1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/cpu_time.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/sleep.h"
#include "test/gtest.h"
// Only run these tests on non-instrumented builds, because timing on
// instrumented builds is unreliable, causing the test to be flaky.
#if defined(THREAD_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(ADDRESS_SANITIZER)
#define MAYBE_TEST(test_name) DISABLED_##test_name
#else
#define MAYBE_TEST(test_name) test_name
#endif
namespace {
const int kAllowedErrorMillisecs = 30;
const int kProcessingTimeMillisecs = 500;
const int kWorkingThreads = 2;
// Consumes approximately kProcessingTimeMillisecs of CPU time in single thread.
void WorkingFunction(int64_t* counter) {
*counter = 0;
int64_t stop_cpu_time =
rtc::GetThreadCpuTimeNanos() +
kProcessingTimeMillisecs * rtc::kNumNanosecsPerMillisec;
while (rtc::GetThreadCpuTimeNanos() < stop_cpu_time) {
(*counter)++;
}
}
} // namespace
namespace rtc {
// A minimal test which can be run on instrumented builds, so that they're at
// least exercising the code to check for memory leaks/etc.
TEST(CpuTimeTest, BasicTest) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
int64_t thread_start_time_nanos = GetThreadCpuTimeNanos();
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
int64_t thread_duration_nanos =
GetThreadCpuTimeNanos() - thread_start_time_nanos;
EXPECT_GE(process_duration_nanos, 0);
EXPECT_GE(thread_duration_nanos, 0);
}
TEST(CpuTimeTest, MAYBE_TEST(TwoThreads)) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
int64_t thread_start_time_nanos = GetThreadCpuTimeNanos();
int64_t counter1;
int64_t counter2;
auto thread1 = PlatformThread::SpawnJoinable(
[&counter1] { WorkingFunction(&counter1); }, "Thread1");
auto thread2 = PlatformThread::SpawnJoinable(
[&counter2] { WorkingFunction(&counter2); }, "Thread2");
thread1.Finalize();
thread2.Finalize();
EXPECT_GE(counter1, 0);
EXPECT_GE(counter2, 0);
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
int64_t thread_duration_nanos =
GetThreadCpuTimeNanos() - thread_start_time_nanos;
// This thread did almost nothing. Definetly less work than kProcessingTime.
// Therefore GetThreadCpuTime is not a wall clock.
EXPECT_LE(thread_duration_nanos,
(kProcessingTimeMillisecs - kAllowedErrorMillisecs) *
kNumNanosecsPerMillisec);
// Total process time is at least twice working threads' CPU time.
// Therefore process and thread times are correctly related.
EXPECT_GE(process_duration_nanos,
kWorkingThreads *
(kProcessingTimeMillisecs - kAllowedErrorMillisecs) *
kNumNanosecsPerMillisec);
}
TEST(CpuTimeTest, MAYBE_TEST(Sleeping)) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
webrtc::SleepMs(kProcessingTimeMillisecs);
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
// Sleeping should not introduce any additional CPU time.
// Therefore GetProcessCpuTime is not a wall clock.
EXPECT_LE(process_duration_nanos,
(kProcessingTimeMillisecs - kAllowedErrorMillisecs) *
kNumNanosecsPerMillisec);
}
} // namespace rtc
|