summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/video_coding/video_codec_initializer.cc
blob: e1885d74c8bcd7fbece2ebad8f6e3116963818b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/video_coding/include/video_codec_initializer.h"

#include <stdint.h>
#include <string.h>

#include <algorithm>

#include "absl/types/optional.h"
#include "api/scoped_refptr.h"
#include "api/units/data_rate.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video_codecs/video_encoder.h"
#include "modules/video_coding/codecs/av1/av1_svc_config.h"
#include "modules/video_coding/codecs/vp8/vp8_scalability.h"
#include "modules/video_coding/codecs/vp9/svc_config.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "modules/video_coding/svc/scalability_mode_util.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/min_video_bitrate_experiment.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"

namespace webrtc {

bool VideoCodecInitializer::SetupCodec(const VideoEncoderConfig& config,
                                       const std::vector<VideoStream>& streams,
                                       VideoCodec* codec) {
  if (config.codec_type == kVideoCodecMultiplex) {
    VideoEncoderConfig associated_config = config.Copy();
    associated_config.codec_type = kVideoCodecVP9;
    if (!SetupCodec(associated_config, streams, codec)) {
      RTC_LOG(LS_ERROR) << "Failed to create stereo encoder configuration.";
      return false;
    }
    codec->codecType = kVideoCodecMultiplex;
    return true;
  }

  *codec = VideoEncoderConfigToVideoCodec(config, streams);
  return true;
}

// TODO(sprang): Split this up and separate the codec specific parts.
VideoCodec VideoCodecInitializer::VideoEncoderConfigToVideoCodec(
    const VideoEncoderConfig& config,
    const std::vector<VideoStream>& streams) {
  static const int kEncoderMinBitrateKbps = 30;
  RTC_DCHECK(!streams.empty());
  RTC_DCHECK_GE(config.min_transmit_bitrate_bps, 0);

  VideoCodec video_codec;
  video_codec.codecType = config.codec_type;

  switch (config.content_type) {
    case VideoEncoderConfig::ContentType::kRealtimeVideo:
      video_codec.mode = VideoCodecMode::kRealtimeVideo;
      break;
    case VideoEncoderConfig::ContentType::kScreen:
      video_codec.mode = VideoCodecMode::kScreensharing;
      break;
  }

  video_codec.legacy_conference_mode =
      config.content_type == VideoEncoderConfig::ContentType::kScreen &&
      config.legacy_conference_mode;

  video_codec.SetFrameDropEnabled(config.frame_drop_enabled);
  video_codec.numberOfSimulcastStreams =
      static_cast<unsigned char>(streams.size());
  video_codec.minBitrate = streams[0].min_bitrate_bps / 1000;
  bool codec_active = false;
  // Active configuration might not be fully copied to `streams` for SVC yet.
  // Therefore the `config` is checked here.
  for (const VideoStream& stream : config.simulcast_layers) {
    if (stream.active) {
      codec_active = true;
      break;
    }
  }
  // Set active for the entire video codec for the non simulcast case.
  video_codec.active = codec_active;
  if (video_codec.minBitrate < kEncoderMinBitrateKbps)
    video_codec.minBitrate = kEncoderMinBitrateKbps;
  video_codec.timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
                                         kDefaultOutlierFrameSizePercent};
  RTC_DCHECK_LE(streams.size(), kMaxSimulcastStreams);

  int max_framerate = 0;

  absl::optional<ScalabilityMode> scalability_mode =
      streams[0].scalability_mode;
  for (size_t i = 0; i < streams.size(); ++i) {
    SimulcastStream* sim_stream = &video_codec.simulcastStream[i];
    RTC_DCHECK_GT(streams[i].width, 0);
    RTC_DCHECK_GT(streams[i].height, 0);
    RTC_DCHECK_GT(streams[i].max_framerate, 0);
    RTC_DCHECK_GE(streams[i].min_bitrate_bps, 0);
    RTC_DCHECK_GE(streams[i].target_bitrate_bps, streams[i].min_bitrate_bps);
    RTC_DCHECK_GE(streams[i].max_bitrate_bps, streams[i].target_bitrate_bps);
    RTC_DCHECK_GE(streams[i].max_qp, 0);

    sim_stream->width = static_cast<uint16_t>(streams[i].width);
    sim_stream->height = static_cast<uint16_t>(streams[i].height);
    sim_stream->maxFramerate = streams[i].max_framerate;
    sim_stream->minBitrate = streams[i].min_bitrate_bps / 1000;
    sim_stream->targetBitrate = streams[i].target_bitrate_bps / 1000;
    sim_stream->maxBitrate = streams[i].max_bitrate_bps / 1000;
    sim_stream->qpMax = streams[i].max_qp;

    int num_temporal_layers =
        streams[i].scalability_mode.has_value()
            ? ScalabilityModeToNumTemporalLayers(*streams[i].scalability_mode)
            : streams[i].num_temporal_layers.value_or(1);

    sim_stream->numberOfTemporalLayers =
        static_cast<unsigned char>(num_temporal_layers);
    sim_stream->active = streams[i].active;

    video_codec.width =
        std::max(video_codec.width, static_cast<uint16_t>(streams[i].width));
    video_codec.height =
        std::max(video_codec.height, static_cast<uint16_t>(streams[i].height));
    video_codec.minBitrate =
        std::min(static_cast<uint16_t>(video_codec.minBitrate),
                 static_cast<uint16_t>(streams[i].min_bitrate_bps / 1000));
    video_codec.maxBitrate += streams[i].max_bitrate_bps / 1000;
    video_codec.qpMax = std::max(video_codec.qpMax,
                                 static_cast<unsigned int>(streams[i].max_qp));
    max_framerate = std::max(max_framerate, streams[i].max_framerate);

    // TODO(bugs.webrtc.org/11607): Since scalability mode is a top-level
    // setting on VideoCodec, setting it makes sense only if it is the same for
    // all simulcast streams.
    if (streams[0].scalability_mode != streams[i].scalability_mode) {
      scalability_mode.reset();
      // For VP8, top-level scalability mode doesn't matter, since configuration
      // is based on the per-simulcast stream configuration of temporal layers.
      if (video_codec.codecType != kVideoCodecVP8) {
        RTC_LOG(LS_WARNING) << "Inconsistent scalability modes configured.";
      }
    }
  }

  if (scalability_mode.has_value()) {
    video_codec.SetScalabilityMode(*scalability_mode);
  }

  if (video_codec.maxBitrate == 0) {
    // Unset max bitrate -> cap to one bit per pixel.
    video_codec.maxBitrate =
        (video_codec.width * video_codec.height * video_codec.maxFramerate) /
        1000;
  }
  if (video_codec.maxBitrate < kEncoderMinBitrateKbps)
    video_codec.maxBitrate = kEncoderMinBitrateKbps;

  video_codec.maxFramerate = max_framerate;
  video_codec.spatialLayers[0] = {0};
  video_codec.spatialLayers[0].width = video_codec.width;
  video_codec.spatialLayers[0].height = video_codec.height;
  video_codec.spatialLayers[0].maxFramerate = max_framerate;
  video_codec.spatialLayers[0].numberOfTemporalLayers =
      streams[0].scalability_mode.has_value()
          ? ScalabilityModeToNumTemporalLayers(*streams[0].scalability_mode)
          : streams[0].num_temporal_layers.value_or(1);

  // Set codec specific options
  if (config.encoder_specific_settings)
    config.encoder_specific_settings->FillEncoderSpecificSettings(&video_codec);

  switch (video_codec.codecType) {
    case kVideoCodecVP8: {
      if (!config.encoder_specific_settings) {
        *video_codec.VP8() = VideoEncoder::GetDefaultVp8Settings();
      }

      // Validate specified scalability modes. If some layer has an unsupported
      // mode, store it as the top-level scalability mode, which will make
      // InitEncode fail with an appropriate error.
      for (const auto& stream : streams) {
        if (stream.scalability_mode.has_value() &&
            !VP8SupportsScalabilityMode(*stream.scalability_mode)) {
          RTC_LOG(LS_WARNING)
              << "Invalid scalability mode for VP8: "
              << ScalabilityModeToString(*stream.scalability_mode);
          video_codec.SetScalabilityMode(*stream.scalability_mode);
          break;
        }
      }
      video_codec.VP8()->numberOfTemporalLayers =
          streams.back().scalability_mode.has_value()
              ? ScalabilityModeToNumTemporalLayers(
                    *streams.back().scalability_mode)
              : streams.back().num_temporal_layers.value_or(
                    video_codec.VP8()->numberOfTemporalLayers);

      RTC_DCHECK_GE(video_codec.VP8()->numberOfTemporalLayers, 1);
      RTC_DCHECK_LE(video_codec.VP8()->numberOfTemporalLayers,
                    kMaxTemporalStreams);

      break;
    }
    case kVideoCodecVP9: {
      // Force the first stream to always be active.
      video_codec.simulcastStream[0].active = codec_active;

      if (!config.encoder_specific_settings) {
        *video_codec.VP9() = VideoEncoder::GetDefaultVp9Settings();
      }

      video_codec.VP9()->numberOfTemporalLayers = static_cast<unsigned char>(
          streams.back().num_temporal_layers.value_or(
              video_codec.VP9()->numberOfTemporalLayers));
      RTC_DCHECK_GE(video_codec.VP9()->numberOfTemporalLayers, 1);
      RTC_DCHECK_LE(video_codec.VP9()->numberOfTemporalLayers,
                    kMaxTemporalStreams);

      RTC_DCHECK(config.spatial_layers.empty() ||
                 config.spatial_layers.size() ==
                     video_codec.VP9()->numberOfSpatialLayers);

      std::vector<SpatialLayer> spatial_layers;
      if (!config.spatial_layers.empty()) {
        // Layering is set explicitly.
        spatial_layers = config.spatial_layers;
      } else if (scalability_mode.has_value()) {
        // Layering is set via scalability mode.
        spatial_layers = GetVp9SvcConfig(video_codec);
        if (spatial_layers.empty())
          break;
      } else {
        size_t first_active_layer = 0;
        for (size_t spatial_idx = 0;
             spatial_idx < config.simulcast_layers.size(); ++spatial_idx) {
          if (config.simulcast_layers[spatial_idx].active) {
            first_active_layer = spatial_idx;
            break;
          }
        }

        spatial_layers = GetSvcConfig(
            video_codec.width, video_codec.height, video_codec.maxFramerate,
            first_active_layer, video_codec.VP9()->numberOfSpatialLayers,
            video_codec.VP9()->numberOfTemporalLayers,
            video_codec.mode == VideoCodecMode::kScreensharing);

        // If there was no request for spatial layering, don't limit bitrate
        // of single spatial layer.
        const bool no_spatial_layering =
            video_codec.VP9()->numberOfSpatialLayers <= 1;
        if (no_spatial_layering) {
          // Use codec's bitrate limits.
          spatial_layers.back().minBitrate = video_codec.minBitrate;
          spatial_layers.back().targetBitrate = video_codec.maxBitrate;
          spatial_layers.back().maxBitrate = video_codec.maxBitrate;
        }

        for (size_t spatial_idx = first_active_layer;
             spatial_idx < config.simulcast_layers.size() &&
             spatial_idx < spatial_layers.size() + first_active_layer;
             ++spatial_idx) {
          spatial_layers[spatial_idx - first_active_layer].active =
              config.simulcast_layers[spatial_idx].active;
        }
      }

      RTC_DCHECK(!spatial_layers.empty());
      for (size_t i = 0; i < spatial_layers.size(); ++i) {
        video_codec.spatialLayers[i] = spatial_layers[i];
      }

      // The top spatial layer dimensions may not be equal to the input
      // resolution because of the rounding or explicit configuration.
      // This difference must be propagated to the stream configuration.
      video_codec.width = spatial_layers.back().width;
      video_codec.height = spatial_layers.back().height;
      video_codec.simulcastStream[0].width = spatial_layers.back().width;
      video_codec.simulcastStream[0].height = spatial_layers.back().height;

      // Update layering settings.
      video_codec.VP9()->numberOfSpatialLayers =
          static_cast<unsigned char>(spatial_layers.size());
      RTC_DCHECK_GE(video_codec.VP9()->numberOfSpatialLayers, 1);
      RTC_DCHECK_LE(video_codec.VP9()->numberOfSpatialLayers,
                    kMaxSpatialLayers);

      video_codec.VP9()->numberOfTemporalLayers = static_cast<unsigned char>(
          spatial_layers.back().numberOfTemporalLayers);
      RTC_DCHECK_GE(video_codec.VP9()->numberOfTemporalLayers, 1);
      RTC_DCHECK_LE(video_codec.VP9()->numberOfTemporalLayers,
                    kMaxTemporalStreams);

      break;
    }
    case kVideoCodecAV1:
      if (SetAv1SvcConfig(video_codec,
                          /*num_temporal_layers=*/
                          streams.back().num_temporal_layers.value_or(1),
                          /*num_spatial_layers=*/
                          std::max<int>(config.spatial_layers.size(), 1))) {
        for (size_t i = 0; i < config.spatial_layers.size(); ++i) {
          video_codec.spatialLayers[i].active = config.spatial_layers[i].active;
        }
      } else {
        RTC_LOG(LS_WARNING) << "Failed to configure svc bitrates for av1.";
      }
      break;
    case kVideoCodecH264: {
      RTC_CHECK(!config.encoder_specific_settings);

      *video_codec.H264() = VideoEncoder::GetDefaultH264Settings();
      video_codec.H264()->numberOfTemporalLayers = static_cast<unsigned char>(
          streams.back().num_temporal_layers.value_or(
              video_codec.H264()->numberOfTemporalLayers));
      RTC_DCHECK_GE(video_codec.H264()->numberOfTemporalLayers, 1);
      RTC_DCHECK_LE(video_codec.H264()->numberOfTemporalLayers,
                    kMaxTemporalStreams);
      break;
    }
    default:
      // TODO(pbos): Support encoder_settings codec-agnostically.
      RTC_DCHECK(!config.encoder_specific_settings)
          << "Encoder-specific settings for codec type not wired up.";
      break;
  }

  const absl::optional<DataRate> experimental_min_bitrate =
      GetExperimentalMinVideoBitrate(video_codec.codecType);
  if (experimental_min_bitrate) {
    const int experimental_min_bitrate_kbps =
        rtc::saturated_cast<int>(experimental_min_bitrate->kbps());
    video_codec.minBitrate = experimental_min_bitrate_kbps;
    video_codec.simulcastStream[0].minBitrate = experimental_min_bitrate_kbps;
    if (video_codec.codecType == kVideoCodecVP9) {
      video_codec.spatialLayers[0].minBitrate = experimental_min_bitrate_kbps;
    }
  }

  return video_codec;
}

}  // namespace webrtc