1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/time_utils.h"
#include <memory>
#include "api/units/time_delta.h"
#include "rtc_base/event.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/helpers.h"
#include "rtc_base/thread.h"
#include "test/gtest.h"
namespace rtc {
using ::webrtc::TimeDelta;
TEST(TimeTest, TimeInMs) {
int64_t ts_earlier = TimeMillis();
Thread::SleepMs(100);
int64_t ts_now = TimeMillis();
// Allow for the thread to wakeup ~20ms early.
EXPECT_GE(ts_now, ts_earlier + 80);
// Make sure the Time is not returning in smaller unit like microseconds.
EXPECT_LT(ts_now, ts_earlier + 1000);
}
TEST(TimeTest, Intervals) {
int64_t ts_earlier = TimeMillis();
int64_t ts_later = TimeAfter(500);
// We can't depend on ts_later and ts_earlier to be exactly 500 apart
// since time elapses between the calls to TimeMillis() and TimeAfter(500)
EXPECT_LE(500, TimeDiff(ts_later, ts_earlier));
EXPECT_GE(-500, TimeDiff(ts_earlier, ts_later));
// Time has elapsed since ts_earlier
EXPECT_GE(TimeSince(ts_earlier), 0);
// ts_earlier is earlier than now, so TimeUntil ts_earlier is -ve
EXPECT_LE(TimeUntil(ts_earlier), 0);
// ts_later likely hasn't happened yet, so TimeSince could be -ve
// but within 500
EXPECT_GE(TimeSince(ts_later), -500);
// TimeUntil ts_later is at most 500
EXPECT_LE(TimeUntil(ts_later), 500);
}
TEST(TimeTest, TestTimeDiff64) {
int64_t ts_diff = 100;
int64_t ts_earlier = rtc::TimeMillis();
int64_t ts_later = ts_earlier + ts_diff;
EXPECT_EQ(ts_diff, rtc::TimeDiff(ts_later, ts_earlier));
EXPECT_EQ(-ts_diff, rtc::TimeDiff(ts_earlier, ts_later));
}
class TmToSeconds : public ::testing::Test {
public:
TmToSeconds() {
// Set use of the test RNG to get deterministic expiration timestamp.
rtc::SetRandomTestMode(true);
}
~TmToSeconds() override {
// Put it back for the next test.
rtc::SetRandomTestMode(false);
}
void TestTmToSeconds(int times) {
static char mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
for (int i = 0; i < times; i++) {
// First generate something correct and check that TmToSeconds is happy.
int year = rtc::CreateRandomId() % 400 + 1970;
bool leap_year = false;
if (year % 4 == 0)
leap_year = true;
if (year % 100 == 0)
leap_year = false;
if (year % 400 == 0)
leap_year = true;
std::tm tm;
tm.tm_year = year - 1900; // std::tm is year 1900 based.
tm.tm_mon = rtc::CreateRandomId() % 12;
tm.tm_mday = rtc::CreateRandomId() % mdays[tm.tm_mon] + 1;
tm.tm_hour = rtc::CreateRandomId() % 24;
tm.tm_min = rtc::CreateRandomId() % 60;
tm.tm_sec = rtc::CreateRandomId() % 60;
int64_t t = rtc::TmToSeconds(tm);
EXPECT_TRUE(t >= 0);
// Now damage a random field and check that TmToSeconds is unhappy.
switch (rtc::CreateRandomId() % 11) {
case 0:
tm.tm_year = 1969 - 1900;
break;
case 1:
tm.tm_mon = -1;
break;
case 2:
tm.tm_mon = 12;
break;
case 3:
tm.tm_mday = 0;
break;
case 4:
tm.tm_mday = mdays[tm.tm_mon] + (leap_year && tm.tm_mon == 1) + 1;
break;
case 5:
tm.tm_hour = -1;
break;
case 6:
tm.tm_hour = 24;
break;
case 7:
tm.tm_min = -1;
break;
case 8:
tm.tm_min = 60;
break;
case 9:
tm.tm_sec = -1;
break;
case 10:
tm.tm_sec = 60;
break;
}
EXPECT_EQ(rtc::TmToSeconds(tm), -1);
}
// Check consistency with the system gmtime_r. With time_t, we can only
// portably test dates until 2038, which is achieved by the % 0x80000000.
for (int i = 0; i < times; i++) {
time_t t = rtc::CreateRandomId() % 0x80000000;
#if defined(WEBRTC_WIN)
std::tm* tm = std::gmtime(&t);
EXPECT_TRUE(tm);
EXPECT_TRUE(rtc::TmToSeconds(*tm) == t);
#else
std::tm tm;
EXPECT_TRUE(gmtime_r(&t, &tm));
EXPECT_TRUE(rtc::TmToSeconds(tm) == t);
#endif
}
}
};
TEST_F(TmToSeconds, TestTmToSeconds) {
TestTmToSeconds(100000);
}
// Test that all the time functions exposed by TimeUtils get time from the
// fake clock when it's set.
TEST(FakeClock, TimeFunctionsUseFakeClock) {
FakeClock clock;
SetClockForTesting(&clock);
clock.SetTime(webrtc::Timestamp::Micros(987654));
EXPECT_EQ(987u, Time32());
EXPECT_EQ(987, TimeMillis());
EXPECT_EQ(987654, TimeMicros());
EXPECT_EQ(987654000, TimeNanos());
EXPECT_EQ(1000u, TimeAfter(13));
SetClockForTesting(nullptr);
// After it's unset, we should get a normal time.
EXPECT_NE(987, TimeMillis());
}
TEST(FakeClock, InitialTime) {
FakeClock clock;
EXPECT_EQ(0, clock.TimeNanos());
}
TEST(FakeClock, SetTime) {
FakeClock clock;
clock.SetTime(webrtc::Timestamp::Micros(123));
EXPECT_EQ(123000, clock.TimeNanos());
clock.SetTime(webrtc::Timestamp::Micros(456));
EXPECT_EQ(456000, clock.TimeNanos());
}
TEST(FakeClock, AdvanceTime) {
FakeClock clock;
clock.AdvanceTime(webrtc::TimeDelta::Micros(1u));
EXPECT_EQ(1000, clock.TimeNanos());
clock.AdvanceTime(webrtc::TimeDelta::Micros(2222u));
EXPECT_EQ(2223000, clock.TimeNanos());
clock.AdvanceTime(webrtc::TimeDelta::Millis(3333u));
EXPECT_EQ(3335223000, clock.TimeNanos());
clock.AdvanceTime(webrtc::TimeDelta::Seconds(4444u));
EXPECT_EQ(4447335223000, clock.TimeNanos());
}
// When the clock is advanced, threads that are waiting in a socket select
// should wake up and look at the new time. This allows tests using the
// fake clock to run much faster, if the test is bound by time constraints
// (such as a test for a STUN ping timeout).
TEST(FakeClock, SettingTimeWakesThreads) {
int64_t real_start_time_ms = TimeMillis();
ThreadProcessingFakeClock clock;
SetClockForTesting(&clock);
std::unique_ptr<Thread> worker(Thread::CreateWithSocketServer());
worker->Start();
// Post an event that won't be executed for 10 seconds.
Event message_handler_dispatched;
worker->PostDelayedTask(
[&message_handler_dispatched] { message_handler_dispatched.Set(); },
TimeDelta::Seconds(60));
// Wait for a bit for the worker thread to be started and enter its socket
// select(). Otherwise this test would be trivial since the worker thread
// would process the event as soon as it was started.
Thread::Current()->SleepMs(1000);
// Advance the fake clock, expecting the worker thread to wake up
// and dispatch the message instantly.
clock.AdvanceTime(webrtc::TimeDelta::Seconds(60u));
EXPECT_TRUE(message_handler_dispatched.Wait(webrtc::TimeDelta::Zero()));
worker->Stop();
SetClockForTesting(nullptr);
// The message should have been dispatched long before the 60 seconds fully
// elapsed (just a sanity check).
int64_t real_end_time_ms = TimeMillis();
EXPECT_LT(real_end_time_ms - real_start_time_ms, 10000);
}
} // namespace rtc
|