summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/fuzzers/neteq_signal_fuzzer.cc
blob: 8653f137a2f72c6eea9641cac0dc2ca45daee2e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
 *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <cmath>
#include <limits>
#include <memory>
#include <vector>

#include "api/array_view.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/codecs/pcm16b/audio_encoder_pcm16b.h"
#include "modules/audio_coding/neteq/tools/audio_checksum.h"
#include "modules/audio_coding/neteq/tools/encode_neteq_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/random.h"
#include "test/fuzzers/fuzz_data_helper.h"

namespace webrtc {
namespace test {
namespace {
// Generate a mixture of sine wave and gaussian noise.
class SineAndNoiseGenerator : public EncodeNetEqInput::Generator {
 public:
  // The noise generator is seeded with a value from the fuzzer data, but 0 is
  // avoided (since it is not allowed by the Random class).
  SineAndNoiseGenerator(int sample_rate_hz, FuzzDataHelper* fuzz_data)
      : sample_rate_hz_(sample_rate_hz),
        fuzz_data_(*fuzz_data),
        noise_generator_(fuzz_data_.ReadOrDefaultValueNotZero<uint64_t>(1)) {}

  // Generates num_samples of the sine-gaussian mixture.
  rtc::ArrayView<const int16_t> Generate(size_t num_samples) override {
    if (samples_.size() < num_samples) {
      samples_.resize(num_samples);
    }

    rtc::ArrayView<int16_t> output(samples_.data(), num_samples);
    // Randomize an amplitude between 0 and 32768; use 65000/2 if we are out of
    // fuzzer data.
    const float amplitude = fuzz_data_.ReadOrDefaultValue<uint16_t>(65000) / 2;
    // Randomize a noise standard deviation between 0 and 1999.
    const float noise_std = fuzz_data_.ReadOrDefaultValue<uint16_t>(0) % 2000;
    for (auto& x : output) {
      x = rtc::saturated_cast<int16_t>(amplitude * std::sin(phase_) +
                                       noise_generator_.Gaussian(0, noise_std));
      phase_ += 2 * kPi * kFreqHz / sample_rate_hz_;
    }
    return output;
  }

 private:
  static constexpr int kFreqHz = 300;  // The sinewave frequency.
  const int sample_rate_hz_;
  const double kPi = std::acos(-1);
  std::vector<int16_t> samples_;
  double phase_ = 0.0;
  FuzzDataHelper& fuzz_data_;
  Random noise_generator_;
};

class FuzzSignalInput : public NetEqInput {
 public:
  explicit FuzzSignalInput(FuzzDataHelper* fuzz_data,
                           int sample_rate,
                           uint8_t payload_type)
      : fuzz_data_(*fuzz_data) {
    AudioEncoderPcm16B::Config config;
    config.payload_type = payload_type;
    config.sample_rate_hz = sample_rate;
    std::unique_ptr<AudioEncoder> encoder(new AudioEncoderPcm16B(config));
    std::unique_ptr<EncodeNetEqInput::Generator> generator(
        new SineAndNoiseGenerator(config.sample_rate_hz, fuzz_data));
    input_.reset(new EncodeNetEqInput(std::move(generator), std::move(encoder),
                                      std::numeric_limits<int64_t>::max()));
    packet_ = input_->PopPacket();

    // Select an output event period. This is how long time we wait between each
    // call to NetEq::GetAudio. 10 ms is nominal, 9 and 11 ms will both lead to
    // clock drift (in different directions).
    constexpr int output_event_periods[] = {9, 10, 11};
    output_event_period_ms_ = fuzz_data_.SelectOneOf(output_event_periods);
  }

  absl::optional<int64_t> NextPacketTime() const override {
    return packet_->time_ms;
  }

  absl::optional<int64_t> NextOutputEventTime() const override {
    return next_output_event_ms_;
  }

  std::unique_ptr<PacketData> PopPacket() override {
    RTC_DCHECK(packet_);
    std::unique_ptr<PacketData> packet_to_return = std::move(packet_);
    do {
      packet_ = input_->PopPacket();
      // If the next value from the fuzzer input is 0, the packet is discarded
      // and the next one is pulled from the source.
    } while (fuzz_data_.CanReadBytes(1) && fuzz_data_.Read<uint8_t>() == 0);
    if (fuzz_data_.CanReadBytes(1)) {
      // Generate jitter by setting an offset for the arrival time.
      const int8_t arrival_time_offset_ms = fuzz_data_.Read<int8_t>();
      // The arrival time can not be before the previous packets.
      packet_->time_ms = std::max(packet_to_return->time_ms,
                                  packet_->time_ms + arrival_time_offset_ms);
    } else {
      // Mark that we are at the end of the test. However, the current packet is
      // still valid (but it may not have been fuzzed as expected).
      ended_ = true;
    }
    return packet_to_return;
  }

  void AdvanceOutputEvent() override {
    next_output_event_ms_ += output_event_period_ms_;
  }

  bool ended() const override { return ended_; }

  absl::optional<RTPHeader> NextHeader() const override {
    RTC_DCHECK(packet_);
    return packet_->header;
  }

 private:
  bool ended_ = false;
  FuzzDataHelper& fuzz_data_;
  std::unique_ptr<EncodeNetEqInput> input_;
  std::unique_ptr<PacketData> packet_;
  int64_t next_output_event_ms_ = 0;
  int64_t output_event_period_ms_ = 10;
};

template <class T>
bool MapHas(const std::map<int, T>& m, int key, const T& value) {
  const auto it = m.find(key);
  return (it != m.end() && it->second == value);
}

}  // namespace

void FuzzOneInputTest(const uint8_t* data, size_t size) {
  if (size < 1 || size > 65000) {
    return;
  }

  FuzzDataHelper fuzz_data(rtc::ArrayView<const uint8_t>(data, size));

  // Allowed sample rates and payload types used in the test.
  std::pair<int, uint8_t> rate_types[] = {
      {8000, 93}, {16000, 94}, {32000, 95}, {48000, 96}};
  const auto rate_type = fuzz_data.SelectOneOf(rate_types);
  const int sample_rate = rate_type.first;
  const uint8_t payload_type = rate_type.second;

  // Set up the input signal generator.
  std::unique_ptr<FuzzSignalInput> input(
      new FuzzSignalInput(&fuzz_data, sample_rate, payload_type));

  // Output sink for the test.
  std::unique_ptr<AudioChecksum> output(new AudioChecksum);

  // Configure NetEq and the NetEqTest object.
  NetEqTest::Callbacks callbacks;
  NetEq::Config config;
  config.enable_post_decode_vad = true;
  config.enable_fast_accelerate = true;
  auto codecs = NetEqTest::StandardDecoderMap();
  // rate_types contains the payload types that will be used for encoding.
  // Verify that they all are included in the standard decoder map, and that
  // they point to the expected decoder types.
  RTC_CHECK(
      MapHas(codecs, rate_types[0].second, SdpAudioFormat("l16", 8000, 1)));
  RTC_CHECK(
      MapHas(codecs, rate_types[1].second, SdpAudioFormat("l16", 16000, 1)));
  RTC_CHECK(
      MapHas(codecs, rate_types[2].second, SdpAudioFormat("l16", 32000, 1)));
  RTC_CHECK(
      MapHas(codecs, rate_types[3].second, SdpAudioFormat("l16", 48000, 1)));

  NetEqTest test(config, CreateBuiltinAudioDecoderFactory(), codecs,
                 /*text_log=*/nullptr, /*neteq_factory=*/nullptr,
                 std::move(input), std::move(output), callbacks);
  test.Run();
}

}  // namespace test

void FuzzOneInput(const uint8_t* data, size_t size) {
  test::FuzzOneInputTest(data, size);
}

}  // namespace webrtc