1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
use super::CryptoError;
use openssl::bn::BigNumContext;
use openssl::derive::Deriver;
use openssl::ec::{EcGroup, EcKey, PointConversionForm};
use openssl::error::ErrorStack;
use openssl::hash::{hash, MessageDigest};
use openssl::nid::Nid;
use openssl::pkey::{PKey, Private, Public};
use openssl::rand::rand_bytes;
use openssl::sign::Signer;
use openssl::symm::{Cipher, Crypter, Mode};
use std::os::raw::c_int;
#[cfg(test)]
use openssl::ec::EcPoint;
#[cfg(test)]
use openssl::bn::BigNum;
const AES_BLOCK_SIZE: usize = 16;
impl From<ErrorStack> for CryptoError {
fn from(e: ErrorStack) -> Self {
CryptoError::Backend(format!("{e}"))
}
}
impl From<&ErrorStack> for CryptoError {
fn from(e: &ErrorStack) -> Self {
CryptoError::Backend(format!("{e}"))
}
}
pub type Result<T> = std::result::Result<T, CryptoError>;
/// ECDH using OpenSSL types. Computes the x coordinate of scalar multiplication of `peer_public`
/// by `client_private`.
fn ecdh_openssl_raw(client_private: EcKey<Private>, peer_public: EcKey<Public>) -> Result<Vec<u8>> {
let client_pkey = PKey::from_ec_key(client_private)?;
let peer_pkey = PKey::from_ec_key(peer_public)?;
let mut deriver = Deriver::new(&client_pkey)?;
deriver.set_peer(&peer_pkey)?;
let shared_point = deriver.derive_to_vec()?;
Ok(shared_point)
}
/// Ephemeral ECDH over P256. Takes a DER SubjectPublicKeyInfo that encodes a public key. Generates
/// an ephemeral P256 key pair. Returns
/// 1) the x coordinate of the shared point, and
/// 2) the uncompressed SEC 1 encoding of the ephemeral public key.
pub fn ecdhe_p256_raw(peer_spki: &[u8]) -> Result<(Vec<u8>, Vec<u8>)> {
let peer_public = EcKey::public_key_from_der(peer_spki)?;
// Hard-coding the P256 group here is easier than extracting a group name from peer_public and
// comparing it with P256. We'll fail in key derivation if peer_public is on the wrong curve.
let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1)?;
let mut bn_ctx = BigNumContext::new()?;
let client_private = EcKey::generate(&group)?;
let client_public_sec1 = client_private.public_key().to_bytes(
&group,
PointConversionForm::UNCOMPRESSED,
&mut bn_ctx,
)?;
let shared_point = ecdh_openssl_raw(client_private, peer_public)?;
Ok((shared_point, client_public_sec1))
}
/// AES-256-CBC encryption for data that is a multiple of the AES block size (16 bytes) in length.
/// Uses the zero IV if `iv` is None.
pub fn encrypt_aes_256_cbc_no_pad(key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result<Vec<u8>> {
let iv = iv.unwrap_or(&[0u8; AES_BLOCK_SIZE]);
let mut encrypter = Crypter::new(Cipher::aes_256_cbc(), Mode::Encrypt, key, Some(iv))?;
encrypter.pad(false);
let in_len = data.len();
if in_len % AES_BLOCK_SIZE != 0 {
return Err(CryptoError::LibraryFailure);
}
// OpenSSL would panic if we didn't allocate an extra block here.
let mut out = vec![0; in_len + AES_BLOCK_SIZE];
let mut out_len = 0;
out_len += encrypter.update(data, out.as_mut_slice())?;
out_len += encrypter.finalize(out.as_mut_slice())?;
debug_assert_eq!(in_len, out_len);
out.truncate(out_len);
Ok(out)
}
/// AES-256-CBC decryption for data that is a multiple of the AES block size (16 bytes) in length.
/// Uses the zero IV if `iv` is None.
pub fn decrypt_aes_256_cbc_no_pad(key: &[u8], iv: Option<&[u8]>, data: &[u8]) -> Result<Vec<u8>> {
let iv = iv.unwrap_or(&[0u8; AES_BLOCK_SIZE]);
let mut encrypter = Crypter::new(Cipher::aes_256_cbc(), Mode::Decrypt, key, Some(iv))?;
encrypter.pad(false);
let in_len = data.len();
if in_len % AES_BLOCK_SIZE != 0 {
return Err(CryptoError::LibraryFailure);
}
// OpenSSL would panic if we didn't allocate an extra block here.
let mut out = vec![0; in_len + AES_BLOCK_SIZE];
let mut out_len = 0;
out_len += encrypter.update(data, out.as_mut_slice())?;
out_len += encrypter.finalize(out.as_mut_slice())?;
debug_assert_eq!(in_len, out_len);
out.truncate(out_len);
Ok(out)
}
/// Textbook HMAC-SHA256
pub fn hmac_sha256(key: &[u8], data: &[u8]) -> Result<Vec<u8>> {
let key = PKey::hmac(key)?;
let mut signer = Signer::new(MessageDigest::sha256(), &key)?;
signer.update(data)?;
Ok(signer.sign_to_vec()?)
}
pub fn sha256(data: &[u8]) -> Result<Vec<u8>> {
let digest = hash(MessageDigest::sha256(), data)?;
Ok(digest.as_ref().to_vec())
}
pub fn random_bytes(count: usize) -> Result<Vec<u8>> {
if count > c_int::MAX as usize {
return Err(CryptoError::LibraryFailure);
}
let mut out = vec![0u8; count];
rand_bytes(&mut out)?;
Ok(out)
}
#[cfg(test)]
pub fn test_ecdh_p256_raw(
peer_spki: &[u8],
client_public_x: &[u8],
client_public_y: &[u8],
client_private: &[u8],
) -> Result<Vec<u8>> {
let peer_public = EcKey::public_key_from_der(peer_spki)?;
let group = peer_public.group();
let mut client_pub_sec1 = vec![];
client_pub_sec1.push(0x04); // SEC 1 encoded uncompressed point
client_pub_sec1.extend_from_slice(&client_public_x);
client_pub_sec1.extend_from_slice(&client_public_y);
let mut ctx = BigNumContext::new()?;
let client_pub_point = EcPoint::from_bytes(&group, &client_pub_sec1, &mut ctx)?;
let client_priv_bignum = BigNum::from_slice(client_private)?;
let client_private =
EcKey::from_private_components(&group, &client_priv_bignum, &client_pub_point)?;
let shared_point = ecdh_openssl_raw(client_private, peer_public)?;
Ok(shared_point)
}
|