1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Type-safe bindings for Zircon vmo objects.
use {AsHandleRef, Cookied, HandleBased, Handle, HandleRef, Status};
use {sys, ok};
use std::{mem, ptr};
/// An object representing a Zircon
/// [virtual memory object](https://fuchsia.googlesource.com/zircon/+/master/docs/objects/vm_object.md).
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
#[derive(Debug, Eq, PartialEq)]
pub struct Vmo(Handle);
impl_handle_based!(Vmo);
impl Cookied for Vmo {}
impl Vmo {
/// Create a virtual memory object.
///
/// Wraps the
/// `zx_vmo_create`
/// syscall. See the
/// [Shared Memory: Virtual Memory Objects (VMOs)](https://fuchsia.googlesource.com/zircon/+/master/docs/concepts.md#Shared-Memory_Virtual-Memory-Objects-VMOs)
/// for more information.
pub fn create(size: u64) -> Result<Vmo, Status> {
let mut handle = 0;
let opts = 0;
let status = unsafe { sys::zx_vmo_create(size, opts, &mut handle) };
ok(status)?;
unsafe {
Ok(Vmo::from(Handle::from_raw(handle)))
}
}
/// Read from a virtual memory object.
///
/// Wraps the `zx_vmo_read` syscall.
pub fn read(&self, data: &mut [u8], offset: u64) -> Result<usize, Status> {
unsafe {
let mut actual = 0;
let status = sys::zx_vmo_read(self.raw_handle(), data.as_mut_ptr(),
offset, data.len(), &mut actual);
ok(status).map(|()| actual)
}
}
/// Write to a virtual memory object.
///
/// Wraps the `zx_vmo_write` syscall.
pub fn write(&self, data: &[u8], offset: u64) -> Result<usize, Status> {
unsafe {
let mut actual = 0;
let status = sys::zx_vmo_write(self.raw_handle(), data.as_ptr(),
offset, data.len(), &mut actual);
ok(status).map(|()| actual)
}
}
/// Get the size of a virtual memory object.
///
/// Wraps the `zx_vmo_get_size` syscall.
pub fn get_size(&self) -> Result<u64, Status> {
let mut size = 0;
let status = unsafe { sys::zx_vmo_get_size(self.raw_handle(), &mut size) };
ok(status).map(|()| size)
}
/// Attempt to change the size of a virtual memory object.
///
/// Wraps the `zx_vmo_set_size` syscall.
pub fn set_size(&self, size: u64) -> Result<(), Status> {
let status = unsafe { sys::zx_vmo_set_size(self.raw_handle(), size) };
ok(status)
}
/// Perform an operation on a range of a virtual memory object.
///
/// Wraps the
/// [zx_vmo_op_range](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/vmo_op_range.md)
/// syscall.
pub fn op_range(&self, op: VmoOp, offset: u64, size: u64) -> Result<(), Status> {
let status = unsafe {
sys::zx_vmo_op_range(self.raw_handle(), op.into_raw(), offset, size, ptr::null_mut(), 0)
};
ok(status)
}
/// Look up a list of physical addresses corresponding to the pages held by the VMO from
/// `offset` to `offset`+`size`, and store them in `buffer`.
///
/// Wraps the
/// [zx_vmo_op_range](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/vmo_op_range.md)
/// syscall with ZX_VMO_OP_LOOKUP.
pub fn lookup(&self, offset: u64, size: u64, buffer: &mut [sys::zx_paddr_t])
-> Result<(), Status>
{
let status = unsafe {
sys::zx_vmo_op_range(self.raw_handle(), VmoOp::LOOKUP.into_raw(), offset, size,
buffer.as_mut_ptr() as *mut u8, buffer.len() * mem::size_of::<sys::zx_paddr_t>())
};
ok(status)
}
/// Create a new virtual memory object that clones a range of this one.
///
/// Wraps the
/// [zx_vmo_clone](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/vmo_clone.md)
/// syscall.
pub fn clone(&self, offset: u64, size: u64) -> Result<Vmo, Status> {
let mut out = 0;
let opts = sys::ZX_VMO_CLONE_COPY_ON_WRITE;
let status = unsafe {
sys::zx_vmo_clone(self.raw_handle(), opts, offset, size, &mut out)
};
ok(status)?;
unsafe { Ok(Vmo::from(Handle::from_raw(out))) }
}
}
/// VM Object opcodes
#[repr(C)]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct VmoOp(u32);
impl VmoOp {
pub fn from_raw(raw: u32) -> VmoOp {
VmoOp(raw)
}
pub fn into_raw(self) -> u32 {
self.0
}
}
assoc_consts!(VmoOp, [
COMMIT = sys::ZX_VMO_OP_COMMIT;
DECOMMIT = sys::ZX_VMO_OP_DECOMMIT;
LOCK = sys::ZX_VMO_OP_LOCK;
UNLOCK = sys::ZX_VMO_OP_UNLOCK;
LOOKUP = sys::ZX_VMO_OP_LOOKUP;
CACHE_SYNC = sys::ZX_VMO_OP_CACHE_SYNC;
CACHE_INVALIDATE = sys::ZX_VMO_OP_CACHE_INVALIDATE;
CACHE_CLEAN = sys::ZX_VMO_OP_CACHE_CLEAN;
CACHE_CLEAN_INVALIDATE = sys::ZX_VMO_OP_CACHE_CLEAN_INVALIDATE;
]);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vmo_get_size() {
let size = 16 * 1024 * 1024;
let vmo = Vmo::create(size).unwrap();
assert_eq!(size, vmo.get_size().unwrap());
}
#[test]
fn vmo_set_size() {
let start_size = 12;
let vmo = Vmo::create(start_size).unwrap();
assert_eq!(start_size, vmo.get_size().unwrap());
// Change the size and make sure the new size is reported
let new_size = 23;
assert!(vmo.set_size(new_size).is_ok());
assert_eq!(new_size, vmo.get_size().unwrap());
}
#[test]
fn vmo_read_write() {
let mut vec1 = vec![0; 16];
let vmo = Vmo::create(vec1.len() as u64).unwrap();
assert_eq!(vmo.write(b"abcdef", 0), Ok(6));
assert_eq!(16, vmo.read(&mut vec1, 0).unwrap());
assert_eq!(b"abcdef", &vec1[0..6]);
assert_eq!(vmo.write(b"123", 2), Ok(3));
assert_eq!(16, vmo.read(&mut vec1, 0).unwrap());
assert_eq!(b"ab123f", &vec1[0..6]);
assert_eq!(15, vmo.read(&mut vec1, 1).unwrap());
assert_eq!(b"b123f", &vec1[0..5]);
}
#[test]
fn vmo_op_range_unsupported() {
let vmo = Vmo::create(12).unwrap();
assert_eq!(vmo.op_range(VmoOp::LOCK, 0, 1), Err(Status::NOT_SUPPORTED));
assert_eq!(vmo.op_range(VmoOp::UNLOCK, 0, 1), Err(Status::NOT_SUPPORTED));
}
#[test]
fn vmo_lookup() {
let vmo = Vmo::create(12).unwrap();
let mut buffer = vec![0; 2];
// Lookup will fail as it is not committed yet.
assert_eq!(vmo.lookup(0, 12, &mut buffer), Err(Status::NO_MEMORY));
// COMMIT and try again.
assert_eq!(vmo.op_range(VmoOp::COMMIT, 0, 12), Ok(()));
assert_eq!(vmo.lookup(0, 12, &mut buffer), Ok(()));
assert_ne!(buffer[0], 0);
assert_eq!(buffer[1], 0);
// If we decommit then lookup should go back to failing.
assert_eq!(vmo.op_range(VmoOp::DECOMMIT, 0, 12), Ok(()));
assert_eq!(vmo.lookup(0, 12, &mut buffer), Err(Status::NO_MEMORY));
}
#[test]
fn vmo_cache() {
let vmo = Vmo::create(12).unwrap();
// Cache operations should all succeed.
assert_eq!(vmo.op_range(VmoOp::CACHE_SYNC, 0, 12), Ok(()));
assert_eq!(vmo.op_range(VmoOp::CACHE_INVALIDATE, 0, 12), Ok(()));
assert_eq!(vmo.op_range(VmoOp::CACHE_CLEAN, 0, 12), Ok(()));
assert_eq!(vmo.op_range(VmoOp::CACHE_CLEAN_INVALIDATE, 0, 12), Ok(()));
}
#[test]
fn vmo_clone() {
let original = Vmo::create(12).unwrap();
assert_eq!(original.write(b"one", 0), Ok(3));
// Clone the VMO, and make sure it contains what we expect.
let clone = original.clone(0, 10).unwrap();
let mut read_buffer = vec![0; 16];
assert_eq!(clone.read(&mut read_buffer, 0), Ok(10));
assert_eq!(&read_buffer[0..3], b"one");
// Writing to the original will affect the clone too, surprisingly.
assert_eq!(original.write(b"two", 0), Ok(3));
assert_eq!(original.read(&mut read_buffer, 0), Ok(12));
assert_eq!(&read_buffer[0..3], b"two");
assert_eq!(clone.read(&mut read_buffer, 0), Ok(10));
assert_eq!(&read_buffer[0..3], b"two");
// However, writing to the clone will not affect the original
assert_eq!(clone.write(b"three", 0), Ok(5));
assert_eq!(original.read(&mut read_buffer, 0), Ok(12));
assert_eq!(&read_buffer[0..3], b"two");
assert_eq!(clone.read(&mut read_buffer, 0), Ok(10));
assert_eq!(&read_buffer[0..5], b"three");
// And now that the copy-on-write has happened, writing to the original will not affect the
// clone. How bizarre.
assert_eq!(original.write(b"four", 0), Ok(4));
assert_eq!(original.read(&mut read_buffer, 0), Ok(12));
assert_eq!(&read_buffer[0..4], b"four");
assert_eq!(clone.read(&mut read_buffer, 0), Ok(10));
assert_eq!(&read_buffer[0..5], b"three");
}
}
|