summaryrefslogtreecommitdiffstats
path: root/third_party/rust/aa-stroke/src/bezierflattener.rs
blob: fd1ab2183981267d06d1f53234b99105ef8e9ae5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
#![allow(non_snake_case)]

use std::ops::{Sub, Mul, Add, AddAssign, SubAssign, MulAssign, Div};

macro_rules! IFC {
    ($e: expr) => {
        assert_eq!($e, S_OK);
    }
}

pub type HRESULT = i32;

pub const S_OK: i32 = 0;
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct GpPointR {
    pub x: f64,
    pub y: f64
}

impl Sub for GpPointR {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        GpPointR { x: self.x - rhs.x, y: self.y - rhs.y }
    }
}

impl Add for GpPointR {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        GpPointR { x: self.x + rhs.x, y: self.y + rhs.y }
    }
}

impl AddAssign for GpPointR {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl SubAssign for GpPointR {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl MulAssign<f64> for GpPointR {
    fn mul_assign(&mut self, rhs: f64) {
        *self = *self * rhs;
    }
}


impl Mul<f64> for GpPointR {
    type Output = Self;

    fn mul(self, rhs: f64) -> Self::Output {
        GpPointR { x: self.x * rhs, y: self.y * rhs }
    }
}

impl Div<f64> for GpPointR {
    type Output = Self;

    fn div(self, rhs: f64) -> Self::Output {
        GpPointR { x: self.x / rhs, y: self.y / rhs }
    }
}


impl Mul for GpPointR {
    type Output = f64;

    fn mul(self, rhs: Self) -> Self::Output {
        self.x * rhs.x +  self.y * rhs.y
    }
}

impl GpPointR {
    pub fn ApproxNorm(&self) -> f64 {
        self.x.abs().max(self.y.abs())
    }
    pub fn Norm(&self) -> f64 {
        self.x.hypot(self.y)
    }
}

// Relative to this is relative to the tolerance squared. In other words, a vector
// whose length is less than .01*tolerance will be considered 0
const  SQ_LENGTH_FUZZ: f64 = 1.0e-4;

// Some of these constants need further thinking

//const FUZZ: f64 = 1.0e-6;           // Relative 0
// Minimum allowed tolerance - should probably be adjusted to the size of the
// geometry we are rendering, but for now ---

/* 
const FUZZ_DOUBLE: f64 = 1.0e-12;           // Double-precision relative 0
const MIN_TOLERANCE: f64 = 1.0e-6;
const DEFAULT_FLATTENING_TOLERANCE: f64 = 0.25;*/
const TWICE_MIN_BEZIER_STEP_SIZE: f64 = 1.0e-3; // The step size in the Bezier flattener should
                                                 // never go below half this amount.
//+-----------------------------------------------------------------------------
//

//
//  $TAG ENGR

//      $Module:    win_mil_graphics_geometry
//      $Keywords:
//
//  $Description:
//      Definition of CBezierFlattener.
//
//  $ENDTAG
//
//------------------------------------------------------------------------------

//+-----------------------------------------------------------------------------
//
//  Class:
//      CFlatteningSink
//
//  Synopsis:
//      Callback interface for the results of curve flattening
//
//  Notes:
//      Methods are implemented rather than pure, for callers who do not use all
//      of them.
//
//------------------------------------------------------------------------------
//
//  Definition of CFlatteningSink
//
//------------------------------------------------------------------------------
/* 
struct CFlatteningSink
{
public:
    CFlatteningSink() {}

    virtual ~CFlatteningSink() {}

    virtual HRESULT Begin(
        __in_ecount(1) const GpPointR &)
            // First point (transformed)
    {
        // Do nothing stub, should not be called
        RIP("Base class Begin called");
        return E_NOTIMPL;
    }

    virtual HRESULT AcceptPoint(
        __in_ecount(1) const GpPointR &pt,
            // The point
        IN GpReal t,
            // Parameter we're at
        __out_ecount(1) bool &fAborted)
            // Set to true to signal aborting
    {
        UNREFERENCED_PARAMETER(pt);
        UNREFERENCED_PARAMETER(t);
        UNREFERENCED_PARAMETER(fAborted);

        // Do nothing stub, should not be called
        RIP("Base class AcceptPoint called");
        return E_NOTIMPL;
    }

    virtual HRESULT AcceptPointAndTangent(
        __in_ecount(1) const GpPointR &,
            //The point
        __in_ecount(1) const GpPointR &,
            //The tangent there
        IN bool fLast)         // Is this the last point on the curve?
    {
        // Do nothing stub, should not be called
        RIP("Base class AcceptPointAndTangent called");
        return E_NOTIMPL;
    }
};



*/
#[derive(Clone, Debug)]

pub struct CBezier
{
    /* 
public:
    CBezier()
    {
    }

    CBezier(
        __in_ecount(4) const GpPointR *pPt)
            // The defining Bezier points
    {
        Assert(pPt);
        memcpy(&m_ptB, pPt, 4 * sizeof(GpPointR)); 
    }

    CBezier(
        __in_ecount(1) const CBezier &other)
            // Another Bezier to copy
    {
        Copy(other); 
    }

    void Copy(
        __in_ecount(1) const CBezier &other)
            // Another Bezier to copy
    {
        memcpy(&m_ptB, other.m_ptB, 4 * sizeof(GpPointR)); 
    }

    void Initialize(
        __in_ecount(1) const GpPointR &ptFirst,
            // The first Bezier point
        __in_ecount(3) const GpPointR *pPt)
            // The remaining 3 Bezier points
    {
        m_ptB[0] = ptFirst;
        memcpy(m_ptB + 1, pPt, 3 * sizeof(GpPointR)); 
    }

    __outro_ecount(1) const GpPointR &GetControlPoint(__range(0, 3) UINT i) const
    {
        Assert(i < 4);
        return m_ptB[i];
    }

    __outro_ecount(1) const GpPointR &GetFirstPoint() const
    {
        return m_ptB[0];
    }
    
    __outro_ecount(1) const GpPointR &GetLastPoint() const
    {
        return m_ptB[3];
    }

    void GetPoint(
        _In_ double t,
            // Parameter value
        __out_ecount(1) GpPointR &pt) const; 
            // Point there

    void GetPointAndDerivatives(
        __in double t,
            // Parameter value
        __out_ecount(3) GpPointR *pValues) const;
                // Point, first derivative and second derivative there

    void TrimToStartAt(
        IN double t);             // Parameter value
        
    void TrimToEndAt(
        IN double t);             // Parameter value

    bool TrimBetween(
        __in double rStart,
            // Parameter value for the new start, must be between 0 and 1
        __in double rEnd);
            // Parameter value for the new end, must be between 0 and 1

    bool operator ==(__in_ecount(1) const CBezier &other) const
    {
        return (m_ptB[0] == other.m_ptB[0]) &&
               (m_ptB[1] == other.m_ptB[1]) &&
               (m_ptB[2] == other.m_ptB[2]) &&
               (m_ptB[3] == other.m_ptB[3]);
    }

    void AssertEqualOrNaN(__in_ecount(1) const CBezier &other) const
    {
        m_ptB[0].AssertEqualOrNaN(other.m_ptB[0]);
        m_ptB[1].AssertEqualOrNaN(other.m_ptB[1]);
        m_ptB[2].AssertEqualOrNaN(other.m_ptB[2]);
        m_ptB[3].AssertEqualOrNaN(other.m_ptB[3]);
    }

protected:
    */
    // Data
    m_ptB: [GpPointR; 4],
            // The defining Bezier points
}

impl CBezier {
    pub fn new(curve: [GpPointR; 4]) -> Self {
        Self { m_ptB: curve }
    }

    pub fn is_degenerate(&self) -> bool {
        self.m_ptB[0] == self.m_ptB[1] &&
            self.m_ptB[0] == self.m_ptB[2] &&
            self.m_ptB[0] == self.m_ptB[3]
    }
}

pub trait CFlatteningSink {
    fn AcceptPointAndTangent(&mut self,
        pt: &GpPointR,
            // The point
        vec: &GpPointR,
            // The tangent there
        fLast: bool
            // Is this the last point on the curve?
        ) -> HRESULT;

        fn AcceptPoint(&mut self,
            pt: &GpPointR,
                // The point
            t: f64,
                // Parameter we're at
            fAborted: &mut bool,
            lastPoint: bool
        ) -> HRESULT;
}

//+-----------------------------------------------------------------------------
//
//  Class:
//      CBezierFlattener
//
//  Synopsis:
//      Generates a polygonal apprximation to a given Bezier curve
//
//------------------------------------------------------------------------------
pub struct CBezierFlattener<'a>
{
    bezier: CBezier,
        // Flattening defining data
        m_pSink: &'a mut dyn CFlatteningSink,           // The recipient of the flattening data
        m_rTolerance: f64,       // Prescribed tolerance
        m_fWithTangents: bool,    // Generate tangent vectors if true
        m_rQuarterTolerance: f64,// Prescribed tolerance/4 (for doubling the step)
        m_rFuzz: f64,            // Computational zero
    
        // Flattening working data
        m_ptE: [GpPointR; 4],           // The moving basis of the curve definition
        m_cSteps: i32,           // The number of steps left to the end of the curve
        m_rParameter: f64,       // Parameter value
        m_rStepSize: f64,        // Steps size in parameter domain
}
impl<'a> CBezierFlattener<'a> {
    /*fn new(
        __in_ecount_opt(1) CFlatteningSink *pSink,
            // The reciptient of the flattened data
        IN GpReal          rTolerance)
            // Flattening tolerance 
    {
        Initialize(pSink, rTolerance);
    }*/
/* 
    void SetTarget(__in_ecount_opt(1) CFlatteningSink *pSink)
    {
        m_pSink = pSink;
    }

    void Initialize(
        __in_ecount_opt(1) CFlatteningSink *pSink,
            // The reciptient of the flattened data
        IN GpReal rTolerance);
        // Flattening tolerance 

    void SetPoint(
        __in UINT i,
            // index of the point (must be between 0 and 3)
        __in_ecount(1) const GpPointR &pt)
            // point value
    {
        Assert(i < 4);
        m_ptB[i] = pt;
    }

    HRESULT GetFirstTangent(
        __out_ecount(1) GpPointR &vecTangent) const;
            // Tangent vector there

    GpPointR GetLastTangent() const;

    HRESULT Flatten( 
        IN bool fWithTangents);   // Return tangents with the points if true

private:
    // Disallow copy constructor
    CBezierFlattener(__in_ecount(1) const CBezierFlattener &)
    {
        RIP("CBezierFlattener copy constructor reached.");
    }

protected:
*/
/*  fn Step(
        __out_ecount(1) bool &fAbort);   // Set to true if flattening should be aborted

    fn HalveTheStep();

    fn TryDoubleTheStep();*/

}




// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.


//+-----------------------------------------------------------------------------
//

//
//  $TAG ENGR

//      $Module:    win_mil_graphics_geometry
//      $Keywords:
//
//  $Description:
//      Implementation of CBezierFlattener.
//
//  $ENDTAG
//
//------------------------------------------------------------------------------

impl<'a> CBezierFlattener<'a> {
/////////////////////////////////////////////////////////////////////////////////
//
//              Implementation of CBezierFlattener

//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::Initialize
//
//  Synopsis:
//      Initialize the sink and tolerance
//
//------------------------------------------------------------------------------
pub fn new(bezier: &CBezier,
    pSink: &'a mut dyn CFlatteningSink,
        // The reciptient of the flattened data
    rTolerance: f64)       // Flattening tolerance
    -> Self 
{
    let mut result = CBezierFlattener {
        bezier: bezier.clone(),
        // Flattening defining data
        m_pSink: pSink,           // The recipient of the flattening data
        m_rTolerance: 0.,       // Prescribed tolerance
        m_fWithTangents: false,    // Generate tangent vectors if true
        m_rQuarterTolerance: 0.,// Prescribed tolerance/4 (for doubling the step)
        m_rFuzz: 0.,            // Computational zero
    
        // Flattening working data
        m_ptE: [GpPointR { x: 0., y: 0.}; 4],           // The moving basis of the curve definition
        m_cSteps: 0,           // The number of steps left to the end of the curve
        m_rParameter: 0.,       // Parameter value
        m_rStepSize: 0.,        // Steps size in parameter domain
    };

    // If rTolerance == NaN or less than 0, we'll treat it as 0.
    result.m_rTolerance = if rTolerance >= 0.0 { rTolerance } else { 0.0 };
    result.m_rFuzz = rTolerance * rTolerance * SQ_LENGTH_FUZZ;
    
    // The error is tested on max(|e2|, |e2|), which represent 6 times the actual error, so:
    result.m_rTolerance *= 6.;
    result.m_rQuarterTolerance = result.m_rTolerance * 0.25;
    result
}

//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::Flatten
//
//  Synopsis:
//      Flatten this curve
//
//  Notes:
                                                                                
// The algorithm is described in detail in the 1995 patent # 5367617 "System and 
// method of hybrid forward differencing to render Bezier splines" to be found 
// on the Microsoft legal dept. web site (LCAWEB).  Additional references are:
//     Lien, Shantz and Vaughan Pratt, "Adaptive Forward Differencing for
//     Rendering Curves and Surfaces", Computer Graphics, July 1987
//     Chang and Shantz, "Rendering Trimmed NURBS with Adaptive Forward
//         Differencing", Computer Graphics, August 1988
//     Foley and Van Dam, "Fundamentals of Interactive Computer Graphics"
//
// The basic idea is to replace the Bernstein basis (underlying Bezier curves) 
// with the Hybrid Forward Differencing (HFD) basis which is more efficient at 
// for flattening.  Each one of the 3 actions - Step, Halve and Double (step 
// size) this basis affords very efficient formulas for computing coefficients
// for the new interval.
//
// The coefficients of the HFD basis are defined in terms of the Bezier 
// coefficients as follows:
//
//          e0 = p0, e1 = p3 - p0, e2 = 6(p1 - 2p2 + p3), e3 = 6(p0 - 2p1 + p2),
//
// but formulas may be easier to understand by going through the power basis 
// representation:  f(t) = a*t + b*t + c * t^2 + d * t^3.
//
//  The conversion is then:            
//                               e0 = a
//                               e1 = f(1) - f(0) = b + c + d
//                               e2 = f"(1) = 2c + 6d
//                               e3 = f"(0) = 2c
//
// This is inverted to:
//                              a = e0
//                              c = e3 / 2
//                              d = (e2 - 2c) / 6 = (e2 - e3) / 6
//                              b = e1 - c - d = e1 - e2 / 6 - e3 / 3
//
// a, b, c, d for the new (halved, doubled or forwarded) interval are derived 
// and then converted to e0, e1, e2, e3 using these relationships.
//
// An exact integer version is implemented in Bezier.h and Bezier.cpp.
//
//------------------------------------------------------------------------------


pub fn Flatten(&mut self,
    fWithTangents: bool)   // Return tangents with the points if true
    -> HRESULT
{

    let hr = S_OK;
    let mut fAbort = false;

    /*if (!self.m_pSink)
    {
        return E_UNEXPECTED;
    }*/

    self.m_fWithTangents = fWithTangents;

    self.m_cSteps = 1;

    self.m_rParameter = 0.;
    self.m_rStepSize = 1.;

    // Compute the HFD basis
    self.m_ptE[0] = self.bezier.m_ptB[0]; 
    self.m_ptE[1] = self.bezier.m_ptB[3] - self.bezier.m_ptB[0]; 
    self.m_ptE[2] = (self.bezier.m_ptB[1] - self.bezier.m_ptB[2] * 2. + self.bezier.m_ptB[3]) * 6.;    // The second derivative at curve end
    self.m_ptE[3] = (self.bezier.m_ptB[0] - self.bezier.m_ptB[1] * 2. + self.bezier.m_ptB[2]) * 6.;    // The second derivative at curve start

    // Determine the initial step size
    self.m_cSteps = 1;
    while ((self.m_ptE[2].ApproxNorm() > self.m_rTolerance)  ||  (self.m_ptE[3].ApproxNorm() > self.m_rTolerance)) &&
           (self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE)
        
    {
        self.HalveTheStep();
    }

    while self.m_cSteps > 1
    {
        IFC!(self.Step(&mut fAbort));
        if fAbort {
            return hr;
        }

        // E[3] was already tested as E[2] in the previous step
        if self.m_ptE[2].ApproxNorm() > self.m_rTolerance &&
            self.m_rStepSize > TWICE_MIN_BEZIER_STEP_SIZE
        {
            // Halving the step once is provably sufficient (see Notes above), so ---
            self.HalveTheStep();
        }
        else
        {
            // --- but the step can possibly be more than doubled, hence the while loop
            while self.TryDoubleTheStep() {
                continue;
            }
        }
    }

    // Last point
    if self.m_fWithTangents
    {
        IFC!(self.m_pSink.AcceptPointAndTangent(&self.bezier.m_ptB[3], &self.GetLastTangent(), true /* last point */));
    }
    else
    {
        IFC!(self.m_pSink.AcceptPoint(&self.bezier.m_ptB[3], 1., &mut fAbort, true));
    }

    return hr;
}
//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::Step
//
//  Synopsis:
//      Step forward on the polygonal approximation of the curve
//
//  Notes:
//      Taking a step means replacing a,b,c,d by coefficients of g(t) = f(t+1). 
//      Express those in terms of a,b,c,d and convert to e0, e1, e2, e3 to get:
//
//       New e0 = e0 + e1
//       New e1 = e1 + e2
//       New e2 = 2e2 - e3
//       New e3 = e2
//
//  The patent application (see above) explains why.
//
//  Getting a tangent vector is a minor enhancement along the same lines:
//      f'(0) = b = 6e1 - e2 - 2e3.
//
//------------------------------------------------------------------------------

fn Step(&mut self,
    fAbort: &mut bool)  -> HRESULT  // Set to true if flattening should be aborted, untouched otherwise
{
    let hr = S_OK;
    
    // Compute the basis for the same curve on the next interval
    let mut pt;

    self.m_ptE[0] += self.m_ptE[1];
    pt = self.m_ptE[2];
    self.m_ptE[1] += pt;
    self.m_ptE[2] += pt;  self.m_ptE[2] -= self.m_ptE[3];
    self.m_ptE[3] = pt;

    // Increment the parameter
    self.m_rParameter += self.m_rStepSize;

    // Generate the start point of the new interval
    if self.m_fWithTangents
    {
        // Compute the tangent there
        pt = self.m_ptE[1] * 6. - self.m_ptE[2] - self.m_ptE[3] * 2.;  //  = twice the derivative at E[0]
        IFC!(self.m_pSink.AcceptPointAndTangent(&self.m_ptE[0], &pt, false /* not the last point */));
    }
    else
    {
        IFC!(self.m_pSink.AcceptPoint(&self.m_ptE[0], self.m_rParameter, fAbort, false));
    }
    
    self.m_cSteps-=1;
    return hr;
}
//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::HalveTheStep
//
//  Synopsis:
//      Halve the size of the step
//
//  Notes:
//      Halving the step means replacing a,b,c,d by coefficients of g(t) =
//      f(t/2). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3
//      to get:
//
//       New e0 = e0
//       New e1 = (e1 - e2) / 2
//       New e2 = (e2 + e3) / 8
//       New e3 = e3 / 4
//
//  The patent application (see above) explains why.
//
//------------------------------------------------------------------------------
fn HalveTheStep(&mut self)
{
    self.m_ptE[2] += self.m_ptE[3];   self.m_ptE[2] *= 0.125;
    self.m_ptE[1] -= self.m_ptE[2];   self.m_ptE[1] *= 0.5;
    self.m_ptE[3] *= 0.25;

    self.m_cSteps *= 2;  // Double the number of steps left
    self.m_rStepSize *= 0.5;
}
//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::TryDoubleTheStep
//
//  Synopsis:
//      Double the step size if possible within tolerance.
//
//  Notes:
//      Coubling the step means replacing a,b,c,d by coefficients of g(t) =
//      f(2t). Experss those in terms of a,b,c,d and convert to e0, e1, e2, e3
//      to get:
//
//       New e0 = e0
//       New e1 = 2e1 + e2
//       New e2 = 8e2 - 4e3
//       New e3 = 4e3
//
//  The patent application (see above) explains why.  Note also that these
//  formulas are the inverse of those for halving the step.
//
//------------------------------------------------------------------------------
fn
TryDoubleTheStep(&mut self) -> bool
{
    let mut fDoubled = 0 == (self.m_cSteps & 1);
    if fDoubled
    {
        let ptTemp = self.m_ptE[2] * 2. - self.m_ptE[3];

        fDoubled = (self.m_ptE[3].ApproxNorm() <= self.m_rQuarterTolerance) && 
                   (ptTemp.ApproxNorm() <= self.m_rQuarterTolerance);

        if fDoubled
        {
            self.m_ptE[1] *= 2.;  self.m_ptE[1] += self.m_ptE[2];
            self.m_ptE[3] *= 4.;
            self.m_ptE[2] = ptTemp * 4.;

            self.m_cSteps /= 2;      // Halve the number of steps left
            self.m_rStepSize *= 2.;
        }
    }

    return fDoubled;
}
//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::GetFirstTangent
//
//  Synopsis:
//      Get the tangent at curve start
//
//  Return:
//      WGXERR_ZEROVECTOR if the tangent vector has practically 0 length
//
//  Notes:
//      This method can return an error if all the points are bunched together.
//      The idea is that the caller will detect that, abandon this curve, and
//      never call GetLasttangent, which can therefore be presumed to succeed. 
//      The failure here is benign.
//
//------------------------------------------------------------------------------
#[allow(dead_code)]
fn GetFirstTangent(&self) -> Option<GpPointR> // Tangent vector there
    
{

    let mut vecTangent = self.bezier.m_ptB[1] - self.bezier.m_ptB[0];
    if vecTangent * vecTangent > self.m_rFuzz
    {
        return Some(vecTangent);  // - we're done
    }
    // Zero first derivative, go for the second
    vecTangent = self.bezier.m_ptB[2] - self.bezier.m_ptB[0];
    if vecTangent * vecTangent > self.m_rFuzz
    {
        return Some(vecTangent);  // - we're done
    }
    // Zero second derivative, go for the third
    vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0];

    if vecTangent * vecTangent <= self.m_rFuzz
    {
        return None;
    }

    return Some(vecTangent);      // no RRETURN, error is expected
}
//+-----------------------------------------------------------------------------
//
//  Member:
//      CBezierFlattener::GetLastTangent
//
//  Synopsis:
//      Get the tangent at curve end
//
//  Return:
//      The tangent
//
//  Notes:
//      This method has no error return while GetFirstTangent returns
//      WGXERR_ZEROVECTOR if the tangent is zero.  The idea is that we should
//      only fail if all the control points coincide, that should have been
//      detected at GetFirstTangent, and then we should have not be called.
//
//------------------------------------------------------------------------------
fn GetLastTangent(&self) -> GpPointR
{
    let mut vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[2];
    
    // If the curve is degenerate, we should have detected it at curve-start, skipped this curve
    // altogether and not be here.  But the test in GetFirstTangent is for the point-differences
    // 1-0, 2-0 and 3-0, while here it is for points 3-2, 3-1 and 3-0, which is not quite the same.
    // Still, In a disk of radius r no 2 points are more than 2r apart.  The tests are done with
    // squared distance, and m_rFuzz is the minimal accepted squared distance.  GetFirstTangent()
    // succeeded, so there is a pair of points whose squared distance is greater than m_rfuzz.
    // So the squared radius of a disk about point 3 that contains the remaining points must be 
    // at least m_rFuzz/4.  Allowing some margin for arithmetic error:

    let rLastTangentFuzz = self.m_rFuzz/8.;

    if vecTangent * vecTangent <= rLastTangentFuzz
    {
        // Zero first derivative, go for the second
        vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[1];
        if vecTangent * vecTangent <= rLastTangentFuzz
        {
            // Zero second derivative, go for the third
            vecTangent = self.bezier.m_ptB[3] - self.bezier.m_ptB[0];
        }
    }

    debug_assert! (!(vecTangent * vecTangent < rLastTangentFuzz)); // Ignore NaNs

    return vecTangent;
}
}