Timestamp::PlusInfinity();

  if (paused_) {
    return last_send_time_ + kPausedProcessInterval;
  }

  // If probing is active, that always takes priority.
  if (prober_.is_probing() && !probing_send_failure_) {
    Timestamp probe_time = prober_.NextProbeTime(now);
    if (!probe_time.IsPlusInfinity()) {
      return probe_time.IsMinusInfinity() ? now : probe_time;
    }
  }

  // If queue contains a packet which should not be paced, its target send time
  // is the time at which it was enqueued.
  Timestamp unpaced_send_time = NextUnpacedSendTime();
  if (unpaced_send_time.IsFinite()) {
    return unpaced_send_time;
  }

  if (congested_ || !seen_first_packet_) {
    // We need to at least send keep-alive packets with some interval.
    return last_send_time_ + kCongestedPacketInterval;
  }

  if (adjusted_media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) {
    // If packets are allowed to be sent in a burst, the
    // debt is allowed to grow up to one packet more than what can be sent
    // during 'send_burst_period_'.
    TimeDelta drain_time = media_debt_ / adjusted_media_rate_;
    next_send_time =
        last_process_time_ +
        ((send_burst_interval_ > drain_time) ? TimeDelta::Zero() : drain_time);
  } else if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) {
    // If we _don't_ have pending packets, check how long until we have
    // bandwidth for padding packets. Both media and padding debts must
    // have been drained to do this.
    RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero());
    TimeDelta drain_time = std::max(media_debt_ / adjusted_media_rate_,
                                    padding_debt_ / padding_rate_);

    if (drain_time.IsZero() &&
        (!media_debt_.IsZero() || !padding_debt_.IsZero())) {
      // We have a non-zero debt, but drain time is smaller than tick size of
      // TimeDelta, round it up to the smallest possible non-zero delta.
      drain_time = TimeDelta::Micros(1);
    }
    next_send_time = last_process_time_ + drain_time;
  } else {
    // Nothing to do.
    next_send_time = last_process_time_ + kPausedProcessInterval;
  }

  if (send_padding_if_silent_) {
    next_send_time =
        std::min(next_send_time, last_send_time_ + kPausedProcessInterval);
  }

  return next_send_time;
}

void PacingController::ProcessPackets() {
  const Timestamp now = CurrentTime();
  Timestamp target_send_time = now;

  if (ShouldSendKeepalive(now)) {
    DataSize keepalive_data_sent = DataSize::Zero();
    // We can not send padding unless a normal packet has first been sent. If
    // we do, timestamps get messed up.
    if (seen_first_packet_) {
      std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
          packet_sender_->GeneratePadding(DataSize::Bytes(1));
      for (auto& packet : keepalive_packets) {
        keepalive_data_sent +=
            DataSize::Bytes(packet->payload_size() + packet->padding_size());
        packet_sender_->SendPacket(std::move(packet), PacedPacketInfo());
        for (auto& packet : packet_sender_->FetchFec()) {
          EnqueuePacket(std::move(packet));
        }
      }
    }
    OnPacketSent(RtpPacketMediaType::kPadding, keepalive_data_sent, now);
  }

  if (paused_) {
    return;
  }

  TimeDelta early_execute_margin =
      prober_.is_probing() ? kMaxEarlyProbeProcessing : TimeDelta::Zero();

  target_send_time = NextSendTime();
  if (now + early_execute_margin < target_send_time) {
    // We are too early, but if queue is empty still allow draining some debt.
    // Probing is allowed to be sent up to kMinSleepTime early.
    UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(now));
    return;
  }

  TimeDelta elapsed_time = UpdateTimeAndGetElapsed(target_send_time);

  if (elapsed_time > TimeDelta::Zero()) {
    UpdateBudgetWithElapsedTime(elapsed_time);
  }

  PacedPacketInfo pacing_info;
  DataSize recommended_probe_size = DataSize::Zero();
  bool is_probing = prober_.is_probing();
  if (is_probing) {
    // Probe timing is sensitive, and handled explicitly by BitrateProber, so
    // use actual send time rather than target.
    pacing_info = prober_.CurrentCluster(now).value_or(PacedPacketInfo());
    if (pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe) {
      recommended_probe_size = prober_.RecommendedMinProbeSize();
      RTC_DCHECK_GT(recommended_probe_size, DataSize::Zero());
    } else {
      // No valid probe cluster returned, probe might have timed out.
      is_probing = false;
    }
  }

  DataSize data_sent = DataSize::Zero();
  int iteration = 0;
  int packets_sent = 0;
  int padding_packets_generated = 0;
  for (; iteration < circuit_breaker_threshold_; ++iteration) {
    // Fetch packet, so long as queue is not empty or budget is not
    // exhausted.
    std::unique_ptr<RtpPacketToSend> rtp_packet =
        GetPendingPacket(pacing_info, target_send_time, now);
    if (rtp_packet == nullptr) {
      // No packet available to send, check if we should send padding.
      if (now - target_send_time > kMaxPaddingReplayDuration) {
        // The target send time is more than `kMaxPaddingReplayDuration` behind
        // the real-time clock. This can happen if the clock is adjusted forward
        // without `ProcessPackets()` having been called at the expected times.
        target_send_time = now - kMaxPaddingReplayDuration;
        last_process_time_ = std::max(last_process_time_, target_send_time);
      }

      DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent);
      if (padding_to_add > DataSize::Zero()) {
        std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
            packet_sender_->GeneratePadding(padding_to_add);
        if (!padding_packets.empty()) {
          padding_packets_generated += padding_packets.size();
          for (auto& packet : padding_packets) {
            EnqueuePacket(std::move(packet));
          }
          // Continue loop to send the padding that was just added.
          continue;
        } else {
          // Can't generate padding, still update padding budget for next send
          // time.
          UpdatePaddingBudgetWithSentData(padding_to_add);
        }
      }
      // Can't fetch new packet and no padding to send, exit send loop.
      break;
    } else {
      RTC_DCHECK(rtp_packet);
      RTC_DCHECK(rtp_packet->packet_type().has_value());
      const RtpPacketMediaType packet_type = *rtp_packet->packet_type();
      DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() +
                                             rtp_packet->padding_size());

      if (include_overhead_) {
        packet_size += DataSize::Bytes(rtp_packet->headers_size()) +
                       transport_overhead_per_packet_;
      }

      packet_sender_->SendPacket(std::move(rtp_packet), pacing_info);
      for (auto& packet : packet_sender_->FetchFec()) {
        EnqueuePacket(std::move(packet));
      }
      data_sent += packet_size;
      ++packets_sent;

      // Send done, update send time.
      OnPacketSent(packet_type, packet_size, now);

      if (is_probing) {
        pacing_info.probe_cluster_bytes_sent += packet_size.bytes();
        // If we are currently probing, we need to stop the send loop when we
        // have reached the send target.
        if (data_sent >= recommended_probe_size) {
          break;
        }
      }

      // Update target send time in case that are more packets that we are late
      // in processing.
      target_send_time = NextSendTime();
      if (target_send_time > now) {
        // Exit loop if not probing.
        if (!is_probing) {
          break;
        }
        target_send_time = now;
      }
      UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_send_time));
    }
  }

  if (iteration >= circuit_breaker_threshold_) {
    // Circuit break activated. Log warning, adjust send time and return.
    // TODO(sprang): Consider completely clearing state.
    RTC_LOG(LS_ERROR)
        << "PacingController exceeded max iterations in "
           "send-loop. Debug info: "
        << " packets sent = " << packets_sent
        << ", padding packets generated = " << padding_packets_generated
        << ", bytes sent = " << data_sent.bytes()
        << ", probing = " << (is_probing ? "true" : "false")
        << ", recommended_probe_size = " << recommended_probe_size.bytes()
        << ", now = " << now.us()
        << ", target_send_time = " << target_send_time.us()
        << ", last_process_time = " << last_process_time_.us()
        << ", last_send_time = " << last_send_time_.us()
        << ", paused = " << (paused_ ? "true" : "false")
        << ", media_debt = " << media_debt_.bytes()
        << ", padding_debt = " << padding_debt_.bytes()
        << ", pacing_rate = " << pacing_rate_.bps()
        << ", adjusted_media_rate = " << adjusted_media_rate_.bps()
        << ", padding_rate = " << padding_rate_.bps()
        << ", queue size (packets) = " << packet_queue_.SizeInPackets()
        << ", queue size (payload bytes) = "
        << packet_queue_.SizeInPayloadBytes();
    last_send_time_ = now;
    last_process_time_ = now;
    return;
  }

  if (is_probing) {
    probing_send_failure_ = data_sent == DataSize::Zero();
    if (!probing_send_failure_) {
      prober_.ProbeSent(CurrentTime(), data_sent);
    }
  }

  // Queue length has probably decreased, check if pacing rate needs to updated.
  // Poll the time again, since we might have enqueued new fec/padding packets
  // with a later timestamp than `now`.
  MaybeUpdateMediaRateDueToLongQueue(CurrentTime());
}

DataSize PacingController::PaddingToAdd(DataSize recommended_probe_size,
                                        DataSize data_sent) const {
  if (!packet_queue_.Empty()) {
    // Actual payload available, no need to add padding.
    return DataSize::Zero();
  }

  if (congested_) {
    // Don't add padding if congested, even if requested for probing.
    return DataSize::Zero();
  }

  if (!seen_first_packet_) {
    // We can not send padding unless a normal packet has first been sent. If
    // we do, timestamps get messed up.
    return DataSize::Zero();
  }

  if (!recommended_probe_size.IsZero()) {
    if (recommended_probe_size > data_sent) {
      return recommended_probe_size - data_sent;
    }
    return DataSize::Zero();
  }

  if (padding_rate_ > DataRate::Zero() && padding_debt_ == DataSize::Zero()) {
    return kTargetPaddingDuration * padding_rate_;
  }
  return DataSize::Zero();
}

std::unique_ptr<RtpPacketToSend> PacingController::GetPendingPacket(
    const PacedPacketInfo& pacing_info,
    Timestamp target_send_time,
    Timestamp now) {
  const bool is_probe =
      pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe;
  // If first packet in probe, insert a small padding packet so we have a
  // more reliable start window for the rate estimation.
  if (is_probe && pacing_info.probe_cluster_bytes_sent == 0) {
    auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1));
    // If no RTP modules sending media are registered, we may not get a
    // padding packet back.
    if (!padding.empty()) {
      // We should never get more than one padding packets with a requested
      // size of 1 byte.
      RTC_DCHECK_EQ(padding.size(), 1u);
      return std::move(padding[0]);
    }
  }

  if (packet_queue_.Empty()) {
    return nullptr;
  }

  // First, check if there is any reason _not_ to send the next queued packet.
  // Unpaced packets and probes are exempted from send checks.
  if (NextUnpacedSendTime().IsInfinite() && !is_probe) {
    if (congested_) {
      // Don't send anything if congested.
      return nullptr;
    }

    if (now <= target_send_time && send_burst_interval_.IsZero()) {
      // We allow sending slightly early if we think that we would actually
      // had been able to, had we been right on time - i.e. the current debt
      // is not more than would be reduced to zero at the target sent time.
      // If we allow packets to be sent in a burst, packet are allowed to be
      // sent early.
      TimeDelta flush_time = media_debt_ / adjusted_media_rate_;
      if (now + flush_time > target_send_time) {
        return nullptr;
      }
    }
  }

  return packet_queue_.Pop();
}

void PacingController::OnPacketSent(RtpPacketMediaType packet_type,
                                    DataSize packet_size,
                                    Timestamp send_time) {
  if (!first_sent_packet_time_ && packet_type != RtpPacketMediaType::kPadding) {
    first_sent_packet_time_ = send_time;
  }

  bool audio_packet = packet_type == RtpPacketMediaType::kAudio;
  if ((!audio_packet || account_for_audio_) && packet_size > DataSize::Zero()) {
    UpdateBudgetWithSentData(packet_size);
  }

  last_send_time_ = send_time;
}

void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) {
  media_debt_ -= std::min(media_debt_, adjusted_media_rate_ * delta);
  padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta);
}

void PacingController::UpdateBudgetWithSentData(DataSize size) {
  media_debt_ += size;
  media_debt_ = std::min(media_debt_, adjusted_media_rate_ * kMaxDebtInTime);
  UpdatePaddingBudgetWithSentData(size);
}

void PacingController::UpdatePaddingBudgetWithSentData(DataSize size) {
  padding_debt_ += size;
  padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime);
}

void PacingController::SetQueueTimeLimit(TimeDelta limit) {
  queue_time_limit_ = limit;
}

void PacingController::MaybeUpdateMediaRateDueToLongQueue(Timestamp now) {
  adjusted_media_rate_ = pacing_rate_;
  if (!drain_large_queues_) {
    return;
  }

  DataSize queue_size_data = QueueSizeData();
  if (queue_size_data > DataSize::Zero()) {
    // Assuming equal size packets and input/output rate, the average packet
    // has avg_time_left_ms left to get queue_size_bytes out of the queue, if
    // time constraint shall be met. Determine bitrate needed for that.
    packet_queue_.UpdateAverageQueueTime(now);
    TimeDelta avg_time_left =
        std::max(TimeDelta::Millis(1),
                 queue_time_limit_ - packet_queue_.AverageQueueTime());
    DataRate min_rate_needed = queue_size_data / avg_time_left;
    if (min_rate_needed > pacing_rate_) {
      adjusted_media_rate_ = min_rate_needed;
      RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
                          << pacing_rate_.kbps();
    }
  }
}

Timestamp PacingController::NextUnpacedSendTime() const {
  if (!pace_audio_) {
    Timestamp leading_audio_send_time =
        packet_queue_.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio);
    if (leading_audio_send_time.IsFinite()) {
      return leading_audio_send_time;
    }
  }
  if (fast_retransmissions_) {
    Timestamp leading_retransmission_send_time =
        packet_queue_.LeadingPacketEnqueueTime(
            RtpPacketMediaType::kRetransmission);
    if (leading_retransmission_send_time.IsFinite()) {
      return leading_retransmission_send_time;
    }
  }
  return Timestamp::MinusInfinity();
}

}  // namespace webrtc