1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_utils/repeating_task.h"
#include <atomic>
#include <memory>
#include "absl/functional/any_invocable.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue_for_test.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
// NOTE: Since these tests rely on real time behavior, they will be flaky
// if run on heavily loaded systems.
namespace webrtc {
namespace {
using ::testing::AtLeast;
using ::testing::Invoke;
using ::testing::MockFunction;
using ::testing::NiceMock;
using ::testing::Return;
constexpr TimeDelta kTimeout = TimeDelta::Millis(1000);
class MockClosure {
public:
MOCK_METHOD(TimeDelta, Call, ());
MOCK_METHOD(void, Delete, ());
};
class MockTaskQueue : public TaskQueueBase {
public:
MockTaskQueue() : task_queue_setter_(this) {}
MOCK_METHOD(void, Delete, (), (override));
MOCK_METHOD(void, PostTask, (absl::AnyInvocable<void() &&>), (override));
MOCK_METHOD(void,
PostDelayedTask,
(absl::AnyInvocable<void() &&>, TimeDelta),
(override));
MOCK_METHOD(void,
PostDelayedHighPrecisionTask,
(absl::AnyInvocable<void() &&>, TimeDelta),
(override));
private:
CurrentTaskQueueSetter task_queue_setter_;
};
class FakeTaskQueue : public TaskQueueBase {
public:
explicit FakeTaskQueue(SimulatedClock* clock)
: task_queue_setter_(this), clock_(clock) {}
void Delete() override {}
void PostTask(absl::AnyInvocable<void() &&> task) override {
last_task_ = std::move(task);
last_precision_ = absl::nullopt;
last_delay_ = TimeDelta::Zero();
}
void PostDelayedTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) override {
last_task_ = std::move(task);
last_precision_ = TaskQueueBase::DelayPrecision::kLow;
last_delay_ = delay;
}
void PostDelayedHighPrecisionTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) override {
last_task_ = std::move(task);
last_precision_ = TaskQueueBase::DelayPrecision::kHigh;
last_delay_ = delay;
}
bool AdvanceTimeAndRunLastTask() {
EXPECT_TRUE(last_task_);
EXPECT_TRUE(last_delay_.IsFinite());
clock_->AdvanceTime(last_delay_);
last_delay_ = TimeDelta::MinusInfinity();
auto task = std::move(last_task_);
std::move(task)();
return last_task_ == nullptr;
}
bool IsTaskQueued() { return !!last_task_; }
TimeDelta last_delay() const {
EXPECT_TRUE(last_delay_.IsFinite());
return last_delay_;
}
absl::optional<TaskQueueBase::DelayPrecision> last_precision() const {
return last_precision_;
}
private:
CurrentTaskQueueSetter task_queue_setter_;
SimulatedClock* clock_;
absl::AnyInvocable<void() &&> last_task_;
TimeDelta last_delay_ = TimeDelta::MinusInfinity();
absl::optional<TaskQueueBase::DelayPrecision> last_precision_;
};
// NOTE: Since this utility class holds a raw pointer to a variable that likely
// lives on the stack, it's important that any repeating tasks that use this
// class be explicitly stopped when the test criteria have been met. If the
// task is not stopped, an instance of this class can be deleted when the
// pointed-to MockClosure has been deleted and we end up trying to call a
// virtual method on a deleted object in the dtor.
class MoveOnlyClosure {
public:
explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {}
MoveOnlyClosure(const MoveOnlyClosure&) = delete;
MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) {
other.mock_ = nullptr;
}
~MoveOnlyClosure() {
if (mock_)
mock_->Delete();
}
TimeDelta operator()() { return mock_->Call(); }
private:
MockClosure* mock_;
};
} // namespace
TEST(RepeatingTaskTest, TaskIsStoppedOnStop) {
const TimeDelta kShortInterval = TimeDelta::Millis(50);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
auto handle = RepeatingTaskHandle::Start(
&task_queue,
[&] {
counter++;
return kShortInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
// The handle reposted at the short interval.
EXPECT_EQ(task_queue.last_delay(), kShortInterval);
// Stop the handle. This prevernts the counter from incrementing.
handle.Stop();
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForLongRunTime) {
const TimeDelta kRepeatInterval = TimeDelta::Millis(2);
// Sleeping inside the task for longer than the repeat interval once, should
// be compensated for by repeating the task faster to catch up.
const TimeDelta kSleepDuration = TimeDelta::Millis(20);
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
++counter;
// Task takes longer than the repeat duration.
clock.AdvanceTime(kSleepDuration);
return kRepeatInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Task is posted right away since it took longer to run then the repeat
// interval.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForShortRunTime) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
// Simulate the task taking 100ms, which should be compensated for.
counter++;
clock.AdvanceTime(TimeDelta::Millis(100));
return TimeDelta::Millis(300);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
// Expect instant post task.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task should be retained by the handler since it is not cancelled.
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// New delay should be 200ms since repeat delay was 300ms but task took 100ms.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Millis(200));
}
TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).Times(0);
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle = RepeatingTaskHandle::DelayedStart(
task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, CancelTaskAfterItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100)));
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle =
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, TaskCanStopItself) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
handle.Stop();
return TimeDelta::Millis(2);
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, TaskCanStopItselfByReturningInfinity) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
return TimeDelta::PlusInfinity();
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) {
NiceMock<MockClosure> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Zero()))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure));
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, StartPeriodicTask) {
MockFunction<TimeDelta()> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction());
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, Example) {
class ObjectOnTaskQueue {
public:
void DoPeriodicTask() {}
TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); }
void StartPeriodicTask(RepeatingTaskHandle* handle,
TaskQueueBase* task_queue) {
*handle = RepeatingTaskHandle::Start(task_queue, [this] {
DoPeriodicTask();
return TimeUntilNextRun();
});
}
};
TaskQueueForTest task_queue("queue");
auto object = std::make_unique<ObjectOnTaskQueue>();
// Create and start the periodic task.
RepeatingTaskHandle handle;
object->StartPeriodicTask(&handle, task_queue.Get());
// Restart the task
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
object->StartPeriodicTask(&handle, task_queue.Get());
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
struct Destructor {
void operator()() { object.reset(); }
std::unique_ptr<ObjectOnTaskQueue> object;
};
task_queue.PostTask(Destructor{std::move(object)});
// Do not wait for the destructor closure in order to create a race between
// task queue destruction and running the desctructor closure.
}
TEST(RepeatingTaskTest, ClockIntegration) {
absl::AnyInvocable<void() &&> delayed_task;
TimeDelta expected_delay = TimeDelta::Zero();
SimulatedClock clock(Timestamp::Zero());
NiceMock<MockTaskQueue> task_queue;
ON_CALL(task_queue, PostDelayedTask)
.WillByDefault([&](absl::AnyInvocable<void() &&> task, TimeDelta delay) {
EXPECT_EQ(delay, expected_delay);
delayed_task = std::move(task);
});
expected_delay = TimeDelta::Millis(100);
RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart(
&task_queue, TimeDelta::Millis(100),
[&clock]() {
EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime());
// Simulate work happening for 10ms.
clock.AdvanceTimeMilliseconds(10);
return TimeDelta::Millis(100);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
clock.AdvanceTimeMilliseconds(100);
absl::AnyInvocable<void()&&> task_to_run = std::move(delayed_task);
expected_delay = TimeDelta::Millis(90);
std::move(task_to_run)();
EXPECT_NE(delayed_task, nullptr);
handle.Stop();
}
TEST(RepeatingTaskTest, CanBeStoppedAfterTaskQueueDeletedTheRepeatingTask) {
absl::AnyInvocable<void() &&> repeating_task;
MockTaskQueue task_queue;
EXPECT_CALL(task_queue, PostDelayedTask)
.WillOnce([&](absl::AnyInvocable<void() &&> task, TimeDelta delay) {
repeating_task = std::move(task);
});
RepeatingTaskHandle handle =
RepeatingTaskHandle::DelayedStart(&task_queue, TimeDelta::Millis(100),
[] { return TimeDelta::Millis(100); });
// shutdown task queue: delete all pending tasks and run 'regular' task.
repeating_task = nullptr;
handle.Stop();
}
TEST(RepeatingTaskTest, DefaultPrecisionIsLow) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction());
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the default precision: low.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithLowPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kLow);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithHighPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kHigh);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kHigh);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
} // namespace webrtc
|