1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
//! Timer optimized for I/O related operations
#![allow(deprecated, missing_debug_implementations)]
use {convert, io, Ready, Poll, PollOpt, Registration, SetReadiness, Token};
use event::Evented;
use lazycell::LazyCell;
use slab::Slab;
use std::{cmp, error, fmt, u64, usize, iter, thread};
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::{Duration, Instant};
use self::TimerErrorKind::TimerOverflow;
pub struct Timer<T> {
// Size of each tick in milliseconds
tick_ms: u64,
// Slab of timeout entries
entries: Slab<Entry<T>>,
// Timeout wheel. Each tick, the timer will look at the next slot for
// timeouts that match the current tick.
wheel: Vec<WheelEntry>,
// Tick 0's time instant
start: Instant,
// The current tick
tick: Tick,
// The next entry to possibly timeout
next: Token,
// Masks the target tick to get the slot
mask: u64,
// Set on registration with Poll
inner: LazyCell<Inner>,
}
pub struct Builder {
// Approximate duration of each tick
tick: Duration,
// Number of slots in the timer wheel
num_slots: usize,
// Max number of timeouts that can be in flight at a given time.
capacity: usize,
}
#[derive(Clone, Debug)]
pub struct Timeout {
// Reference into the timer entry slab
token: Token,
// Tick that it should match up with
tick: u64,
}
struct Inner {
registration: Registration,
set_readiness: SetReadiness,
wakeup_state: WakeupState,
wakeup_thread: thread::JoinHandle<()>,
}
impl Drop for Inner {
fn drop(&mut self) {
// 1. Set wakeup state to TERMINATE_THREAD (https://github.com/carllerche/mio/blob/master/src/timer.rs#L451)
self.wakeup_state.store(TERMINATE_THREAD, Ordering::Release);
// 2. Wake him up
self.wakeup_thread.thread().unpark();
}
}
#[derive(Copy, Clone, Debug)]
struct WheelEntry {
next_tick: Tick,
head: Token,
}
// Doubly linked list of timer entries. Allows for efficient insertion /
// removal of timeouts.
struct Entry<T> {
state: T,
links: EntryLinks,
}
#[derive(Copy, Clone)]
struct EntryLinks {
tick: Tick,
prev: Token,
next: Token
}
type Tick = u64;
const TICK_MAX: Tick = u64::MAX;
// Manages communication with wakeup thread
type WakeupState = Arc<AtomicUsize>;
pub type Result<T> = ::std::result::Result<T, TimerError>;
// TODO: remove
pub type TimerResult<T> = Result<T>;
/// Deprecated and unused.
#[derive(Debug)]
pub struct TimerError;
/// Deprecated and unused.
#[derive(Debug)]
pub enum TimerErrorKind {
TimerOverflow,
}
// TODO: Remove
pub type OldTimerResult<T> = Result<T>;
const TERMINATE_THREAD: usize = 0;
const EMPTY: Token = Token(usize::MAX);
impl Builder {
pub fn tick_duration(mut self, duration: Duration) -> Builder {
self.tick = duration;
self
}
pub fn num_slots(mut self, num_slots: usize) -> Builder {
self.num_slots = num_slots;
self
}
pub fn capacity(mut self, capacity: usize) -> Builder {
self.capacity = capacity;
self
}
pub fn build<T>(self) -> Timer<T> {
Timer::new(convert::millis(self.tick), self.num_slots, self.capacity, Instant::now())
}
}
impl Default for Builder {
fn default() -> Builder {
Builder {
tick: Duration::from_millis(100),
num_slots: 256,
capacity: 65_536,
}
}
}
impl<T> Timer<T> {
fn new(tick_ms: u64, num_slots: usize, capacity: usize, start: Instant) -> Timer<T> {
let num_slots = num_slots.next_power_of_two();
let capacity = capacity.next_power_of_two();
let mask = (num_slots as u64) - 1;
let wheel = iter::repeat(WheelEntry { next_tick: TICK_MAX, head: EMPTY })
.take(num_slots).collect();
Timer {
tick_ms,
entries: Slab::with_capacity(capacity),
wheel,
start,
tick: 0,
next: EMPTY,
mask,
inner: LazyCell::new(),
}
}
pub fn set_timeout(&mut self, delay_from_now: Duration, state: T) -> Result<Timeout> {
let delay_from_start = self.start.elapsed() + delay_from_now;
self.set_timeout_at(delay_from_start, state)
}
fn set_timeout_at(&mut self, delay_from_start: Duration, state: T) -> Result<Timeout> {
let mut tick = duration_to_tick(delay_from_start, self.tick_ms);
trace!("setting timeout; delay={:?}; tick={:?}; current-tick={:?}", delay_from_start, tick, self.tick);
// Always target at least 1 tick in the future
if tick <= self.tick {
tick = self.tick + 1;
}
self.insert(tick, state)
}
fn insert(&mut self, tick: Tick, state: T) -> Result<Timeout> {
// Get the slot for the requested tick
let slot = (tick & self.mask) as usize;
let curr = self.wheel[slot];
// Insert the new entry
let entry = Entry::new(state, tick, curr.head);
let token = Token(self.entries.insert(entry));
if curr.head != EMPTY {
// If there was a previous entry, set its prev pointer to the new
// entry
self.entries[curr.head.into()].links.prev = token;
}
// Update the head slot
self.wheel[slot] = WheelEntry {
next_tick: cmp::min(tick, curr.next_tick),
head: token,
};
self.schedule_readiness(tick);
trace!("inserted timeout; slot={}; token={:?}", slot, token);
// Return the new timeout
Ok(Timeout {
token,
tick
})
}
pub fn cancel_timeout(&mut self, timeout: &Timeout) -> Option<T> {
let links = match self.entries.get(timeout.token.into()) {
Some(e) => e.links,
None => return None
};
// Sanity check
if links.tick != timeout.tick {
return None;
}
self.unlink(&links, timeout.token);
Some(self.entries.remove(timeout.token.into()).state)
}
pub fn poll(&mut self) -> Option<T> {
let target_tick = current_tick(self.start, self.tick_ms);
self.poll_to(target_tick)
}
fn poll_to(&mut self, mut target_tick: Tick) -> Option<T> {
trace!("tick_to; target_tick={}; current_tick={}", target_tick, self.tick);
if target_tick < self.tick {
target_tick = self.tick;
}
while self.tick <= target_tick {
let curr = self.next;
trace!("ticking; curr={:?}", curr);
if curr == EMPTY {
self.tick += 1;
let slot = self.slot_for(self.tick);
self.next = self.wheel[slot].head;
// Handle the case when a slot has a single timeout which gets
// canceled before the timeout expires. In this case, the
// slot's head is EMPTY but there is a value for next_tick. Not
// resetting next_tick here causes the timer to get stuck in a
// loop.
if self.next == EMPTY {
self.wheel[slot].next_tick = TICK_MAX;
}
} else {
let slot = self.slot_for(self.tick);
if curr == self.wheel[slot].head {
self.wheel[slot].next_tick = TICK_MAX;
}
let links = self.entries[curr.into()].links;
if links.tick <= self.tick {
trace!("triggering; token={:?}", curr);
// Unlink will also advance self.next
self.unlink(&links, curr);
// Remove and return the token
return Some(self.entries.remove(curr.into()).state);
} else {
let next_tick = self.wheel[slot].next_tick;
self.wheel[slot].next_tick = cmp::min(next_tick, links.tick);
self.next = links.next;
}
}
}
// No more timeouts to poll
if let Some(inner) = self.inner.borrow() {
trace!("unsetting readiness");
let _ = inner.set_readiness.set_readiness(Ready::empty());
if let Some(tick) = self.next_tick() {
self.schedule_readiness(tick);
}
}
None
}
fn unlink(&mut self, links: &EntryLinks, token: Token) {
trace!("unlinking timeout; slot={}; token={:?}",
self.slot_for(links.tick), token);
if links.prev == EMPTY {
let slot = self.slot_for(links.tick);
self.wheel[slot].head = links.next;
} else {
self.entries[links.prev.into()].links.next = links.next;
}
if links.next != EMPTY {
self.entries[links.next.into()].links.prev = links.prev;
if token == self.next {
self.next = links.next;
}
} else if token == self.next {
self.next = EMPTY;
}
}
fn schedule_readiness(&self, tick: Tick) {
if let Some(inner) = self.inner.borrow() {
// Coordinate setting readiness w/ the wakeup thread
let mut curr = inner.wakeup_state.load(Ordering::Acquire);
loop {
if curr as Tick <= tick {
// Nothing to do, wakeup is already scheduled
return;
}
// Attempt to move the wakeup time forward
trace!("advancing the wakeup time; target={}; curr={}", tick, curr);
let actual = inner.wakeup_state.compare_and_swap(curr, tick as usize, Ordering::Release);
if actual == curr {
// Signal to the wakeup thread that the wakeup time has
// been changed.
trace!("unparking wakeup thread");
inner.wakeup_thread.thread().unpark();
return;
}
curr = actual;
}
}
}
// Next tick containing a timeout
fn next_tick(&self) -> Option<Tick> {
if self.next != EMPTY {
let slot = self.slot_for(self.entries[self.next.into()].links.tick);
if self.wheel[slot].next_tick == self.tick {
// There is data ready right now
return Some(self.tick);
}
}
self.wheel.iter().map(|e| e.next_tick).min()
}
fn slot_for(&self, tick: Tick) -> usize {
(self.mask & tick) as usize
}
}
impl<T> Default for Timer<T> {
fn default() -> Timer<T> {
Builder::default().build()
}
}
impl<T> Evented for Timer<T> {
fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
if self.inner.borrow().is_some() {
return Err(io::Error::new(io::ErrorKind::Other, "timer already registered"));
}
let (registration, set_readiness) = Registration::new(poll, token, interest, opts);
let wakeup_state = Arc::new(AtomicUsize::new(usize::MAX));
let thread_handle = spawn_wakeup_thread(
wakeup_state.clone(),
set_readiness.clone(),
self.start, self.tick_ms);
self.inner.fill(Inner {
registration,
set_readiness,
wakeup_state,
wakeup_thread: thread_handle,
}).expect("timer already registered");
if let Some(next_tick) = self.next_tick() {
self.schedule_readiness(next_tick);
}
Ok(())
}
fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
match self.inner.borrow() {
Some(inner) => inner.registration.update(poll, token, interest, opts),
None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")),
}
}
fn deregister(&self, poll: &Poll) -> io::Result<()> {
match self.inner.borrow() {
Some(inner) => inner.registration.deregister(poll),
None => Err(io::Error::new(io::ErrorKind::Other, "receiver not registered")),
}
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Inner")
.field("registration", &self.registration)
.field("wakeup_state", &self.wakeup_state.load(Ordering::Relaxed))
.finish()
}
}
fn spawn_wakeup_thread(state: WakeupState, set_readiness: SetReadiness, start: Instant, tick_ms: u64) -> thread::JoinHandle<()> {
thread::spawn(move || {
let mut sleep_until_tick = state.load(Ordering::Acquire) as Tick;
loop {
if sleep_until_tick == TERMINATE_THREAD as Tick {
return;
}
let now_tick = current_tick(start, tick_ms);
trace!("wakeup thread: sleep_until_tick={:?}; now_tick={:?}", sleep_until_tick, now_tick);
if now_tick < sleep_until_tick {
// Calling park_timeout with u64::MAX leads to undefined
// behavior in pthread, causing the park to return immediately
// and causing the thread to tightly spin. Instead of u64::MAX
// on large values, simply use a blocking park.
match tick_ms.checked_mul(sleep_until_tick - now_tick) {
Some(sleep_duration) => {
trace!("sleeping; tick_ms={}; now_tick={}; sleep_until_tick={}; duration={:?}",
tick_ms, now_tick, sleep_until_tick, sleep_duration);
thread::park_timeout(Duration::from_millis(sleep_duration));
}
None => {
trace!("sleeping; tick_ms={}; now_tick={}; blocking sleep",
tick_ms, now_tick);
thread::park();
}
}
sleep_until_tick = state.load(Ordering::Acquire) as Tick;
} else {
let actual = state.compare_and_swap(sleep_until_tick as usize, usize::MAX, Ordering::AcqRel) as Tick;
if actual == sleep_until_tick {
trace!("setting readiness from wakeup thread");
let _ = set_readiness.set_readiness(Ready::readable());
sleep_until_tick = usize::MAX as Tick;
} else {
sleep_until_tick = actual as Tick;
}
}
}
})
}
fn duration_to_tick(elapsed: Duration, tick_ms: u64) -> Tick {
// Calculate tick rounding up to the closest one
let elapsed_ms = convert::millis(elapsed);
elapsed_ms.saturating_add(tick_ms / 2) / tick_ms
}
fn current_tick(start: Instant, tick_ms: u64) -> Tick {
duration_to_tick(start.elapsed(), tick_ms)
}
impl<T> Entry<T> {
fn new(state: T, tick: u64, next: Token) -> Entry<T> {
Entry {
state,
links: EntryLinks {
tick,
prev: EMPTY,
next,
},
}
}
}
impl fmt::Display for TimerError {
fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
// `TimerError` will never be constructed.
unreachable!();
}
}
impl error::Error for TimerError {
fn description(&self) -> &str {
// `TimerError` will never be constructed.
unreachable!();
}
}
impl fmt::Display for TimerErrorKind {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
TimerOverflow => write!(fmt, "TimerOverflow"),
}
}
}
|