1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
use crate::frame::Reason;
use crate::proto::{WindowSize, MAX_WINDOW_SIZE};
use std::fmt;
// We don't want to send WINDOW_UPDATE frames for tiny changes, but instead
// aggregate them when the changes are significant. Many implementations do
// this by keeping a "ratio" of the update version the allowed window size.
//
// While some may wish to represent this ratio as percentage, using a f32,
// we skip having to deal with float math and stick to integers. To do so,
// the "ratio" is represented by 2 i32s, split into the numerator and
// denominator. For example, a 50% ratio is simply represented as 1/2.
//
// An example applying this ratio: If a stream has an allowed window size of
// 100 bytes, WINDOW_UPDATE frames are scheduled when the unclaimed change
// becomes greater than 1/2, or 50 bytes.
const UNCLAIMED_NUMERATOR: i32 = 1;
const UNCLAIMED_DENOMINATOR: i32 = 2;
#[test]
fn sanity_unclaimed_ratio() {
assert!(UNCLAIMED_NUMERATOR < UNCLAIMED_DENOMINATOR);
assert!(UNCLAIMED_NUMERATOR >= 0);
assert!(UNCLAIMED_DENOMINATOR > 0);
}
#[derive(Copy, Clone, Debug)]
pub struct FlowControl {
/// Window the peer knows about.
///
/// This can go negative if a SETTINGS_INITIAL_WINDOW_SIZE is received.
///
/// For example, say the peer sends a request and uses 32kb of the window.
/// We send a SETTINGS_INITIAL_WINDOW_SIZE of 16kb. The peer has to adjust
/// its understanding of the capacity of the window, and that would be:
///
/// ```notrust
/// default (64kb) - used (32kb) - settings_diff (64kb - 16kb): -16kb
/// ```
window_size: Window,
/// Window that we know about.
///
/// This can go negative if a user declares a smaller target window than
/// the peer knows about.
available: Window,
}
impl FlowControl {
pub fn new() -> FlowControl {
FlowControl {
window_size: Window(0),
available: Window(0),
}
}
/// Returns the window size as known by the peer
pub fn window_size(&self) -> WindowSize {
self.window_size.as_size()
}
/// Returns the window size available to the consumer
pub fn available(&self) -> Window {
self.available
}
/// Returns true if there is unavailable window capacity
pub fn has_unavailable(&self) -> bool {
if self.window_size < 0 {
return false;
}
self.window_size > self.available
}
pub fn claim_capacity(&mut self, capacity: WindowSize) {
self.available -= capacity;
}
pub fn assign_capacity(&mut self, capacity: WindowSize) {
self.available += capacity;
}
/// If a WINDOW_UPDATE frame should be sent, returns a positive number
/// representing the increment to be used.
///
/// If there is no available bytes to be reclaimed, or the number of
/// available bytes does not reach the threshold, this returns `None`.
///
/// This represents pending outbound WINDOW_UPDATE frames.
pub fn unclaimed_capacity(&self) -> Option<WindowSize> {
let available = self.available;
if self.window_size >= available {
return None;
}
let unclaimed = available.0 - self.window_size.0;
let threshold = self.window_size.0 / UNCLAIMED_DENOMINATOR * UNCLAIMED_NUMERATOR;
if unclaimed < threshold {
None
} else {
Some(unclaimed as WindowSize)
}
}
/// Increase the window size.
///
/// This is called after receiving a WINDOW_UPDATE frame
pub fn inc_window(&mut self, sz: WindowSize) -> Result<(), Reason> {
let (val, overflow) = self.window_size.0.overflowing_add(sz as i32);
if overflow {
return Err(Reason::FLOW_CONTROL_ERROR);
}
if val > MAX_WINDOW_SIZE as i32 {
return Err(Reason::FLOW_CONTROL_ERROR);
}
tracing::trace!(
"inc_window; sz={}; old={}; new={}",
sz,
self.window_size,
val
);
self.window_size = Window(val);
Ok(())
}
/// Decrement the send-side window size.
///
/// This is called after receiving a SETTINGS frame with a lower
/// INITIAL_WINDOW_SIZE value.
pub fn dec_send_window(&mut self, sz: WindowSize) {
tracing::trace!(
"dec_window; sz={}; window={}, available={}",
sz,
self.window_size,
self.available
);
// This should not be able to overflow `window_size` from the bottom.
self.window_size -= sz;
}
/// Decrement the recv-side window size.
///
/// This is called after receiving a SETTINGS ACK frame with a lower
/// INITIAL_WINDOW_SIZE value.
pub fn dec_recv_window(&mut self, sz: WindowSize) {
tracing::trace!(
"dec_recv_window; sz={}; window={}, available={}",
sz,
self.window_size,
self.available
);
// This should not be able to overflow `window_size` from the bottom.
self.window_size -= sz;
self.available -= sz;
}
/// Decrements the window reflecting data has actually been sent. The caller
/// must ensure that the window has capacity.
pub fn send_data(&mut self, sz: WindowSize) {
tracing::trace!(
"send_data; sz={}; window={}; available={}",
sz,
self.window_size,
self.available
);
// Ensure that the argument is correct
assert!(self.window_size >= sz as usize);
// Update values
self.window_size -= sz;
self.available -= sz;
}
}
/// The current capacity of a flow-controlled Window.
///
/// This number can go negative when either side has used a certain amount
/// of capacity when the other side advertises a reduction in size.
///
/// This type tries to centralize the knowledge of addition and subtraction
/// to this capacity, instead of having integer casts throughout the source.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
pub struct Window(i32);
impl Window {
pub fn as_size(&self) -> WindowSize {
if self.0 < 0 {
0
} else {
self.0 as WindowSize
}
}
pub fn checked_size(&self) -> WindowSize {
assert!(self.0 >= 0, "negative Window");
self.0 as WindowSize
}
}
impl PartialEq<usize> for Window {
fn eq(&self, other: &usize) -> bool {
if self.0 < 0 {
false
} else {
(self.0 as usize).eq(other)
}
}
}
impl PartialOrd<usize> for Window {
fn partial_cmp(&self, other: &usize) -> Option<::std::cmp::Ordering> {
if self.0 < 0 {
Some(::std::cmp::Ordering::Less)
} else {
(self.0 as usize).partial_cmp(other)
}
}
}
impl ::std::ops::SubAssign<WindowSize> for Window {
fn sub_assign(&mut self, other: WindowSize) {
self.0 -= other as i32;
}
}
impl ::std::ops::Add<WindowSize> for Window {
type Output = Self;
fn add(self, other: WindowSize) -> Self::Output {
Window(self.0 + other as i32)
}
}
impl ::std::ops::AddAssign<WindowSize> for Window {
fn add_assign(&mut self, other: WindowSize) {
self.0 += other as i32;
}
}
impl fmt::Display for Window {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl From<Window> for isize {
fn from(w: Window) -> isize {
w.0 as isize
}
}
|