1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This file implements functions necessary for address validation.
use neqo_common::{qinfo, qtrace, Decoder, Encoder, Role};
use neqo_crypto::{
constants::{TLS_AES_128_GCM_SHA256, TLS_VERSION_1_3},
selfencrypt::SelfEncrypt,
};
use crate::cid::ConnectionId;
use crate::packet::PacketBuilder;
use crate::recovery::RecoveryToken;
use crate::stats::FrameStats;
use crate::{Error, Res};
use smallvec::SmallVec;
use std::convert::TryFrom;
use std::net::{IpAddr, SocketAddr};
use std::time::{Duration, Instant};
/// A prefix we add to Retry tokens to distinguish them from NEW_TOKEN tokens.
const TOKEN_IDENTIFIER_RETRY: &[u8] = &[0x52, 0x65, 0x74, 0x72, 0x79];
/// A prefix on NEW_TOKEN tokens, that is maximally Hamming distant from NEW_TOKEN.
/// Together, these need to have a low probability of collision, even if there is
/// corruption of individual bits in transit.
const TOKEN_IDENTIFIER_NEW_TOKEN: &[u8] = &[0xad, 0x9a, 0x8b, 0x8d, 0x86];
/// The maximum number of tokens we'll save from NEW_TOKEN frames.
/// This should be the same as the value of MAX_TICKETS in neqo-crypto.
const MAX_NEW_TOKEN: usize = 4;
/// The number of tokens we'll track for the purposes of looking for duplicates.
/// This is based on how many might be received over a period where could be
/// retransmissions. It should be at least `MAX_NEW_TOKEN`.
const MAX_SAVED_TOKENS: usize = 8;
/// `ValidateAddress` determines what sort of address validation is performed.
/// In short, this determines when a Retry packet is sent.
#[derive(Debug, PartialEq, Eq)]
pub enum ValidateAddress {
/// Require address validation never.
Never,
/// Require address validation unless a NEW_TOKEN token is provided.
NoToken,
/// Require address validation even if a NEW_TOKEN token is provided.
Always,
}
pub enum AddressValidationResult {
Pass,
ValidRetry(ConnectionId),
Validate,
Invalid,
}
pub struct AddressValidation {
/// What sort of validation is performed.
validation: ValidateAddress,
/// A self-encryption object used for protecting Retry tokens.
self_encrypt: SelfEncrypt,
/// When this object was created.
start_time: Instant,
}
impl AddressValidation {
pub fn new(now: Instant, validation: ValidateAddress) -> Res<Self> {
Ok(Self {
validation,
self_encrypt: SelfEncrypt::new(TLS_VERSION_1_3, TLS_AES_128_GCM_SHA256)?,
start_time: now,
})
}
fn encode_aad(peer_address: SocketAddr, retry: bool) -> Encoder {
// Let's be "clever" by putting the peer's address in the AAD.
// We don't need to encode these into the token as they should be
// available when we need to check the token.
let mut aad = Encoder::default();
if retry {
aad.encode(TOKEN_IDENTIFIER_RETRY);
} else {
aad.encode(TOKEN_IDENTIFIER_NEW_TOKEN);
}
match peer_address.ip() {
IpAddr::V4(a) => {
aad.encode_byte(4);
aad.encode(&a.octets());
}
IpAddr::V6(a) => {
aad.encode_byte(6);
aad.encode(&a.octets());
}
}
if retry {
aad.encode_uint(2, peer_address.port());
}
aad
}
pub fn generate_token(
&self,
dcid: Option<&ConnectionId>,
peer_address: SocketAddr,
now: Instant,
) -> Res<Vec<u8>> {
const EXPIRATION_RETRY: Duration = Duration::from_secs(5);
const EXPIRATION_NEW_TOKEN: Duration = Duration::from_secs(60 * 60 * 24);
// TODO(mt) rotate keys on a fixed schedule.
let retry = dcid.is_some();
let mut data = Encoder::default();
let end = now
+ if retry {
EXPIRATION_RETRY
} else {
EXPIRATION_NEW_TOKEN
};
let end_millis = u32::try_from(end.duration_since(self.start_time).as_millis())?;
data.encode_uint(4, end_millis);
if let Some(dcid) = dcid {
data.encode(dcid);
}
// Include the token identifier ("Retry"/~) in the AAD, then keep it for plaintext.
let mut buf = Self::encode_aad(peer_address, retry);
let encrypted = self.self_encrypt.seal(buf.as_ref(), data.as_ref())?;
buf.truncate(TOKEN_IDENTIFIER_RETRY.len());
buf.encode(&encrypted);
Ok(buf.into())
}
/// This generates a token for use with Retry.
pub fn generate_retry_token(
&self,
dcid: &ConnectionId,
peer_address: SocketAddr,
now: Instant,
) -> Res<Vec<u8>> {
self.generate_token(Some(dcid), peer_address, now)
}
/// This generates a token for use with NEW_TOKEN.
pub fn generate_new_token(&self, peer_address: SocketAddr, now: Instant) -> Res<Vec<u8>> {
self.generate_token(None, peer_address, now)
}
pub fn set_validation(&mut self, validation: ValidateAddress) {
qtrace!("AddressValidation {:p}: set to {:?}", self, validation);
self.validation = validation;
}
/// Decrypts `token` and returns the connection ID it contains.
/// Returns a tuple with a boolean indicating whether this thinks
/// that the token was a Retry token, and a connection ID, that is
/// None if the token wasn't successfully decrypted.
fn decrypt_token(
&self,
token: &[u8],
peer_address: SocketAddr,
retry: bool,
now: Instant,
) -> Option<ConnectionId> {
let peer_addr = Self::encode_aad(peer_address, retry);
let data = self.self_encrypt.open(peer_addr.as_ref(), token).ok()?;
let mut dec = Decoder::new(&data);
match dec.decode_uint(4) {
Some(d) => {
let end = self.start_time + Duration::from_millis(d);
if end < now {
qtrace!("Expired token: {:?} vs. {:?}", end, now);
return None;
}
}
_ => return None,
}
Some(ConnectionId::from(dec.decode_remainder()))
}
/// Calculate the Hamming difference between our identifier and the target.
/// Less than one difference per byte indicates that it is likely not a Retry.
/// This generous interpretation allows for a lot of damage in transit.
/// Note that if this check fails, then the token will be treated like it came
/// from NEW_TOKEN instead. If there truly is corruption of packets that causes
/// validation failure, it will be a failure that we try to recover from.
fn is_likely_retry(token: &[u8]) -> bool {
let mut difference = 0;
for i in 0..TOKEN_IDENTIFIER_RETRY.len() {
difference += (token[i] ^ TOKEN_IDENTIFIER_RETRY[i]).count_ones();
}
usize::try_from(difference).unwrap() < TOKEN_IDENTIFIER_RETRY.len()
}
pub fn validate(
&self,
token: &[u8],
peer_address: SocketAddr,
now: Instant,
) -> AddressValidationResult {
qtrace!(
"AddressValidation {:p}: validate {:?}",
self,
self.validation
);
if token.is_empty() {
if self.validation == ValidateAddress::Never {
qinfo!("AddressValidation: no token; accepting");
return AddressValidationResult::Pass;
} else {
qinfo!("AddressValidation: no token; validating");
return AddressValidationResult::Validate;
}
}
if token.len() <= TOKEN_IDENTIFIER_RETRY.len() {
// Treat bad tokens strictly.
qinfo!("AddressValidation: too short token");
return AddressValidationResult::Invalid;
}
let retry = Self::is_likely_retry(token);
let enc = &token[TOKEN_IDENTIFIER_RETRY.len()..];
// Note that this allows the token identifier part to be corrupted.
// That's OK here as we don't depend on that being authenticated.
if let Some(cid) = self.decrypt_token(enc, peer_address, retry, now) {
if retry {
// This is from Retry, so we should have an ODCID >= 8.
if cid.len() >= 8 {
qinfo!("AddressValidation: valid Retry token for {}", cid);
AddressValidationResult::ValidRetry(cid)
} else {
panic!("AddressValidation: Retry token with small CID {}", cid);
}
} else if cid.is_empty() {
// An empty connection ID means NEW_TOKEN.
if self.validation == ValidateAddress::Always {
qinfo!("AddressValidation: valid NEW_TOKEN token; validating again");
AddressValidationResult::Validate
} else {
qinfo!("AddressValidation: valid NEW_TOKEN token; accepting");
AddressValidationResult::Pass
}
} else {
panic!("AddressValidation: NEW_TOKEN token with CID {}", cid);
}
} else {
// From here on, we have a token that we couldn't decrypt.
// We've either lost the keys or we've received junk.
if retry {
// If this looked like a Retry, treat it as being bad.
qinfo!("AddressValidation: invalid Retry token; rejecting");
AddressValidationResult::Invalid
} else if self.validation == ValidateAddress::Never {
// We don't require validation, so OK.
qinfo!("AddressValidation: invalid NEW_TOKEN token; accepting");
AddressValidationResult::Pass
} else {
// This might be an invalid NEW_TOKEN token, or a valid one
// for which we have since lost the keys. Check again.
qinfo!("AddressValidation: invalid NEW_TOKEN token; validating again");
AddressValidationResult::Validate
}
}
}
}
// Note: these lint override can be removed in later versions where the lints
// either don't trip a false positive or don't apply. rustc 1.46 is fine.
#[allow(dead_code, clippy::large_enum_variant)]
pub enum NewTokenState {
Client {
/// Tokens that haven't been taken yet.
pending: SmallVec<[Vec<u8>; MAX_NEW_TOKEN]>,
/// Tokens that have been taken, saved so that we can discard duplicates.
old: SmallVec<[Vec<u8>; MAX_SAVED_TOKENS]>,
},
Server(NewTokenSender),
}
impl NewTokenState {
pub fn new(role: Role) -> Self {
match role {
Role::Client => Self::Client {
pending: SmallVec::<[_; MAX_NEW_TOKEN]>::new(),
old: SmallVec::<[_; MAX_SAVED_TOKENS]>::new(),
},
Role::Server => Self::Server(NewTokenSender::default()),
}
}
/// Is there a token available?
pub fn has_token(&self) -> bool {
match self {
Self::Client { ref pending, .. } => !pending.is_empty(),
Self::Server(..) => false,
}
}
/// If this is a client, take a token if there is one.
/// If this is a server, panic.
pub fn take_token(&mut self) -> Option<&[u8]> {
if let Self::Client {
ref mut pending,
ref mut old,
} = self
{
if let Some(t) = pending.pop() {
if old.len() >= MAX_SAVED_TOKENS {
old.remove(0);
}
old.push(t);
Some(&old[old.len() - 1])
} else {
None
}
} else {
unreachable!();
}
}
/// If this is a client, save a token.
/// If this is a server, panic.
pub fn save_token(&mut self, token: Vec<u8>) {
if let Self::Client {
ref mut pending,
ref old,
} = self
{
for t in old.iter().rev().chain(pending.iter().rev()) {
if t == &token {
qinfo!("NewTokenState discarding duplicate NEW_TOKEN");
return;
}
}
if pending.len() >= MAX_NEW_TOKEN {
pending.remove(0);
}
pending.push(token);
} else {
unreachable!();
}
}
/// If this is a server, maybe send a frame.
/// If this is a client, do nothing.
pub fn write_frames(
&mut self,
builder: &mut PacketBuilder,
tokens: &mut Vec<RecoveryToken>,
stats: &mut FrameStats,
) -> Res<()> {
if let Self::Server(ref mut sender) = self {
sender.write_frames(builder, tokens, stats)?;
}
Ok(())
}
/// If this a server, buffer a NEW_TOKEN for sending.
/// If this is a client, panic.
pub fn send_new_token(&mut self, token: Vec<u8>) {
if let Self::Server(ref mut sender) = self {
sender.send_new_token(token);
} else {
unreachable!();
}
}
/// If this a server, process a lost signal for a NEW_TOKEN frame.
/// If this is a client, panic.
pub fn lost(&mut self, seqno: usize) {
if let Self::Server(ref mut sender) = self {
sender.lost(seqno);
} else {
unreachable!();
}
}
/// If this a server, process remove the acknowledged NEW_TOKEN frame.
/// If this is a client, panic.
pub fn acked(&mut self, seqno: usize) {
if let Self::Server(ref mut sender) = self {
sender.acked(seqno);
} else {
unreachable!();
}
}
}
struct NewTokenFrameStatus {
seqno: usize,
token: Vec<u8>,
needs_sending: bool,
}
impl NewTokenFrameStatus {
fn len(&self) -> usize {
1 + Encoder::vvec_len(self.token.len())
}
}
#[derive(Default)]
pub struct NewTokenSender {
/// The unacknowledged NEW_TOKEN frames we are yet to send.
tokens: Vec<NewTokenFrameStatus>,
/// A sequence number that is used to track individual tokens
/// by reference (so that recovery tokens can be simple).
next_seqno: usize,
}
impl NewTokenSender {
/// Add a token to be sent.
pub fn send_new_token(&mut self, token: Vec<u8>) {
self.tokens.push(NewTokenFrameStatus {
seqno: self.next_seqno,
token,
needs_sending: true,
});
self.next_seqno += 1;
}
pub fn write_frames(
&mut self,
builder: &mut PacketBuilder,
tokens: &mut Vec<RecoveryToken>,
stats: &mut FrameStats,
) -> Res<()> {
for t in self.tokens.iter_mut() {
if t.needs_sending && t.len() <= builder.remaining() {
t.needs_sending = false;
builder.encode_varint(crate::frame::FRAME_TYPE_NEW_TOKEN);
builder.encode_vvec(&t.token);
if builder.len() > builder.limit() {
return Err(Error::InternalError(7));
}
tokens.push(RecoveryToken::NewToken(t.seqno));
stats.new_token += 1;
}
}
Ok(())
}
pub fn lost(&mut self, seqno: usize) {
for t in self.tokens.iter_mut() {
if t.seqno == seqno {
t.needs_sending = true;
break;
}
}
}
pub fn acked(&mut self, seqno: usize) {
self.tokens.retain(|i| i.seqno != seqno);
}
}
#[cfg(test)]
mod tests {
use super::NewTokenState;
use neqo_common::Role;
const ONE: &[u8] = &[1, 2, 3];
const TWO: &[u8] = &[4, 5];
#[test]
fn duplicate_saved() {
let mut tokens = NewTokenState::new(Role::Client);
tokens.save_token(ONE.to_vec());
tokens.save_token(TWO.to_vec());
tokens.save_token(ONE.to_vec());
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably TWO
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably ONE
assert!(!tokens.has_token());
assert!(tokens.take_token().is_none());
}
#[test]
fn duplicate_after_take() {
let mut tokens = NewTokenState::new(Role::Client);
tokens.save_token(ONE.to_vec());
tokens.save_token(TWO.to_vec());
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably TWO
tokens.save_token(ONE.to_vec());
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably ONE
assert!(!tokens.has_token());
assert!(tokens.take_token().is_none());
}
#[test]
fn duplicate_after_empty() {
let mut tokens = NewTokenState::new(Role::Client);
tokens.save_token(ONE.to_vec());
tokens.save_token(TWO.to_vec());
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably TWO
assert!(tokens.has_token());
assert!(tokens.take_token().is_some()); // probably ONE
tokens.save_token(ONE.to_vec());
assert!(!tokens.has_token());
assert!(tokens.take_token().is_none());
}
}
|