summaryrefslogtreecommitdiffstats
path: root/third_party/rust/nix/src/sys/timer.rs
blob: e1a34051e8a3d1ff03300a88122f2e07d208e3a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//! Timer API via signals.
//!
//! Timer is a POSIX API to create timers and get expiration notifications
//! through queued Unix signals, for the current process. This is similar to
//! Linux's timerfd mechanism, except that API is specific to Linux and makes
//! use of file polling.
//!
//! For more documentation, please read [timer_create](https://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_create.html).
//!
//! # Examples
//!
//! Create an interval timer that signals SIGALARM every 250 milliseconds.
//!
//! ```no_run
//! use nix::sys::signal::{self, SigEvent, SigHandler, SigevNotify, Signal};
//! use nix::sys::timer::{Expiration, Timer, TimerSetTimeFlags};
//! use nix::time::ClockId;
//! use std::convert::TryFrom;
//! use std::sync::atomic::{AtomicU64, Ordering};
//! use std::thread::yield_now;
//! use std::time::Duration;
//!
//! const SIG: Signal = Signal::SIGALRM;
//! static ALARMS: AtomicU64 = AtomicU64::new(0);
//!
//! extern "C" fn handle_alarm(signal: libc::c_int) {
//!     let signal = Signal::try_from(signal).unwrap();
//!     if signal == SIG {
//!         ALARMS.fetch_add(1, Ordering::Relaxed);
//!     }
//! }
//!
//! fn main() {
//!     let clockid = ClockId::CLOCK_MONOTONIC;
//!     let sigevent = SigEvent::new(SigevNotify::SigevSignal {
//!         signal: SIG,
//!         si_value: 0,
//!     });
//!
//!     let mut timer = Timer::new(clockid, sigevent).unwrap();
//!     let expiration = Expiration::Interval(Duration::from_millis(250).into());
//!     let flags = TimerSetTimeFlags::empty();
//!     timer.set(expiration, flags).expect("could not set timer");
//!
//!     let handler = SigHandler::Handler(handle_alarm);
//!     unsafe { signal::signal(SIG, handler) }.unwrap();
//!
//!     loop {
//!         let alarms = ALARMS.load(Ordering::Relaxed);
//!         if alarms >= 10 {
//!             println!("total alarms handled: {}", alarms);
//!             break;
//!         }
//!         yield_now()
//!     }
//! }
//! ```
use crate::sys::signal::SigEvent;
use crate::sys::time::timer::TimerSpec;
pub use crate::sys::time::timer::{Expiration, TimerSetTimeFlags};
use crate::time::ClockId;
use crate::{errno::Errno, Result};
use core::mem;

/// A Unix signal per-process timer.
#[derive(Debug)]
#[repr(transparent)]
pub struct Timer(libc::timer_t);

impl Timer {
    /// Creates a new timer based on the clock defined by `clockid`. The details
    /// of the signal and its handler are defined by the passed `sigevent`.
    #[doc(alias("timer_create"))]
    pub fn new(clockid: ClockId, mut sigevent: SigEvent) -> Result<Self> {
        let mut timer_id: mem::MaybeUninit<libc::timer_t> =
            mem::MaybeUninit::uninit();
        Errno::result(unsafe {
            libc::timer_create(
                clockid.as_raw(),
                sigevent.as_mut_ptr(),
                timer_id.as_mut_ptr(),
            )
        })
        .map(|_| {
            // SAFETY: libc::timer_create is responsible for initializing
            // timer_id.
            unsafe { Self(timer_id.assume_init()) }
        })
    }

    /// Set a new alarm on the timer.
    ///
    /// # Types of alarm
    ///
    /// There are 3 types of alarms you can set:
    ///
    ///   - one shot: the alarm will trigger once after the specified amount of
    /// time.
    ///     Example: I want an alarm to go off in 60s and then disable itself.
    ///
    ///   - interval: the alarm will trigger every specified interval of time.
    ///     Example: I want an alarm to go off every 60s. The alarm will first
    ///     go off 60s after I set it and every 60s after that. The alarm will
    ///     not disable itself.
    ///
    ///   - interval delayed: the alarm will trigger after a certain amount of
    ///     time and then trigger at a specified interval.
    ///     Example: I want an alarm to go off every 60s but only start in 1h.
    ///     The alarm will first trigger 1h after I set it and then every 60s
    ///     after that. The alarm will not disable itself.
    ///
    /// # Relative vs absolute alarm
    ///
    /// If you do not set any `TimerSetTimeFlags`, then the `TimeSpec` you pass
    /// to the `Expiration` you want is relative. If however you want an alarm
    /// to go off at a certain point in time, you can set `TFD_TIMER_ABSTIME`.
    /// Then the one shot TimeSpec and the delay TimeSpec of the delayed
    /// interval are going to be interpreted as absolute.
    ///
    /// # Disabling alarms
    ///
    /// Note: Only one alarm can be set for any given timer. Setting a new alarm
    /// actually removes the previous one.
    ///
    /// Note: Setting a one shot alarm with a 0s TimeSpec disable the alarm
    /// altogether.
    #[doc(alias("timer_settime"))]
    pub fn set(
        &mut self,
        expiration: Expiration,
        flags: TimerSetTimeFlags,
    ) -> Result<()> {
        let timerspec: TimerSpec = expiration.into();
        Errno::result(unsafe {
            libc::timer_settime(
                self.0,
                flags.bits(),
                timerspec.as_ref(),
                core::ptr::null_mut(),
            )
        })
        .map(drop)
    }

    /// Get the parameters for the alarm currently set, if any.
    #[doc(alias("timer_gettime"))]
    pub fn get(&self) -> Result<Option<Expiration>> {
        let mut timerspec = TimerSpec::none();
        Errno::result(unsafe {
            libc::timer_gettime(self.0, timerspec.as_mut())
        })
        .map(|_| {
            if timerspec.as_ref().it_interval.tv_sec == 0
                && timerspec.as_ref().it_interval.tv_nsec == 0
                && timerspec.as_ref().it_value.tv_sec == 0
                && timerspec.as_ref().it_value.tv_nsec == 0
            {
                None
            } else {
                Some(timerspec.into())
            }
        })
    }

    /// Return the number of timers that have overrun
    ///
    /// Each timer is able to queue one signal to the process at a time, meaning
    /// if the signal is not handled before the next expiration the timer has
    /// 'overrun'. This function returns how many times that has happened to
    /// this timer, up to `libc::DELAYTIMER_MAX`. If more than the maximum
    /// number of overruns have happened the return is capped to the maximum.
    #[doc(alias("timer_getoverrun"))]
    pub fn overruns(&self) -> i32 {
        unsafe { libc::timer_getoverrun(self.0) }
    }
}

impl Drop for Timer {
    fn drop(&mut self) {
        if !std::thread::panicking() {
            let result = Errno::result(unsafe { libc::timer_delete(self.0) });
            if let Err(Errno::EINVAL) = result {
                panic!("close of Timer encountered EINVAL");
            }
        }
    }
}