1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
//! Determining the sizedness of types (as base classes and otherwise).
use super::{
generate_dependencies, ConstrainResult, HasVtable, MonotoneFramework,
};
use crate::ir::context::{BindgenContext, TypeId};
use crate::ir::item::IsOpaque;
use crate::ir::traversal::EdgeKind;
use crate::ir::ty::TypeKind;
use crate::{Entry, HashMap};
use std::{cmp, ops};
/// The result of the `Sizedness` analysis for an individual item.
///
/// This is a chain lattice of the form:
///
/// ```ignore
/// NonZeroSized
/// |
/// DependsOnTypeParam
/// |
/// ZeroSized
/// ```
///
/// We initially assume that all types are `ZeroSized` and then update our
/// understanding as we learn more about each type.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum SizednessResult {
/// The type is zero-sized.
///
/// This means that if it is a C++ type, and is not being used as a base
/// member, then we must add an `_address` byte to enforce the
/// unique-address-per-distinct-object-instance rule.
ZeroSized,
/// Whether this type is zero-sized or not depends on whether a type
/// parameter is zero-sized or not.
///
/// For example, given these definitions:
///
/// ```c++
/// template<class T>
/// class Flongo : public T {};
///
/// class Empty {};
///
/// class NonEmpty { int x; };
/// ```
///
/// Then `Flongo<Empty>` is zero-sized, and needs an `_address` byte
/// inserted, while `Flongo<NonEmpty>` is *not* zero-sized, and should *not*
/// have an `_address` byte inserted.
///
/// We don't properly handle this situation correctly right now:
/// https://github.com/rust-lang/rust-bindgen/issues/586
DependsOnTypeParam,
/// Has some size that is known to be greater than zero. That doesn't mean
/// it has a static size, but it is not zero sized for sure. In other words,
/// it might contain an incomplete array or some other dynamically sized
/// type.
NonZeroSized,
}
impl Default for SizednessResult {
fn default() -> Self {
SizednessResult::ZeroSized
}
}
impl SizednessResult {
/// Take the least upper bound of `self` and `rhs`.
pub fn join(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOr for SizednessResult {
type Output = Self;
fn bitor(self, rhs: SizednessResult) -> Self::Output {
self.join(rhs)
}
}
impl ops::BitOrAssign for SizednessResult {
fn bitor_assign(&mut self, rhs: SizednessResult) {
*self = self.join(rhs)
}
}
/// An analysis that computes the sizedness of all types.
///
/// * For types with known sizes -- for example pointers, scalars, etc... --
/// they are assigned `NonZeroSized`.
///
/// * For compound structure types with one or more fields, they are assigned
/// `NonZeroSized`.
///
/// * For compound structure types without any fields, the results of the bases
/// are `join`ed.
///
/// * For type parameters, `DependsOnTypeParam` is assigned.
#[derive(Debug)]
pub struct SizednessAnalysis<'ctx> {
ctx: &'ctx BindgenContext,
dependencies: HashMap<TypeId, Vec<TypeId>>,
// Incremental results of the analysis. Missing entries are implicitly
// considered `ZeroSized`.
sized: HashMap<TypeId, SizednessResult>,
}
impl<'ctx> SizednessAnalysis<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
// These are the only edges that can affect whether a type is
// zero-sized or not.
matches!(
kind,
EdgeKind::TemplateArgument |
EdgeKind::TemplateParameterDefinition |
EdgeKind::TemplateDeclaration |
EdgeKind::TypeReference |
EdgeKind::BaseMember |
EdgeKind::Field
)
}
/// Insert an incremental result, and return whether this updated our
/// knowledge of types and we should continue the analysis.
fn insert(
&mut self,
id: TypeId,
result: SizednessResult,
) -> ConstrainResult {
trace!("inserting {:?} for {:?}", result, id);
if let SizednessResult::ZeroSized = result {
return ConstrainResult::Same;
}
match self.sized.entry(id) {
Entry::Occupied(mut entry) => {
if *entry.get() < result {
entry.insert(result);
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
Entry::Vacant(entry) => {
entry.insert(result);
ConstrainResult::Changed
}
}
}
fn forward(&mut self, from: TypeId, to: TypeId) -> ConstrainResult {
match self.sized.get(&from).cloned() {
None => ConstrainResult::Same,
Some(r) => self.insert(to, r),
}
}
}
impl<'ctx> MonotoneFramework for SizednessAnalysis<'ctx> {
type Node = TypeId;
type Extra = &'ctx BindgenContext;
type Output = HashMap<TypeId, SizednessResult>;
fn new(ctx: &'ctx BindgenContext) -> SizednessAnalysis<'ctx> {
let dependencies = generate_dependencies(ctx, Self::consider_edge)
.into_iter()
.filter_map(|(id, sub_ids)| {
id.as_type_id(ctx).map(|id| {
(
id,
sub_ids
.into_iter()
.filter_map(|s| s.as_type_id(ctx))
.collect::<Vec<_>>(),
)
})
})
.collect();
let sized = HashMap::default();
SizednessAnalysis {
ctx,
dependencies,
sized,
}
}
fn initial_worklist(&self) -> Vec<TypeId> {
self.ctx
.allowlisted_items()
.iter()
.cloned()
.filter_map(|id| id.as_type_id(self.ctx))
.collect()
}
fn constrain(&mut self, id: TypeId) -> ConstrainResult {
trace!("constrain {:?}", id);
if let Some(SizednessResult::NonZeroSized) =
self.sized.get(&id).cloned()
{
trace!(" already know it is not zero-sized");
return ConstrainResult::Same;
}
if id.has_vtable_ptr(self.ctx) {
trace!(" has an explicit vtable pointer, therefore is not zero-sized");
return self.insert(id, SizednessResult::NonZeroSized);
}
let ty = self.ctx.resolve_type(id);
if id.is_opaque(self.ctx, &()) {
trace!(" type is opaque; checking layout...");
let result =
ty.layout(self.ctx).map_or(SizednessResult::ZeroSized, |l| {
if l.size == 0 {
trace!(" ...layout has size == 0");
SizednessResult::ZeroSized
} else {
trace!(" ...layout has size > 0");
SizednessResult::NonZeroSized
}
});
return self.insert(id, result);
}
match *ty.kind() {
TypeKind::Void => {
trace!(" void is zero-sized");
self.insert(id, SizednessResult::ZeroSized)
}
TypeKind::TypeParam => {
trace!(
" type params sizedness depends on what they're \
instantiated as"
);
self.insert(id, SizednessResult::DependsOnTypeParam)
}
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Function(..) |
TypeKind::Enum(..) |
TypeKind::Reference(..) |
TypeKind::NullPtr |
TypeKind::ObjCId |
TypeKind::ObjCSel |
TypeKind::Pointer(..) => {
trace!(" {:?} is known not to be zero-sized", ty.kind());
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::ObjCInterface(..) => {
trace!(" obj-c interfaces always have at least the `isa` pointer");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) |
TypeKind::BlockPointer(t) |
TypeKind::ResolvedTypeRef(t) => {
trace!(" aliases and type refs forward to their inner type");
self.forward(t, id)
}
TypeKind::TemplateInstantiation(ref inst) => {
trace!(
" template instantiations are zero-sized if their \
definition is zero-sized"
);
self.forward(inst.template_definition(), id)
}
TypeKind::Array(_, 0) => {
trace!(" arrays of zero elements are zero-sized");
self.insert(id, SizednessResult::ZeroSized)
}
TypeKind::Array(..) => {
trace!(" arrays of > 0 elements are not zero-sized");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::Vector(..) => {
trace!(" vectors are not zero-sized");
self.insert(id, SizednessResult::NonZeroSized)
}
TypeKind::Comp(ref info) => {
trace!(" comp considers its own fields and bases");
if !info.fields().is_empty() {
return self.insert(id, SizednessResult::NonZeroSized);
}
let result = info
.base_members()
.iter()
.filter_map(|base| self.sized.get(&base.ty))
.fold(SizednessResult::ZeroSized, |a, b| a.join(*b));
self.insert(id, result)
}
TypeKind::Opaque => {
unreachable!("covered by the .is_opaque() check above")
}
TypeKind::UnresolvedTypeRef(..) => {
unreachable!("Should have been resolved after parsing!");
}
}
}
fn each_depending_on<F>(&self, id: TypeId, mut f: F)
where
F: FnMut(TypeId),
{
if let Some(edges) = self.dependencies.get(&id) {
for ty in edges {
trace!("enqueue {:?} into worklist", ty);
f(*ty);
}
}
}
}
impl<'ctx> From<SizednessAnalysis<'ctx>> for HashMap<TypeId, SizednessResult> {
fn from(analysis: SizednessAnalysis<'ctx>) -> Self {
// We let the lack of an entry mean "ZeroSized" to save space.
extra_assert!(analysis
.sized
.values()
.all(|v| { *v != SizednessResult::ZeroSized }));
analysis.sized
}
}
/// A convenience trait for querying whether some type or id is sized.
///
/// This is not for _computing_ whether the thing is sized, it is for looking up
/// the results of the `Sizedness` analysis's computations for a specific thing.
pub trait Sizedness {
/// Get the sizedness of this type.
fn sizedness(&self, ctx: &BindgenContext) -> SizednessResult;
/// Is the sizedness for this type `SizednessResult::ZeroSized`?
fn is_zero_sized(&self, ctx: &BindgenContext) -> bool {
self.sizedness(ctx) == SizednessResult::ZeroSized
}
}
|