1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
//! Code to traverse the AST and drive the rest of scope analysis.
//!
//! This module is responsible for walking the AST. Other modules do the actual
//! analysis.
//!
//! Scope analysis is currently a second pass, after parsing, using the AST,
//! but the goal is to do this analysis as part of the parse phase, even when
//! no AST is built. So we try to keep AST use separate from the analysis code.
use crate::builder::{ScopeBuildError, ScopeDataMapAndScriptStencilList, ScopeDataMapBuilder};
use crate::data::FunctionDeclarationPropertyMap;
use ast::arena;
use ast::associated_data::AssociatedData;
use ast::source_atom_set::CommonSourceAtomSetIndices;
use ast::{types::*, visit::Pass};
use std::collections::HashMap;
use stencil::scope::ScopeDataMap;
use stencil::script::{ScriptStencilIndex, ScriptStencilList};
/// The result of scope analysis.
pub struct ScopePassResult<'alloc> {
pub scope_data_map: ScopeDataMap,
pub function_declarations: HashMap<ScriptStencilIndex, &'alloc Function<'alloc>>,
pub function_stencil_indices: AssociatedData<ScriptStencilIndex>,
pub function_declaration_properties: FunctionDeclarationPropertyMap,
pub scripts: ScriptStencilList,
pub error: Option<ScopeBuildError>,
}
/// The top-level struct responsible for extracting the necessary information
/// from the AST. The analysis itself is done mainly by the `ScopeDataMapBuilder`,
/// which has very limited interaction with the AST.
///
/// FIXME: This should be rewritten as a grammar extension.
#[derive(Debug)]
pub struct ScopePass<'alloc> {
builder: ScopeDataMapBuilder,
function_declarations: HashMap<ScriptStencilIndex, &'alloc Function<'alloc>>,
}
impl<'alloc> ScopePass<'alloc> {
pub fn new() -> Self {
Self {
builder: ScopeDataMapBuilder::new(),
function_declarations: HashMap::new(),
}
}
}
impl<'alloc> From<ScopePass<'alloc>> for ScopePassResult<'alloc> {
fn from(pass: ScopePass<'alloc>) -> ScopePassResult<'alloc> {
let ScopeDataMapAndScriptStencilList {
scope_data_map,
function_stencil_indices,
function_declaration_properties,
scripts,
error,
} = pass.builder.into();
ScopePassResult {
scope_data_map,
function_declarations: pass.function_declarations,
function_stencil_indices,
function_declaration_properties,
scripts,
error,
}
}
}
impl<'alloc> Pass<'alloc> for ScopePass<'alloc> {
fn enter_script(&mut self, _ast: &'alloc Script<'alloc>) {
self.builder.before_script();
}
fn leave_script(&mut self, _ast: &'alloc Script<'alloc>) {
self.builder.after_script();
}
fn enter_enum_statement_variant_block_statement(&mut self, block: &'alloc Block<'alloc>) {
self.builder.before_block_statement(block);
}
fn leave_enum_statement_variant_block_statement(&mut self, _block: &'alloc Block<'alloc>) {
self.builder.after_block_statement();
}
fn enter_variable_declaration(&mut self, ast: &'alloc VariableDeclaration<'alloc>) {
match ast.kind {
VariableDeclarationKind::Var { .. } => {
self.builder.before_var_declaration();
}
VariableDeclarationKind::Let { .. } => {
self.builder.before_let_declaration();
}
VariableDeclarationKind::Const { .. } => {
self.builder.before_const_declaration();
}
}
}
fn leave_variable_declaration(&mut self, ast: &'alloc VariableDeclaration<'alloc>) {
match ast.kind {
VariableDeclarationKind::Var { .. } => {
self.builder.after_var_declaration();
}
VariableDeclarationKind::Let { .. } => {
self.builder.after_let_declaration();
}
VariableDeclarationKind::Const { .. } => {
self.builder.after_const_declaration();
}
}
}
fn visit_binding_identifier(&mut self, ast: &'alloc BindingIdentifier) {
self.builder.on_binding_identifier(ast.name.value);
}
// Given we override `visit_binding_identifier` above,
// visit_identifier is not called for Identifier inside BindingIdentifier,
// and this is called only for references, either
// IdentifierExpression or AssignmentTargetIdentifier.
fn visit_identifier(&mut self, ast: &'alloc Identifier) {
self.builder.on_non_binding_identifier(ast.value);
}
fn visit_enum_expression_variant_this_expression(&mut self) {
self.builder
.on_non_binding_identifier(CommonSourceAtomSetIndices::this());
}
fn enter_enum_statement_variant_function_declaration(&mut self, ast: &'alloc Function<'alloc>) {
if !self.builder.is_syntax_only_mode() {
self.builder.enter_syntax_only_mode();
}
let name = if let Some(ref name) = ast.name {
name.name.value
} else {
panic!("FunctionDeclaration should have name");
};
let fun_index =
self.builder
.before_function_declaration(name, ast, ast.is_generator, ast.is_async);
self.function_declarations.insert(fun_index, ast);
}
fn leave_enum_statement_variant_function_declaration(&mut self, ast: &'alloc Function<'alloc>) {
self.builder.after_function_declaration(ast);
}
fn enter_enum_expression_variant_function_expression(&mut self, ast: &'alloc Function<'alloc>) {
if !self.builder.is_syntax_only_mode() {
self.builder.enter_syntax_only_mode();
}
self.builder
.before_function_expression(ast, ast.is_generator, ast.is_async);
}
fn leave_enum_expression_variant_function_expression(&mut self, ast: &'alloc Function<'alloc>) {
self.builder.after_function_expression(ast);
}
fn visit_formal_parameters(&mut self, ast: &'alloc FormalParameters<'alloc>) {
self.builder.before_function_parameters(ast);
self.enter_formal_parameters(ast);
for item in &ast.items {
self.builder.before_parameter();
self.visit_parameter(item);
}
if let Some(item) = &ast.rest {
self.builder.before_rest_parameter();
self.visit_binding(item);
}
self.leave_formal_parameters(ast);
self.builder.after_function_parameters();
}
fn enter_enum_method_definition_variant_method(&mut self, ast: &'alloc Method<'alloc>) {
self.builder
.before_method(ast, ast.is_generator, ast.is_async);
// FIXME: Call self.builder.on_function_name
}
fn leave_enum_method_definition_variant_method(&mut self, ast: &'alloc Method<'alloc>) {
self.builder.after_method(ast);
}
/// Getter doesn't have FormalParameters.
/// Call builder methods just before body.
fn visit_getter(&mut self, ast: &'alloc Getter<'alloc>) {
self.builder.before_getter(ast);
// FIXME: Call self.builder.on_function_name
self.enter_getter(ast);
self.visit_class_element_name(&ast.property_name);
// FIXME: Pass something that points `()` part of getter.
self.builder.on_getter_parameter(ast);
self.visit_function_body(&ast.body);
self.leave_getter(ast);
self.builder.after_getter(ast);
}
/// Setter doesn't have FormalParameters, but single Parameter.
/// Call builder methods around it.
fn visit_setter(&mut self, ast: &'alloc Setter<'alloc>) {
self.builder.before_setter(ast);
// FIXME: Call self.builder.on_function_name
self.enter_setter(ast);
self.visit_class_element_name(&ast.property_name);
// FIXME: Pass something that points `(param)` part of setter,
// including `(` and `)`.
self.builder.before_setter_parameter(&ast.param);
self.visit_parameter(&ast.param);
self.builder.after_setter_parameter();
self.visit_function_body(&ast.body);
self.leave_setter(ast);
self.builder.after_setter(ast);
}
fn leave_binding_with_default(&mut self, _ast: &'alloc BindingWithDefault<'alloc>) {
self.builder.after_initializer();
}
fn enter_enum_property_name_variant_computed_property_name(
&mut self,
_ast: &'alloc ComputedPropertyName<'alloc>,
) {
self.builder.before_computed_property_name();
}
fn enter_binding_pattern(&mut self, _ast: &'alloc BindingPattern<'alloc>) {
self.builder.before_binding_pattern();
}
fn enter_function_body(&mut self, ast: &'alloc FunctionBody<'alloc>) {
self.builder.before_function_body(ast);
}
fn leave_function_body(&mut self, _ast: &'alloc FunctionBody<'alloc>) {
self.builder.after_function_body();
}
fn enter_enum_expression_variant_arrow_expression(
&mut self,
is_async: &'alloc bool,
params: &'alloc FormalParameters<'alloc>,
_body: &'alloc ArrowExpressionBody<'alloc>,
) {
self.builder.before_arrow_function(*is_async, params);
}
fn leave_enum_expression_variant_arrow_expression(
&mut self,
_is_async: &'alloc bool,
_params: &'alloc FormalParameters<'alloc>,
body: &'alloc ArrowExpressionBody<'alloc>,
) {
self.builder.after_arrow_function(body);
}
/// Arrow function with expression body.
/// Use the expression as the node for function body.
fn enter_enum_arrow_expression_body_variant_expression(
&mut self,
ast: &'alloc arena::Box<'alloc, Expression<'alloc>>,
) {
let expr: &Expression = ast;
self.builder.before_function_body(expr);
}
fn leave_enum_arrow_expression_body_variant_expression(
&mut self,
_ast: &'alloc arena::Box<'alloc, Expression<'alloc>>,
) {
self.builder.after_function_body();
}
fn enter_catch_clause(&mut self, _ast: &'alloc CatchClause<'alloc>) {
self.builder.before_catch_clause();
}
fn enter_call_expression(&mut self, ast: &'alloc CallExpression<'alloc>) {
match &ast.callee {
ExpressionOrSuper::Expression(expr) => match &**expr {
Expression::IdentifierExpression(IdentifierExpression { name, .. }) => {
if name.value == CommonSourceAtomSetIndices::eval() {
self.builder.on_direct_eval();
}
}
_ => {}
},
_ => {}
}
}
fn enter_class_declaration(&mut self, _ast: &'alloc ClassDeclaration<'alloc>) {
self.builder.on_class();
}
fn enter_class_expression(&mut self, _ast: &'alloc ClassExpression<'alloc>) {
self.builder.on_class();
}
fn enter_enum_statement_variant_with_statement(
&mut self,
_object: &'alloc arena::Box<'alloc, Expression<'alloc>>,
_body: &'alloc arena::Box<'alloc, Statement<'alloc>>,
) {
self.builder.on_with();
}
fn visit_enum_unary_operator_variant_delete(&mut self) {
self.builder.on_delete();
}
fn enter_enum_statement_variant_for_statement(
&mut self,
init: &'alloc Option<VariableDeclarationOrExpression<'alloc>>,
_test: &'alloc Option<arena::Box<'alloc, Expression<'alloc>>>,
_update: &'alloc Option<arena::Box<'alloc, Expression<'alloc>>>,
_block: &'alloc arena::Box<'alloc, Statement<'alloc>>,
) {
match init {
Some(VariableDeclarationOrExpression::VariableDeclaration(decl)) => match decl.kind {
VariableDeclarationKind::Let { .. } | VariableDeclarationKind::Const { .. } => {
self.builder.on_lexical_for();
}
_ => {}
},
_ => {}
}
}
fn enter_enum_statement_variant_for_in_statement(
&mut self,
left: &'alloc VariableDeclarationOrAssignmentTarget<'alloc>,
_right: &'alloc arena::Box<'alloc, Expression<'alloc>>,
_block: &'alloc arena::Box<'alloc, Statement<'alloc>>,
) {
match left {
VariableDeclarationOrAssignmentTarget::VariableDeclaration(decl) => match decl.kind {
VariableDeclarationKind::Let { .. } | VariableDeclarationKind::Const { .. } => {
self.builder.on_lexical_for();
}
_ => {}
},
_ => {}
}
}
fn enter_enum_statement_variant_switch_statement(
&mut self,
_discriminant: &'alloc arena::Box<'alloc, Expression<'alloc>>,
_cases: &'alloc arena::Vec<'alloc, SwitchCase<'alloc>>,
) {
self.builder.on_switch();
}
fn visit_enum_expression_variant_new_target_expression(&mut self) {
self.builder.on_new_target();
}
}
|