1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
#[cfg(any(target_os = "linux", target_os = "android"))]
mod eventfd {
use crate::sys::Selector;
use crate::{Interest, Token};
use std::fs::File;
use std::io::{self, Read, Write};
use std::os::unix::io::FromRawFd;
/// Waker backed by `eventfd`.
///
/// `eventfd` is effectively an 64 bit counter. All writes must be of 8
/// bytes (64 bits) and are converted (native endian) into an 64 bit
/// unsigned integer and added to the count. Reads must also be 8 bytes and
/// reset the count to 0, returning the count.
#[derive(Debug)]
pub struct Waker {
fd: File,
}
impl Waker {
pub fn new(selector: &Selector, token: Token) -> io::Result<Waker> {
syscall!(eventfd(0, libc::EFD_CLOEXEC | libc::EFD_NONBLOCK)).and_then(|fd| {
// Turn the file descriptor into a file first so we're ensured
// it's closed when dropped, e.g. when register below fails.
let file = unsafe { File::from_raw_fd(fd) };
selector
.register(fd, token, Interest::READABLE)
.map(|()| Waker { fd: file })
})
}
pub fn wake(&self) -> io::Result<()> {
let buf: [u8; 8] = 1u64.to_ne_bytes();
match (&self.fd).write(&buf) {
Ok(_) => Ok(()),
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => {
// Writing only blocks if the counter is going to overflow.
// So we'll reset the counter to 0 and wake it again.
self.reset()?;
self.wake()
}
Err(err) => Err(err),
}
}
/// Reset the eventfd object, only need to call this if `wake` fails.
fn reset(&self) -> io::Result<()> {
let mut buf: [u8; 8] = 0u64.to_ne_bytes();
match (&self.fd).read(&mut buf) {
Ok(_) => Ok(()),
// If the `Waker` hasn't been awoken yet this will return a
// `WouldBlock` error which we can safely ignore.
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => Ok(()),
Err(err) => Err(err),
}
}
}
}
#[cfg(any(target_os = "linux", target_os = "android"))]
pub use self::eventfd::Waker;
#[cfg(any(target_os = "freebsd", target_os = "ios", target_os = "macos"))]
mod kqueue {
use crate::sys::Selector;
use crate::Token;
use std::io;
/// Waker backed by kqueue user space notifications (`EVFILT_USER`).
///
/// The implementation is fairly simple, first the kqueue must be setup to
/// receive waker events this done by calling `Selector.setup_waker`. Next
/// we need access to kqueue, thus we need to duplicate the file descriptor.
/// Now waking is as simple as adding an event to the kqueue.
#[derive(Debug)]
pub struct Waker {
selector: Selector,
token: Token,
}
impl Waker {
pub fn new(selector: &Selector, token: Token) -> io::Result<Waker> {
selector.try_clone().and_then(|selector| {
selector
.setup_waker(token)
.map(|()| Waker { selector, token })
})
}
pub fn wake(&self) -> io::Result<()> {
self.selector.wake(self.token)
}
}
}
#[cfg(any(target_os = "freebsd", target_os = "ios", target_os = "macos"))]
pub use self::kqueue::Waker;
#[cfg(any(
target_os = "dragonfly",
target_os = "illumos",
target_os = "netbsd",
target_os = "openbsd",
))]
mod pipe {
use crate::sys::unix::Selector;
use crate::{Interest, Token};
use std::fs::File;
use std::io::{self, Read, Write};
use std::os::unix::io::FromRawFd;
/// Waker backed by a unix pipe.
///
/// Waker controls both the sending and receiving ends and empties the pipe
/// if writing to it (waking) fails.
#[derive(Debug)]
pub struct Waker {
sender: File,
receiver: File,
}
impl Waker {
pub fn new(selector: &Selector, token: Token) -> io::Result<Waker> {
let mut fds = [-1; 2];
syscall!(pipe2(fds.as_mut_ptr(), libc::O_NONBLOCK | libc::O_CLOEXEC))?;
// Turn the file descriptors into files first so we're ensured
// they're closed when dropped, e.g. when register below fails.
let sender = unsafe { File::from_raw_fd(fds[1]) };
let receiver = unsafe { File::from_raw_fd(fds[0]) };
selector
.register(fds[0], token, Interest::READABLE)
.map(|()| Waker { sender, receiver })
}
pub fn wake(&self) -> io::Result<()> {
// The epoll emulation on some illumos systems currently requires
// the pipe buffer to be completely empty for an edge-triggered
// wakeup on the pipe read side.
#[cfg(target_os = "illumos")]
self.empty();
match (&self.sender).write(&[1]) {
Ok(_) => Ok(()),
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => {
// The reading end is full so we'll empty the buffer and try
// again.
self.empty();
self.wake()
}
Err(ref err) if err.kind() == io::ErrorKind::Interrupted => self.wake(),
Err(err) => Err(err),
}
}
/// Empty the pipe's buffer, only need to call this if `wake` fails.
/// This ignores any errors.
fn empty(&self) {
let mut buf = [0; 4096];
loop {
match (&self.receiver).read(&mut buf) {
Ok(n) if n > 0 => continue,
_ => return,
}
}
}
}
}
#[cfg(any(
target_os = "dragonfly",
target_os = "illumos",
target_os = "netbsd",
target_os = "openbsd",
))]
pub use self::pipe::Waker;
|