1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use crate::ctap2::commands::client_pin::PinUvAuthTokenPermission;
use crate::ctap2::commands::get_info::AuthenticatorInfo;
use crate::errors::AuthenticatorError;
use crate::{ctap2::commands::CommandError, transport::errors::HIDError};
use serde::{
de::{Error as SerdeError, MapAccess, Unexpected, Visitor},
ser::SerializeMap,
Deserialize, Deserializer, Serialize, Serializer,
};
use serde_bytes::ByteBuf;
use serde_cbor::Value;
use std::convert::TryFrom;
use std::fmt;
#[cfg(feature = "crypto_nss")]
mod nss;
#[cfg(feature = "crypto_nss")]
use nss as backend;
#[cfg(feature = "crypto_openssl")]
mod openssl;
#[cfg(feature = "crypto_openssl")]
use self::openssl as backend;
#[cfg(feature = "crypto_dummy")]
mod dummy;
#[cfg(feature = "crypto_dummy")]
use dummy as backend;
use backend::{
decrypt_aes_256_cbc_no_pad, ecdhe_p256_raw, encrypt_aes_256_cbc_no_pad, hmac_sha256,
random_bytes, sha256,
};
// Object identifiers in DER tag-length-value form
const DER_OID_EC_PUBLIC_KEY_BYTES: &[u8] = &[
0x06, 0x07,
/* {iso(1) member-body(2) us(840) ansi-x962(10045) keyType(2) ecPublicKey(1)} */
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01,
];
const DER_OID_P256_BYTES: &[u8] = &[
0x06, 0x08,
/* {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
];
pub struct PinUvAuthProtocol(Box<dyn PinProtocolImpl + Send + Sync>);
impl PinUvAuthProtocol {
pub fn id(&self) -> u64 {
self.0.protocol_id()
}
pub fn encapsulate(&self, peer_cose_key: &COSEKey) -> Result<SharedSecret, CryptoError> {
self.0.encapsulate(peer_cose_key)
}
}
/// The output of `PinUvAuthProtocol::encapsulate` is supposed to be used with the same
/// PinProtocolImpl. So we stash a copy of the calling PinUvAuthProtocol in the output SharedSecret.
/// We need a trick here to tell the compiler that every PinProtocolImpl we define will implement
/// Clone.
trait ClonablePinProtocolImpl {
fn clone_box(&self) -> Box<dyn PinProtocolImpl + Send + Sync>;
}
impl<T> ClonablePinProtocolImpl for T
where
T: 'static + PinProtocolImpl + Clone + Send + Sync,
{
fn clone_box(&self) -> Box<dyn PinProtocolImpl + Send + Sync> {
Box::new(self.clone())
}
}
impl Clone for PinUvAuthProtocol {
fn clone(&self) -> Self {
PinUvAuthProtocol(self.0.as_ref().clone_box())
}
}
/// CTAP 2.1, Section 6.5.4. PIN/UV Auth Protocol Abstract Definition
trait PinProtocolImpl: ClonablePinProtocolImpl {
fn protocol_id(&self) -> u64;
fn initialize(&self);
fn encrypt(&self, key: &[u8], plaintext: &[u8]) -> Result<Vec<u8>, CryptoError>;
fn decrypt(&self, key: &[u8], ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError>;
fn authenticate(&self, key: &[u8], message: &[u8]) -> Result<Vec<u8>, CryptoError>;
fn kdf(&self, z: &[u8]) -> Result<Vec<u8>, CryptoError>;
fn encapsulate(&self, peer_cose_key: &COSEKey) -> Result<SharedSecret, CryptoError> {
// [CTAP 2.1]
// encapsulate(peerCoseKey) → (coseKey, sharedSecret) | error
// 1) Let sharedSecret be the result of calling ecdh(peerCoseKey). Return any
// resulting error.
// 2) Return (getPublicKey(), sharedSecret)
//
// ecdh(peerCoseKey) → sharedSecret | error
// Parse peerCoseKey as specified for getPublicKey, below, and produce a P-256
// point, Y. If unsuccessful, or if the resulting point is not on the curve, return
// error. Calculate xY, the shared point. (I.e. the scalar-multiplication of the
// peer's point, Y, with the local private key agreement key.) Let Z be the
// 32-byte, big-endian encoding of the x-coordinate of the shared point. Return
// kdf(Z).
match peer_cose_key.alg {
// There is no COSEAlgorithm for ECDHE with the KDF used here. Section 6.5.6. of CTAP
// 2.1 says to use value -25 (= ECDH_ES_HKDF256) even though "this is not the algorithm
// actually used".
COSEAlgorithm::ECDH_ES_HKDF256 => (),
other => return Err(CryptoError::UnsupportedAlgorithm(other)),
}
let peer_cose_ec2_key = match peer_cose_key.key {
COSEKeyType::EC2(ref key) => key,
_ => return Err(CryptoError::UnsupportedKeyType),
};
let peer_spki = peer_cose_ec2_key.der_spki()?;
let (shared_point, client_public_sec1) = ecdhe_p256_raw(&peer_spki)?;
let client_cose_ec2_key =
COSEEC2Key::from_sec1_uncompressed(Curve::SECP256R1, &client_public_sec1)?;
let client_cose_key = COSEKey {
alg: COSEAlgorithm::ECDH_ES_HKDF256,
key: COSEKeyType::EC2(client_cose_ec2_key),
};
let shared_secret = SharedSecret {
pin_protocol: PinUvAuthProtocol(self.clone_box()),
key: self.kdf(&shared_point)?,
inputs: PublicInputs {
peer: peer_cose_key.clone(),
client: client_cose_key,
},
};
Ok(shared_secret)
}
}
impl TryFrom<&AuthenticatorInfo> for PinUvAuthProtocol {
type Error = CommandError;
fn try_from(info: &AuthenticatorInfo) -> Result<Self, Self::Error> {
// CTAP 2.1, Section 6.5.5.4
// "If there are multiple mutually supported protocols, and the platform
// has no preference, it SHOULD select the one listed first in
// pinUvAuthProtocols."
for proto_id in info.pin_protocols.iter() {
match proto_id {
1 => return Ok(PinUvAuthProtocol(Box::new(PinUvAuth1 {}))),
2 => return Ok(PinUvAuthProtocol(Box::new(PinUvAuth2 {}))),
_ => continue,
}
}
Err(CommandError::UnsupportedPinProtocol)
}
}
impl fmt::Debug for PinUvAuthProtocol {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PinUvAuthProtocol")
.field("id", &self.id())
.finish()
}
}
/// CTAP 2.1, Section 6.5.6.
#[derive(Copy, Clone)]
pub struct PinUvAuth1;
impl PinProtocolImpl for PinUvAuth1 {
fn protocol_id(&self) -> u64 {
1
}
fn initialize(&self) {}
fn encrypt(&self, key: &[u8], plaintext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// [CTAP 2.1]
// encrypt(key, demPlaintext) → ciphertext
// Return the AES-256-CBC encryption of plaintext using an all-zero IV. (No padding is
// performed as the size of plaintext is required to be a multiple of the AES block
// length.)
encrypt_aes_256_cbc_no_pad(key, None, plaintext)
}
fn decrypt(&self, key: &[u8], ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// [CTAP 2.1]
// decrypt(key, demCiphertext) → plaintext | error
// If the size of ciphertext is not a multiple of the AES block length, return error.
// Otherwise return the AES-256-CBC decryption of ciphertext using an all-zero IV.
decrypt_aes_256_cbc_no_pad(key, None, ciphertext)
}
fn authenticate(&self, key: &[u8], message: &[u8]) -> Result<Vec<u8>, CryptoError> {
// [CTAP 2.1]
// authenticate(key, message) → signature
// Return the first 16 bytes of the result of computing HMAC-SHA-256 with the given
// key and message.
let mut hmac = hmac_sha256(key, message)?;
hmac.truncate(16);
Ok(hmac)
}
fn kdf(&self, z: &[u8]) -> Result<Vec<u8>, CryptoError> {
// kdf(Z) → sharedSecret
// Return SHA-256(Z)
sha256(z)
}
}
/// CTAP 2.1, Section 6.5.7.
#[derive(Copy, Clone)]
pub struct PinUvAuth2;
impl PinProtocolImpl for PinUvAuth2 {
fn protocol_id(&self) -> u64 {
2
}
fn initialize(&self) {}
fn encrypt(&self, key: &[u8], plaintext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// [CTAP 2.1]
// encrypt(key, demPlaintext) → ciphertext
// 1. Discard the first 32 bytes of key. (This selects the AES-key portion of the
// shared secret.)
// 2. Let iv be a 16-byte, random bytestring.
// 3. Let ct be the AES-256-CBC encryption of demPlaintext using key and iv. (No
// padding is performed as the size of demPlaintext is required to be a multiple of
// the AES block length.)
// 4. Return iv || ct.
if key.len() != 64 {
return Err(CryptoError::LibraryFailure);
}
let key = &key[32..64];
let iv = random_bytes(16)?;
let mut ct = encrypt_aes_256_cbc_no_pad(key, Some(&iv), plaintext)?;
let mut out = iv;
out.append(&mut ct);
Ok(out)
}
fn decrypt(&self, key: &[u8], ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// decrypt(key, demCiphertext) → plaintext | error
// 1. Discard the first 32 bytes of key. (This selects the AES-key portion of the
// shared secret.)
// 2. If demCiphertext is less than 16 bytes in length, return an error
// 3. Split demCiphertext after the 16th byte to produce two subspans, iv and ct.
// 4. Return the AES-256-CBC decryption of ct using key and iv.
if key.len() < 64 || ciphertext.len() < 16 {
return Err(CryptoError::LibraryFailure);
}
let key = &key[32..64];
let (iv, ct) = ciphertext.split_at(16);
decrypt_aes_256_cbc_no_pad(key, Some(iv), ct)
}
fn authenticate(&self, key: &[u8], message: &[u8]) -> Result<Vec<u8>, CryptoError> {
// authenticate(key, message) → signature
// 1. If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key
// portion of the shared secret. When key is the pinUvAuthToken, it is exactly 32
// bytes long and thus this step has no effect.)
// 2. Return the result of computing HMAC-SHA-256 on key and message.
if key.len() < 32 {
return Err(CryptoError::LibraryFailure);
}
let key = &key[0..32];
hmac_sha256(key, message)
}
fn kdf(&self, z: &[u8]) -> Result<Vec<u8>, CryptoError> {
// kdf(Z) → sharedSecret
// return HKDF-SHA-256(salt, Z, L = 32, info = "CTAP2 HMAC key") ||
// HKDF-SHA-256(salt, Z, L = 32, info = "CTAP2 AES key")
// where salt = [0u8; 32].
//
// From Section 2 of RFC 5869, we have
// HKDF(salt, Z, 32, info) =
// HKDF-Expand(HKDF-Extract(salt, Z), info || 0x01)
//
// And for HKDF-SHA256 both Extract and Expand are instantiated with HMAC-SHA256.
let prk = hmac_sha256(&[0u8; 32], z)?;
let mut shared_secret = hmac_sha256(&prk, "CTAP2 HMAC key\x01".as_bytes())?;
shared_secret.append(&mut hmac_sha256(&prk, "CTAP2 AES key\x01".as_bytes())?);
Ok(shared_secret)
}
}
#[derive(Clone, Debug)]
struct PublicInputs {
client: COSEKey,
peer: COSEKey,
}
#[derive(Clone, Debug)]
pub struct SharedSecret {
pub pin_protocol: PinUvAuthProtocol,
key: Vec<u8>,
inputs: PublicInputs,
}
impl SharedSecret {
pub fn encrypt(&self, plaintext: &[u8]) -> Result<Vec<u8>, CryptoError> {
self.pin_protocol.0.encrypt(&self.key, plaintext)
}
pub fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
self.pin_protocol.0.decrypt(&self.key, ciphertext)
}
pub fn decrypt_pin_token(
&self,
permissions: PinUvAuthTokenPermission,
encrypted_pin_token: &[u8],
) -> Result<PinUvAuthToken, CryptoError> {
let pin_token = self.decrypt(encrypted_pin_token)?;
Ok(PinUvAuthToken {
pin_protocol: self.pin_protocol.clone(),
pin_token,
permissions,
})
}
pub fn authenticate(&self, message: &[u8]) -> Result<Vec<u8>, CryptoError> {
self.pin_protocol.0.authenticate(&self.key, message)
}
pub fn client_input(&self) -> &COSEKey {
&self.inputs.client
}
pub fn peer_input(&self) -> &COSEKey {
&self.inputs.peer
}
}
#[derive(Clone, Debug)]
pub struct PinUvAuthToken {
pub pin_protocol: PinUvAuthProtocol,
pin_token: Vec<u8>,
#[allow(dead_code)] // Not yet used
permissions: PinUvAuthTokenPermission,
}
impl PinUvAuthToken {
pub fn derive(self, message: &[u8]) -> Result<PinUvAuthParam, CryptoError> {
let pin_auth = self.pin_protocol.0.authenticate(&self.pin_token, message)?;
Ok(PinUvAuthParam {
pin_auth,
pin_protocol: self.pin_protocol,
permissions: self.permissions,
})
}
}
#[derive(Clone, Debug)]
pub struct PinUvAuthParam {
pin_auth: Vec<u8>,
pub pin_protocol: PinUvAuthProtocol,
#[allow(dead_code)] // Not yet used
permissions: PinUvAuthTokenPermission,
}
impl PinUvAuthParam {
pub(crate) fn create_empty() -> Self {
let pin_protocol = PinUvAuthProtocol(Box::new(PinUvAuth1 {}));
Self {
pin_auth: vec![],
pin_protocol,
permissions: PinUvAuthTokenPermission::empty(),
}
}
}
impl Serialize for PinUvAuthParam {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serde_bytes::serialize(&self.pin_auth[..], serializer)
}
}
/// A Curve identifier. You probably will never need to alter
/// or use this value, as it is set inside the Credential for you.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum Curve {
// +---------+-------+----------+------------------------------------+
// | Name | Value | Key Type | Description |
// +---------+-------+----------+------------------------------------+
// | P-256 | 1 | EC2 | NIST P-256 also known as secp256r1 |
// | P-384 | 2 | EC2 | NIST P-384 also known as secp384r1 |
// | P-521 | 3 | EC2 | NIST P-521 also known as secp521r1 |
// | X25519 | 4 | OKP | X25519 for use w/ ECDH only |
// | X448 | 5 | OKP | X448 for use w/ ECDH only |
// | Ed25519 | 6 | OKP | Ed25519 for use w/ EdDSA only |
// | Ed448 | 7 | OKP | Ed448 for use w/ EdDSA only |
// +---------+-------+----------+------------------------------------+
/// Identifies this curve as SECP256R1 (X9_62_PRIME256V1 in OpenSSL)
SECP256R1 = 1,
/// Identifies this curve as SECP384R1
SECP384R1 = 2,
/// Identifies this curve as SECP521R1
SECP521R1 = 3,
/// Identifieds this as OKP X25519 for use w/ ECDH only
X25519 = 4,
/// Identifieds this as OKP X448 for use w/ ECDH only
X448 = 5,
/// Identifieds this as OKP Ed25519 for use w/ EdDSA only
Ed25519 = 6,
/// Identifieds this as OKP Ed448 for use w/ EdDSA only
Ed448 = 7,
}
impl TryFrom<u64> for Curve {
type Error = CryptoError;
fn try_from(i: u64) -> Result<Self, Self::Error> {
match i {
1 => Ok(Curve::SECP256R1),
2 => Ok(Curve::SECP384R1),
3 => Ok(Curve::SECP521R1),
4 => Ok(Curve::X25519),
5 => Ok(Curve::X448),
6 => Ok(Curve::Ed25519),
7 => Ok(Curve::Ed448),
_ => Err(CryptoError::UnknownKeyType),
}
}
}
/// A COSE signature algorithm, indicating the type of key and hash type
/// that should be used.
/// see: https://www.iana.org/assignments/cose/cose.xhtml#table-algorithms
#[rustfmt::skip]
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum COSEAlgorithm {
// /// Identifies this key as ECDSA (recommended SECP256R1) with SHA256 hashing
// //#[serde(alias = "ECDSA_SHA256")]
// ES256 = -7, // recommends curve SECP256R1
// /// Identifies this key as ECDSA (recommended SECP384R1) with SHA384 hashing
// //#[serde(alias = "ECDSA_SHA384")]
// ES384 = -35, // recommends curve SECP384R1
// /// Identifies this key as ECDSA (recommended SECP521R1) with SHA512 hashing
// //#[serde(alias = "ECDSA_SHA512")]
// ES512 = -36, // recommends curve SECP521R1
// /// Identifies this key as RS256 aka RSASSA-PKCS1-v1_5 w/ SHA-256
// RS256 = -257,
// /// Identifies this key as RS384 aka RSASSA-PKCS1-v1_5 w/ SHA-384
// RS384 = -258,
// /// Identifies this key as RS512 aka RSASSA-PKCS1-v1_5 w/ SHA-512
// RS512 = -259,
// /// Identifies this key as PS256 aka RSASSA-PSS w/ SHA-256
// PS256 = -37,
// /// Identifies this key as PS384 aka RSASSA-PSS w/ SHA-384
// PS384 = -38,
// /// Identifies this key as PS512 aka RSASSA-PSS w/ SHA-512
// PS512 = -39,
// /// Identifies this key as EdDSA (likely curve ed25519)
// EDDSA = -8,
// /// Identifies this as an INSECURE RS1 aka RSASSA-PKCS1-v1_5 using SHA-1. This is not
// /// used by validators, but can exist in some windows hello tpm's
// INSECURE_RS1 = -65535,
INSECURE_RS1 = -65535, // RSASSA-PKCS1-v1_5 using SHA-1
RS512 = -259, // RSASSA-PKCS1-v1_5 using SHA-512
RS384 = -258, // RSASSA-PKCS1-v1_5 using SHA-384
RS256 = -257, // RSASSA-PKCS1-v1_5 using SHA-256
ES256K = -47, // ECDSA using secp256k1 curve and SHA-256
HSS_LMS = -46, // HSS/LMS hash-based digital signature
SHAKE256 = -45, // SHAKE-256 512-bit Hash Value
SHA512 = -44, // SHA-2 512-bit Hash
SHA384 = -43, // SHA-2 384-bit Hash
RSAES_OAEP_SHA_512 = -42, // RSAES-OAEP w/ SHA-512
RSAES_OAEP_SHA_256 = -41, // RSAES-OAEP w/ SHA-256
RSAES_OAEP_RFC_8017_default = -40, // RSAES-OAEP w/ SHA-1
PS512 = -39, // RSASSA-PSS w/ SHA-512
PS384 = -38, // RSASSA-PSS w/ SHA-384
PS256 = -37, // RSASSA-PSS w/ SHA-256
ES512 = -36, // ECDSA w/ SHA-512
ES384 = -35, // ECDSA w/ SHA-384
ECDH_SS_A256KW = -34, // ECDH SS w/ Concat KDF and AES Key Wrap w/ 256-bit key
ECDH_SS_A192KW = -33, // ECDH SS w/ Concat KDF and AES Key Wrap w/ 192-bit key
ECDH_SS_A128KW = -32, // ECDH SS w/ Concat KDF and AES Key Wrap w/ 128-bit key
ECDH_ES_A256KW = -31, // ECDH ES w/ Concat KDF and AES Key Wrap w/ 256-bit key
ECDH_ES_A192KW = -30, // ECDH ES w/ Concat KDF and AES Key Wrap w/ 192-bit key
ECDH_ES_A128KW = -29, // ECDH ES w/ Concat KDF and AES Key Wrap w/ 128-bit key
ECDH_SS_HKDF512 = -28, // ECDH SS w/ HKDF - generate key directly
ECDH_SS_HKDF256 = -27, // ECDH SS w/ HKDF - generate key directly
ECDH_ES_HKDF512 = -26, // ECDH ES w/ HKDF - generate key directly
ECDH_ES_HKDF256 = -25, // ECDH ES w/ HKDF - generate key directly
SHAKE128 = -18, // SHAKE-128 256-bit Hash Value
SHA512_256 = -17, // SHA-2 512-bit Hash truncated to 256-bits
SHA256 = -16, // SHA-2 256-bit Hash
SHA256_64 = -15, // SHA-2 256-bit Hash truncated to 64-bits
SHA1 = -14, // SHA-1 Hash
Direct_HKDF_AES256 = -13, // Shared secret w/ AES-MAC 256-bit key
Direct_HKDF_AES128 = -12, // Shared secret w/ AES-MAC 128-bit key
Direct_HKDF_SHA512 = -11, // Shared secret w/ HKDF and SHA-512
Direct_HKDF_SHA256 = -10, // Shared secret w/ HKDF and SHA-256
EDDSA = -8, // EdDSA
ES256 = -7, // ECDSA w/ SHA-256
Direct = -6, // Direct use of CEK
A256KW = -5, // AES Key Wrap w/ 256-bit key
A192KW = -4, // AES Key Wrap w/ 192-bit key
A128KW = -3, // AES Key Wrap w/ 128-bit key
A128GCM = 1, // AES-GCM mode w/ 128-bit key, 128-bit tag
A192GCM = 2, // AES-GCM mode w/ 192-bit key, 128-bit tag
A256GCM = 3, // AES-GCM mode w/ 256-bit key, 128-bit tag
HMAC256_64 = 4, // HMAC w/ SHA-256 truncated to 64 bits
HMAC256_256 = 5, // HMAC w/ SHA-256
HMAC384_384 = 6, // HMAC w/ SHA-384
HMAC512_512 = 7, // HMAC w/ SHA-512
AES_CCM_16_64_128 = 10, // AES-CCM mode 128-bit key, 64-bit tag, 13-byte nonce
AES_CCM_16_64_256 = 11, // AES-CCM mode 256-bit key, 64-bit tag, 13-byte nonce
AES_CCM_64_64_128 = 12, // AES-CCM mode 128-bit key, 64-bit tag, 7-byte nonce
AES_CCM_64_64_256 = 13, // AES-CCM mode 256-bit key, 64-bit tag, 7-byte nonce
AES_MAC_128_64 = 14, // AES-MAC 128-bit key, 64-bit tag
AES_MAC_256_64 = 15, // AES-MAC 256-bit key, 64-bit tag
ChaCha20_Poly1305 = 24, // ChaCha20/Poly1305 w/ 256-bit key, 128-bit tag
AES_MAC_128_128 = 25, // AES-MAC 128-bit key, 128-bit tag
AES_MAC_256_128 = 26, // AES-MAC 256-bit key, 128-bit tag
AES_CCM_16_128_128 = 30, // AES-CCM mode 128-bit key, 128-bit tag, 13-byte nonce
AES_CCM_16_128_256 = 31, // AES-CCM mode 256-bit key, 128-bit tag, 13-byte nonce
AES_CCM_64_128_128 = 32, // AES-CCM mode 128-bit key, 128-bit tag, 7-byte nonce
AES_CCM_64_128_256 = 33, // AES-CCM mode 256-bit key, 128-bit tag, 7-byte nonce
IV_GENERATION = 34, // For doing IV generation for symmetric algorithms.
}
impl Serialize for COSEAlgorithm {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match *self {
COSEAlgorithm::RS512 => serializer.serialize_i16(-259),
COSEAlgorithm::RS384 => serializer.serialize_i16(-258),
COSEAlgorithm::RS256 => serializer.serialize_i16(-257),
COSEAlgorithm::ES256K => serializer.serialize_i8(-47),
COSEAlgorithm::HSS_LMS => serializer.serialize_i8(-46),
COSEAlgorithm::SHAKE256 => serializer.serialize_i8(-45),
COSEAlgorithm::SHA512 => serializer.serialize_i8(-44),
COSEAlgorithm::SHA384 => serializer.serialize_i8(-43),
COSEAlgorithm::RSAES_OAEP_SHA_512 => serializer.serialize_i8(-42),
COSEAlgorithm::RSAES_OAEP_SHA_256 => serializer.serialize_i8(-41),
COSEAlgorithm::RSAES_OAEP_RFC_8017_default => serializer.serialize_i8(-40),
COSEAlgorithm::PS512 => serializer.serialize_i8(-39),
COSEAlgorithm::PS384 => serializer.serialize_i8(-38),
COSEAlgorithm::PS256 => serializer.serialize_i8(-37),
COSEAlgorithm::ES512 => serializer.serialize_i8(-36),
COSEAlgorithm::ES384 => serializer.serialize_i8(-35),
COSEAlgorithm::ECDH_SS_A256KW => serializer.serialize_i8(-34),
COSEAlgorithm::ECDH_SS_A192KW => serializer.serialize_i8(-33),
COSEAlgorithm::ECDH_SS_A128KW => serializer.serialize_i8(-32),
COSEAlgorithm::ECDH_ES_A256KW => serializer.serialize_i8(-31),
COSEAlgorithm::ECDH_ES_A192KW => serializer.serialize_i8(-30),
COSEAlgorithm::ECDH_ES_A128KW => serializer.serialize_i8(-29),
COSEAlgorithm::ECDH_SS_HKDF512 => serializer.serialize_i8(-28),
COSEAlgorithm::ECDH_SS_HKDF256 => serializer.serialize_i8(-27),
COSEAlgorithm::ECDH_ES_HKDF512 => serializer.serialize_i8(-26),
COSEAlgorithm::ECDH_ES_HKDF256 => serializer.serialize_i8(-25),
COSEAlgorithm::SHAKE128 => serializer.serialize_i8(-18),
COSEAlgorithm::SHA512_256 => serializer.serialize_i8(-17),
COSEAlgorithm::SHA256 => serializer.serialize_i8(-16),
COSEAlgorithm::SHA256_64 => serializer.serialize_i8(-15),
COSEAlgorithm::SHA1 => serializer.serialize_i8(-14),
COSEAlgorithm::Direct_HKDF_AES256 => serializer.serialize_i8(-13),
COSEAlgorithm::Direct_HKDF_AES128 => serializer.serialize_i8(-12),
COSEAlgorithm::Direct_HKDF_SHA512 => serializer.serialize_i8(-11),
COSEAlgorithm::Direct_HKDF_SHA256 => serializer.serialize_i8(-10),
COSEAlgorithm::EDDSA => serializer.serialize_i8(-8),
COSEAlgorithm::ES256 => serializer.serialize_i8(-7),
COSEAlgorithm::Direct => serializer.serialize_i8(-6),
COSEAlgorithm::A256KW => serializer.serialize_i8(-5),
COSEAlgorithm::A192KW => serializer.serialize_i8(-4),
COSEAlgorithm::A128KW => serializer.serialize_i8(-3),
COSEAlgorithm::A128GCM => serializer.serialize_i8(1),
COSEAlgorithm::A192GCM => serializer.serialize_i8(2),
COSEAlgorithm::A256GCM => serializer.serialize_i8(3),
COSEAlgorithm::HMAC256_64 => serializer.serialize_i8(4),
COSEAlgorithm::HMAC256_256 => serializer.serialize_i8(5),
COSEAlgorithm::HMAC384_384 => serializer.serialize_i8(6),
COSEAlgorithm::HMAC512_512 => serializer.serialize_i8(7),
COSEAlgorithm::AES_CCM_16_64_128 => serializer.serialize_i8(10),
COSEAlgorithm::AES_CCM_16_64_256 => serializer.serialize_i8(11),
COSEAlgorithm::AES_CCM_64_64_128 => serializer.serialize_i8(12),
COSEAlgorithm::AES_CCM_64_64_256 => serializer.serialize_i8(13),
COSEAlgorithm::AES_MAC_128_64 => serializer.serialize_i8(14),
COSEAlgorithm::AES_MAC_256_64 => serializer.serialize_i8(15),
COSEAlgorithm::ChaCha20_Poly1305 => serializer.serialize_i8(24),
COSEAlgorithm::AES_MAC_128_128 => serializer.serialize_i8(25),
COSEAlgorithm::AES_MAC_256_128 => serializer.serialize_i8(26),
COSEAlgorithm::AES_CCM_16_128_128 => serializer.serialize_i8(30),
COSEAlgorithm::AES_CCM_16_128_256 => serializer.serialize_i8(31),
COSEAlgorithm::AES_CCM_64_128_128 => serializer.serialize_i8(32),
COSEAlgorithm::AES_CCM_64_128_256 => serializer.serialize_i8(33),
COSEAlgorithm::IV_GENERATION => serializer.serialize_i8(34),
COSEAlgorithm::INSECURE_RS1 => serializer.serialize_i32(-65535),
}
}
}
impl<'de> Deserialize<'de> for COSEAlgorithm {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct COSEAlgorithmVisitor;
impl<'de> Visitor<'de> for COSEAlgorithmVisitor {
type Value = COSEAlgorithm;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a signed integer")
}
fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
where
E: SerdeError,
{
COSEAlgorithm::try_from(v).map_err(|_| {
SerdeError::invalid_value(Unexpected::Signed(v), &"valid COSEAlgorithm")
})
}
}
deserializer.deserialize_any(COSEAlgorithmVisitor)
}
}
impl TryFrom<i64> for COSEAlgorithm {
type Error = CryptoError;
fn try_from(i: i64) -> Result<Self, Self::Error> {
match i {
-259 => Ok(COSEAlgorithm::RS512),
-258 => Ok(COSEAlgorithm::RS384),
-257 => Ok(COSEAlgorithm::RS256),
-47 => Ok(COSEAlgorithm::ES256K),
-46 => Ok(COSEAlgorithm::HSS_LMS),
-45 => Ok(COSEAlgorithm::SHAKE256),
-44 => Ok(COSEAlgorithm::SHA512),
-43 => Ok(COSEAlgorithm::SHA384),
-42 => Ok(COSEAlgorithm::RSAES_OAEP_SHA_512),
-41 => Ok(COSEAlgorithm::RSAES_OAEP_SHA_256),
-40 => Ok(COSEAlgorithm::RSAES_OAEP_RFC_8017_default),
-39 => Ok(COSEAlgorithm::PS512),
-38 => Ok(COSEAlgorithm::PS384),
-37 => Ok(COSEAlgorithm::PS256),
-36 => Ok(COSEAlgorithm::ES512),
-35 => Ok(COSEAlgorithm::ES384),
-34 => Ok(COSEAlgorithm::ECDH_SS_A256KW),
-33 => Ok(COSEAlgorithm::ECDH_SS_A192KW),
-32 => Ok(COSEAlgorithm::ECDH_SS_A128KW),
-31 => Ok(COSEAlgorithm::ECDH_ES_A256KW),
-30 => Ok(COSEAlgorithm::ECDH_ES_A192KW),
-29 => Ok(COSEAlgorithm::ECDH_ES_A128KW),
-28 => Ok(COSEAlgorithm::ECDH_SS_HKDF512),
-27 => Ok(COSEAlgorithm::ECDH_SS_HKDF256),
-26 => Ok(COSEAlgorithm::ECDH_ES_HKDF512),
-25 => Ok(COSEAlgorithm::ECDH_ES_HKDF256),
-18 => Ok(COSEAlgorithm::SHAKE128),
-17 => Ok(COSEAlgorithm::SHA512_256),
-16 => Ok(COSEAlgorithm::SHA256),
-15 => Ok(COSEAlgorithm::SHA256_64),
-14 => Ok(COSEAlgorithm::SHA1),
-13 => Ok(COSEAlgorithm::Direct_HKDF_AES256),
-12 => Ok(COSEAlgorithm::Direct_HKDF_AES128),
-11 => Ok(COSEAlgorithm::Direct_HKDF_SHA512),
-10 => Ok(COSEAlgorithm::Direct_HKDF_SHA256),
-8 => Ok(COSEAlgorithm::EDDSA),
-7 => Ok(COSEAlgorithm::ES256),
-6 => Ok(COSEAlgorithm::Direct),
-5 => Ok(COSEAlgorithm::A256KW),
-4 => Ok(COSEAlgorithm::A192KW),
-3 => Ok(COSEAlgorithm::A128KW),
1 => Ok(COSEAlgorithm::A128GCM),
2 => Ok(COSEAlgorithm::A192GCM),
3 => Ok(COSEAlgorithm::A256GCM),
4 => Ok(COSEAlgorithm::HMAC256_64),
5 => Ok(COSEAlgorithm::HMAC256_256),
6 => Ok(COSEAlgorithm::HMAC384_384),
7 => Ok(COSEAlgorithm::HMAC512_512),
10 => Ok(COSEAlgorithm::AES_CCM_16_64_128),
11 => Ok(COSEAlgorithm::AES_CCM_16_64_256),
12 => Ok(COSEAlgorithm::AES_CCM_64_64_128),
13 => Ok(COSEAlgorithm::AES_CCM_64_64_256),
14 => Ok(COSEAlgorithm::AES_MAC_128_64),
15 => Ok(COSEAlgorithm::AES_MAC_256_64),
24 => Ok(COSEAlgorithm::ChaCha20_Poly1305),
25 => Ok(COSEAlgorithm::AES_MAC_128_128),
26 => Ok(COSEAlgorithm::AES_MAC_256_128),
30 => Ok(COSEAlgorithm::AES_CCM_16_128_128),
31 => Ok(COSEAlgorithm::AES_CCM_16_128_256),
32 => Ok(COSEAlgorithm::AES_CCM_64_128_128),
33 => Ok(COSEAlgorithm::AES_CCM_64_128_256),
34 => Ok(COSEAlgorithm::IV_GENERATION),
-65535 => Ok(COSEAlgorithm::INSECURE_RS1),
_ => Err(CryptoError::UnknownAlgorithm),
}
}
}
/// A COSE Elliptic Curve Public Key. This is generally the provided credential
/// that an authenticator registers, and is used to authenticate the user.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct COSEEC2Key {
/// The curve that this key references.
pub curve: Curve,
/// The key's public X coordinate.
pub x: Vec<u8>,
/// The key's public Y coordinate.
pub y: Vec<u8>,
}
impl COSEEC2Key {
// The SEC 1 uncompressed point format is "0x04 || x coordinate || y coordinate".
// See Section 2.3.3 of "SEC 1: Elliptic Curve Cryptography" https://www.secg.org/sec1-v2.pdf.
pub fn from_sec1_uncompressed(curve: Curve, key: &[u8]) -> Result<Self, CryptoError> {
if !(curve == Curve::SECP256R1 && key.len() == 65) {
return Err(CryptoError::UnsupportedCurve(curve));
}
if key[0] != 0x04 {
return Err(CryptoError::MalformedInput);
}
let key = &key[1..];
let (x, y) = key.split_at(key.len() / 2);
Ok(COSEEC2Key {
curve,
x: x.to_vec(),
y: y.to_vec(),
})
}
fn der_spki(&self) -> Result<Vec<u8>, CryptoError> {
let (curve_oid, seq_len, alg_len, spk_len) = match self.curve {
Curve::SECP256R1 => (
DER_OID_P256_BYTES,
[0x59].as_slice(),
[0x13].as_slice(),
[0x42].as_slice(),
),
x => return Err(CryptoError::UnsupportedCurve(x)),
};
// [RFC 5280]
let mut spki: Vec<u8> = vec![];
// SubjectPublicKeyInfo
spki.push(0x30);
spki.extend_from_slice(seq_len);
// AlgorithmIdentifier
spki.push(0x30);
spki.extend_from_slice(alg_len);
// ObjectIdentifier
spki.extend_from_slice(DER_OID_EC_PUBLIC_KEY_BYTES);
// RFC 5480 ECParameters
spki.extend_from_slice(curve_oid);
// BIT STRING encoding uncompressed SEC1 public point
spki.push(0x03);
spki.extend_from_slice(spk_len);
spki.push(0x0); // no trailing zeros
spki.push(0x04); // SEC 1 encoded uncompressed point
spki.extend_from_slice(&self.x);
spki.extend_from_slice(&self.y);
Ok(spki)
}
}
/// A Octet Key Pair (OKP).
/// The other version uses only the x-coordinate as the y-coordinate is
/// either to be recomputed or not needed for the key agreement operation ('OKP').
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct COSEOKPKey {
/// The curve that this key references.
pub curve: Curve,
/// The key's public X coordinate.
pub x: Vec<u8>,
}
/// A COSE RSA PublicKey. This is a provided credential from a registered
/// authenticator.
/// You will likely never need to interact with this value, as it is part of the Credential
/// API.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct COSERSAKey {
/// An RSA modulus
pub n: Vec<u8>,
/// An RSA exponent
pub e: Vec<u8>,
}
/// A Octet Key Pair (OKP).
/// The other version uses only the x-coordinate as the y-coordinate is
/// either to be recomputed or not needed for the key agreement operation ('OKP').
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct COSESymmetricKey {
/// The key
pub key: Vec<u8>,
}
// https://tools.ietf.org/html/rfc8152#section-13
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Serialize, Deserialize)]
#[repr(i64)]
pub enum COSEKeyTypeId {
// Reserved is invalid
// Reserved = 0,
/// Octet Key Pair
OKP = 1,
/// Elliptic Curve Keys w/ x- and y-coordinate
EC2 = 2,
/// RSA
RSA = 3,
/// Symmetric
Symmetric = 4,
}
impl TryFrom<u64> for COSEKeyTypeId {
type Error = CryptoError;
fn try_from(i: u64) -> Result<Self, Self::Error> {
match i {
1 => Ok(COSEKeyTypeId::OKP),
2 => Ok(COSEKeyTypeId::EC2),
3 => Ok(COSEKeyTypeId::RSA),
4 => Ok(COSEKeyTypeId::Symmetric),
_ => Err(CryptoError::UnknownKeyType),
}
}
}
/// The type of Key contained within a COSE value. You should never need
/// to alter or change this type.
#[allow(non_camel_case_types)]
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum COSEKeyType {
// +-----------+-------+-----------------------------------------------+
// | Name | Value | Description |
// +-----------+-------+-----------------------------------------------+
// | OKP | 1 | Octet Key Pair |
// | EC2 | 2 | Elliptic Curve Keys w/ x- and y-coordinate |
// | | | pair |
// | Symmetric | 4 | Symmetric Keys |
// | Reserved | 0 | This value is reserved |
// +-----------+-------+-----------------------------------------------+
// Reserved, // should always be invalid.
/// Identifies this as an Elliptic Curve octet key pair
OKP(COSEOKPKey), // Not used here
/// Identifies this as an Elliptic Curve EC2 key
EC2(COSEEC2Key),
/// Identifies this as an RSA key
RSA(COSERSAKey), // Not used here
/// Identifies this as a Symmetric key
Symmetric(COSESymmetricKey), // Not used here
}
/// A COSE Key as provided by the Authenticator. You should never need
/// to alter or change these values.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct COSEKey {
/// COSE signature algorithm, indicating the type of key and hash type
/// that should be used.
pub alg: COSEAlgorithm,
/// The public key
pub key: COSEKeyType,
}
impl<'de> Deserialize<'de> for COSEKey {
fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct COSEKeyVisitor;
impl<'de> Visitor<'de> for COSEKeyVisitor {
type Value = COSEKey;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a map")
}
fn visit_map<M>(self, mut map: M) -> std::result::Result<Self::Value, M::Error>
where
M: MapAccess<'de>,
{
let mut curve: Option<Curve> = None;
let mut key_type: Option<COSEKeyTypeId> = None;
let mut alg: Option<COSEAlgorithm> = None;
let mut x: Option<Vec<u8>> = None;
let mut y: Option<Vec<u8>> = None;
while let Some(key) = map.next_key()? {
trace!("cose key {:?}", key);
match key {
1 => {
if key_type.is_some() {
return Err(SerdeError::duplicate_field("key_type"));
}
let value: u64 = map.next_value()?;
let val = COSEKeyTypeId::try_from(value).map_err(|_| {
SerdeError::custom(format!("unsupported key_type {value}"))
})?;
key_type = Some(val);
// key_type = Some(map.next_value()?);
}
-1 => {
let key_type =
key_type.ok_or_else(|| SerdeError::missing_field("key_type"))?;
if key_type == COSEKeyTypeId::RSA {
if y.is_some() {
return Err(SerdeError::duplicate_field("y"));
}
let value: ByteBuf = map.next_value()?;
y = Some(value.to_vec());
} else {
if curve.is_some() {
return Err(SerdeError::duplicate_field("curve"));
}
let value: u64 = map.next_value()?;
let val = Curve::try_from(value).map_err(|_| {
SerdeError::custom(format!("unsupported curve {value}"))
})?;
curve = Some(val);
// curve = Some(map.next_value()?);
}
}
-2 => {
if x.is_some() {
return Err(SerdeError::duplicate_field("x"));
}
let value: ByteBuf = map.next_value()?;
x = Some(value.to_vec());
}
-3 => {
if y.is_some() {
return Err(SerdeError::duplicate_field("y"));
}
let value: ByteBuf = map.next_value()?;
y = Some(value.to_vec());
}
3 => {
if alg.is_some() {
return Err(SerdeError::duplicate_field("alg"));
}
let value: i64 = map.next_value()?;
let val = COSEAlgorithm::try_from(value).map_err(|_| {
SerdeError::custom(format!("unsupported algorithm {value}"))
})?;
alg = Some(val);
// alg = map.next_value()?;
}
_ => {
// This unknown field should raise an error, but
// there is a couple of field I(baloo) do not understand
// yet. I(baloo) chose to ignore silently the
// error instead because of that
let value: Value = map.next_value()?;
trace!("cose unknown value {:?}:{:?}", key, value);
}
};
}
let key_type = key_type.ok_or_else(|| SerdeError::missing_field("key_type"))?;
let x = x.ok_or_else(|| SerdeError::missing_field("x"))?;
let alg = alg.ok_or_else(|| SerdeError::missing_field("alg"))?;
let res = match key_type {
COSEKeyTypeId::OKP => {
let curve = curve.ok_or_else(|| SerdeError::missing_field("curve"))?;
COSEKeyType::OKP(COSEOKPKey { curve, x })
}
COSEKeyTypeId::EC2 => {
let curve = curve.ok_or_else(|| SerdeError::missing_field("curve"))?;
let y = y.ok_or_else(|| SerdeError::missing_field("y"))?;
COSEKeyType::EC2(COSEEC2Key { curve, x, y })
}
COSEKeyTypeId::RSA => {
let e = y.ok_or_else(|| SerdeError::missing_field("y"))?;
COSEKeyType::RSA(COSERSAKey { e, n: x })
}
COSEKeyTypeId::Symmetric => COSEKeyType::Symmetric(COSESymmetricKey { key: x }),
};
Ok(COSEKey { alg, key: res })
}
}
deserializer.deserialize_bytes(COSEKeyVisitor)
}
}
impl Serialize for COSEKey {
fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
where
S: Serializer,
{
let map_len = match &self.key {
COSEKeyType::OKP(_) => 3,
COSEKeyType::EC2(_) => 5,
COSEKeyType::RSA(_) => 4,
COSEKeyType::Symmetric(_) => 3,
};
let mut map = serializer.serialize_map(Some(map_len))?;
match &self.key {
COSEKeyType::OKP(key) => {
map.serialize_entry(&1, &COSEKeyTypeId::OKP)?;
map.serialize_entry(&3, &self.alg)?;
map.serialize_entry(&-1, &key.curve)?;
map.serialize_entry(&-2, &key.x)?;
}
COSEKeyType::EC2(key) => {
map.serialize_entry(&1, &(COSEKeyTypeId::EC2 as u8))?;
map.serialize_entry(&3, &self.alg)?;
map.serialize_entry(&-1, &(key.curve as u8))?;
map.serialize_entry(&-2, &serde_bytes::Bytes::new(&key.x))?;
map.serialize_entry(&-3, &serde_bytes::Bytes::new(&key.y))?;
}
COSEKeyType::RSA(key) => {
map.serialize_entry(&1, &COSEKeyTypeId::RSA)?;
map.serialize_entry(&3, &self.alg)?;
map.serialize_entry(&-1, &key.n)?;
map.serialize_entry(&-2, &key.e)?;
}
COSEKeyType::Symmetric(key) => {
map.serialize_entry(&1, &COSEKeyTypeId::Symmetric)?;
map.serialize_entry(&3, &self.alg)?;
map.serialize_entry(&-1, &key.key)?;
}
}
map.end()
}
}
/// Errors that can be returned from COSE functions.
#[derive(Debug, Clone, Serialize)]
pub enum CryptoError {
// DecodingFailure,
LibraryFailure,
MalformedInput,
// MissingHeader,
// UnexpectedHeaderValue,
// UnexpectedTag,
// UnexpectedType,
// Unimplemented,
// VerificationFailed,
// SigningFailed,
// InvalidArgument,
UnknownKeyType,
UnknownSignatureScheme,
UnknownAlgorithm,
WrongSaltLength,
UnsupportedAlgorithm(COSEAlgorithm),
UnsupportedCurve(Curve),
UnsupportedKeyType,
Backend(String),
}
impl From<CryptoError> for CommandError {
fn from(e: CryptoError) -> Self {
CommandError::Crypto(e)
}
}
impl From<CryptoError> for AuthenticatorError {
fn from(e: CryptoError) -> Self {
AuthenticatorError::HIDError(HIDError::Command(CommandError::Crypto(e)))
}
}
pub struct U2FRegisterAnswer<'a> {
pub certificate: &'a [u8],
pub signature: &'a [u8],
}
// We will only return MalformedInput here
pub fn parse_u2f_der_certificate(data: &[u8]) -> Result<U2FRegisterAnswer, CryptoError> {
// So we don't panic below, when accessing individual bytes
if data.len() < 4 {
return Err(CryptoError::MalformedInput);
}
// Check if it is a SEQUENCE
if data[0] != 0x30 {
return Err(CryptoError::MalformedInput);
}
// This algorithm is taken from mozilla-central/security/nss/lib/mozpkix/lib/pkixder.cpp
// The short form of length is a single byte with the high order bit set
// to zero. The long form of length is one byte with the high order bit
// set, followed by N bytes, where N is encoded in the lowest 7 bits of
// the first byte.
let end = if (data[1] & 0x80) == 0 {
2 + data[1] as usize
} else if data[1] == 0x81 {
// The next byte specifies the length
if data[2] < 128 {
// Not shortest possible encoding
// Forbidden by DER-format
return Err(CryptoError::MalformedInput);
}
3 + data[2] as usize
} else if data[1] == 0x82 {
// The next 2 bytes specify the length
let l = u16::from_be_bytes([data[2], data[3]]);
if l < 256 {
// Not shortest possible encoding
// Forbidden by DER-format
return Err(CryptoError::MalformedInput);
}
4 + l as usize
} else {
// We don't support lengths larger than 2^16 - 1.
return Err(CryptoError::MalformedInput);
};
if data.len() < end {
return Err(CryptoError::MalformedInput);
}
Ok(U2FRegisterAnswer {
certificate: &data[0..end],
signature: &data[end..],
})
}
#[cfg(all(test, not(feature = "crypto_dummy")))]
mod test {
use super::{
backend::hmac_sha256, backend::sha256, backend::test_ecdh_p256_raw, COSEAlgorithm, COSEKey,
Curve, PinProtocolImpl, PinUvAuth1, PinUvAuth2, PinUvAuthProtocol, PublicInputs,
SharedSecret,
};
use crate::crypto::{COSEEC2Key, COSEKeyType};
use crate::ctap2::commands::client_pin::Pin;
use crate::util::decode_hex;
use serde_cbor::de::from_slice;
#[test]
fn test_serialize_key() {
let x = [
0xfc, 0x9e, 0xd3, 0x6f, 0x7c, 0x1a, 0xa9, 0x15, 0xce, 0x3e, 0xa1, 0x77, 0xf0, 0x75,
0x67, 0xf0, 0x7f, 0x16, 0xf9, 0x47, 0x9d, 0x95, 0xad, 0x8e, 0xd4, 0x97, 0x1d, 0x33,
0x05, 0xe3, 0x1a, 0x80,
];
let y = [
0x50, 0xb7, 0x33, 0xaf, 0x8c, 0x0b, 0x0e, 0xe1, 0xda, 0x8d, 0xe0, 0xac, 0xf9, 0xd8,
0xe1, 0x32, 0x82, 0xf0, 0x63, 0xb7, 0xb3, 0x0d, 0x73, 0xd4, 0xd3, 0x2c, 0x9a, 0xad,
0x6d, 0xfa, 0x8b, 0x27,
];
let serialized_key = [
0x04, 0xfc, 0x9e, 0xd3, 0x6f, 0x7c, 0x1a, 0xa9, 0x15, 0xce, 0x3e, 0xa1, 0x77, 0xf0,
0x75, 0x67, 0xf0, 0x7f, 0x16, 0xf9, 0x47, 0x9d, 0x95, 0xad, 0x8e, 0xd4, 0x97, 0x1d,
0x33, 0x05, 0xe3, 0x1a, 0x80, 0x50, 0xb7, 0x33, 0xaf, 0x8c, 0x0b, 0x0e, 0xe1, 0xda,
0x8d, 0xe0, 0xac, 0xf9, 0xd8, 0xe1, 0x32, 0x82, 0xf0, 0x63, 0xb7, 0xb3, 0x0d, 0x73,
0xd4, 0xd3, 0x2c, 0x9a, 0xad, 0x6d, 0xfa, 0x8b, 0x27,
];
let ec2_key = COSEEC2Key::from_sec1_uncompressed(Curve::SECP256R1, &serialized_key)
.expect("Failed to decode SEC 1 key");
assert_eq!(ec2_key.x, x);
assert_eq!(ec2_key.y, y);
}
#[test]
fn test_parse_es256_serialize_key() {
// Test values taken from https://github.com/Yubico/python-fido2/blob/master/test/test_cose.py
let key_data = decode_hex("A5010203262001215820A5FD5CE1B1C458C530A54FA61B31BF6B04BE8B97AFDE54DD8CBB69275A8A1BE1225820FA3A3231DD9DEED9D1897BE5A6228C59501E4BCD12975D3DFF730F01278EA61C");
let key: COSEKey = from_slice(&key_data).unwrap();
assert_eq!(key.alg, COSEAlgorithm::ES256);
if let COSEKeyType::EC2(ec2key) = &key.key {
assert_eq!(ec2key.curve, Curve::SECP256R1);
assert_eq!(
ec2key.x,
decode_hex("A5FD5CE1B1C458C530A54FA61B31BF6B04BE8B97AFDE54DD8CBB69275A8A1BE1")
);
assert_eq!(
ec2key.y,
decode_hex("FA3A3231DD9DEED9D1897BE5A6228C59501E4BCD12975D3DFF730F01278EA61C")
);
} else {
panic!("Wrong key type!");
}
let serialized = serde_cbor::to_vec(&key).expect("Failed to serialize key");
assert_eq!(key_data, serialized);
}
#[test]
#[allow(non_snake_case)]
fn test_shared_secret() {
// Test values taken from https://github.com/Yubico/python-fido2/blob/main/tests/test_ctap2.py
let EC_PRIV =
decode_hex("7452E599FEE739D8A653F6A507343D12D382249108A651402520B72F24FE7684");
let EC_PUB_X =
decode_hex("44D78D7989B97E62EA993496C9EF6E8FD58B8B00715F9A89153DDD9C4657E47F");
let EC_PUB_Y =
decode_hex("EC802EE7D22BD4E100F12E48537EB4E7E96ED3A47A0A3BD5F5EEAB65001664F9");
let DEV_PUB_X =
decode_hex("0501D5BC78DA9252560A26CB08FCC60CBE0B6D3B8E1D1FCEE514FAC0AF675168");
let DEV_PUB_Y =
decode_hex("D551B3ED46F665731F95B4532939C25D91DB7EB844BD96D4ABD4083785F8DF47");
let SHARED = decode_hex("c42a039d548100dfba521e487debcbbb8b66bb7496f8b1862a7a395ed83e1a1c");
let TOKEN_ENC = decode_hex("7A9F98E31B77BE90F9C64D12E9635040");
let TOKEN = decode_hex("aff12c6dcfbf9df52f7a09211e8865cd");
let PIN_HASH_ENC = decode_hex("afe8327ce416da8ee3d057589c2ce1a9");
let client_ec2_key = COSEEC2Key {
curve: Curve::SECP256R1,
x: EC_PUB_X.clone(),
y: EC_PUB_Y.clone(),
};
let peer_ec2_key = COSEEC2Key {
curve: Curve::SECP256R1,
x: DEV_PUB_X,
y: DEV_PUB_Y,
};
// We are using `test_cose_ec2_p256_ecdh_sha256()` here, because we need a way to hand in
// the private key which would be generated on the fly otherwise (ephemeral keys),
// to predict the outputs
let peer_spki = peer_ec2_key.der_spki().unwrap();
let shared_point = test_ecdh_p256_raw(&peer_spki, &EC_PUB_X, &EC_PUB_Y, &EC_PRIV).unwrap();
let shared_secret = SharedSecret {
pin_protocol: PinUvAuthProtocol(Box::new(PinUvAuth1 {})),
key: sha256(&shared_point).unwrap(),
inputs: PublicInputs {
client: COSEKey {
alg: COSEAlgorithm::ES256,
key: COSEKeyType::EC2(client_ec2_key),
},
peer: COSEKey {
alg: COSEAlgorithm::ES256,
key: COSEKeyType::EC2(peer_ec2_key),
},
},
};
assert_eq!(shared_secret.key, SHARED);
let token_enc = shared_secret.encrypt(&TOKEN).unwrap();
assert_eq!(token_enc, TOKEN_ENC);
let token = shared_secret.decrypt(&TOKEN_ENC).unwrap();
assert_eq!(token, TOKEN);
let pin = Pin::new("1234");
let pin_hash_enc = shared_secret.encrypt(&pin.for_pin_token()).unwrap();
assert_eq!(pin_hash_enc, PIN_HASH_ENC);
}
#[test]
fn test_pin_uv_auth2_kdf() {
// We don't pull a complete HKDF implementation from the crypto backend, so we need to
// check that PinUvAuth2::kdf makes the right sequence of HMAC-SHA256 calls.
//
// ```python
// from cryptography.hazmat.primitives.kdf.hkdf import HKDF
// from cryptography.hazmat.primitives import hashes
// from cryptography.hazmat.backends import default_backend
//
// Z = b"\xFF" * 32
//
// hmac_key = HKDF(
// algorithm=hashes.SHA256(),
// length=32,
// salt=b"\x00" * 32,
// info=b"CTAP2 HMAC key",
// ).derive(Z)
//
// aes_key = HKDF(
// algorithm=hashes.SHA256(),
// length=32,
// salt=b"\x00" * 32,
// info=b"CTAP2 AES key",
// ).derive(Z)
//
// print((hmac_key+aes_key).hex())
// ```
let input = decode_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF");
let expected = decode_hex("570B4ED82AA5DFB49DB79DBEAF4B315D8ABB1A9867B245F3367026987C0D47A17D9A93C39BAEC741D141C6238D8E1846DE323D8EED022CB397D19A73B98945E2");
let output = PinUvAuth2 {}.kdf(&input).unwrap();
assert_eq!(&expected, &output);
}
#[test]
fn test_hmac_sha256() {
let key = "key";
let message = "The quick brown fox jumps over the lazy dog";
let expected =
decode_hex("f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8");
let result = hmac_sha256(key.as_bytes(), message.as_bytes()).expect("HMAC-SHA256 failed");
assert_eq!(result, expected);
let key = "The quick brown fox jumps over the lazy dogThe quick brown fox jumps over the lazy dog";
let message = "message";
let expected =
decode_hex("5597b93a2843078cbb0c920ae41dfe20f1685e10c67e423c11ab91adfc319d12");
let result = hmac_sha256(key.as_bytes(), message.as_bytes()).expect("HMAC-SHA256 failed");
assert_eq!(result, expected);
}
#[test]
fn test_pin_encryption_and_hashing() {
let pin = "1234";
let shared_secret = vec![
0x82, 0xE3, 0xD8, 0x41, 0xE2, 0x5C, 0x5C, 0x13, 0x46, 0x2C, 0x12, 0x3C, 0xC3, 0xD3,
0x98, 0x78, 0x65, 0xBA, 0x3D, 0x20, 0x46, 0x74, 0xFB, 0xED, 0xD4, 0x7E, 0xF5, 0xAB,
0xAB, 0x8D, 0x13, 0x72,
];
let expected_new_pin_enc = vec![
0x70, 0x66, 0x4B, 0xB5, 0x81, 0xE2, 0x57, 0x45, 0x1A, 0x3A, 0xB9, 0x1B, 0xF1, 0xAA,
0xD8, 0xE4, 0x5F, 0x6C, 0xE9, 0xB5, 0xC3, 0xB0, 0xF3, 0x2B, 0x5E, 0xCD, 0x62, 0xD0,
0xBA, 0x3B, 0x60, 0x5F, 0xD9, 0x18, 0x31, 0x66, 0xF6, 0xC5, 0xFA, 0xF3, 0xE4, 0xDA,
0x24, 0x81, 0x50, 0x2C, 0xD0, 0xCE, 0xE0, 0x15, 0x8B, 0x35, 0x1F, 0xC3, 0x92, 0x08,
0xA7, 0x7C, 0xB2, 0x74, 0x4B, 0xD4, 0x3C, 0xF9,
];
let expected_pin_auth = vec![
0x8E, 0x7F, 0x01, 0x69, 0x97, 0xF3, 0xB0, 0xA2, 0x7B, 0xA4, 0x34, 0x7A, 0x0E, 0x49,
0xFD, 0xF5,
];
let mut input = vec![0x00; 64];
{
let pin_bytes = pin.as_bytes();
let (head, _) = input.split_at_mut(pin_bytes.len());
head.copy_from_slice(pin_bytes);
}
let new_pin_enc = PinUvAuth1 {}
.encrypt(&shared_secret, &input)
.expect("Failed to encrypt pin");
assert_eq!(new_pin_enc, expected_new_pin_enc);
let pin_auth = PinUvAuth1 {}
.authenticate(&shared_secret, &new_pin_enc)
.expect("HMAC-SHA256 failed");
assert_eq!(pin_auth[0..16], expected_pin_auth);
}
}
|