1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
|
// TODO: Revisit the design of `Event` once the `HashMap` raw interface is stabilised.
// Ideally `Value`s would be stored inline in `Event`.
use indexmap::IndexMap;
use std::{
borrow::Cow,
io::{self, Write},
mem,
num::NonZeroUsize,
};
use crate::{
error::{self, Error, ErrorKind, EventKind},
stream::Writer,
Date, Integer, Uid,
};
pub struct BinaryWriter<W: Write> {
writer: PosWriter<W>,
events: Vec<Event>,
dictionary_key_events: Vec<usize>,
values: IndexMap<Value<'static>, ValueState>,
/// Pointers into `events` for each of the currently unclosed `Collection` events.
collection_stack: Vec<usize>,
/// The number of `Collection` and unique `Value` events in `events`.
num_objects: usize,
}
struct PosWriter<W: Write> {
writer: W,
pos: usize,
}
#[derive(Clone)]
struct ObjectRef(NonZeroUsize);
/// An array of `len` elements is stored as a `Collection` event followed by `skip_len` events
/// containing the contents of the array. e.g.
///
/// Collection(ty: Array, len: 2, skip_len: 2)
/// Value
/// Value
///
/// If the array contains another array or dictionary `len` and `skip_len` will differ. e.g.
///
/// Collection(ty: Array, len: 2, skip_len: 3)
/// Value
/// Collection(ty: Array, len: 1, skip_len: 1)
/// Value
///
/// A dictionary of `len` (key, value) pairs is stored as a `Collection` event followed by
/// `skip_len` events containing the contents of the dictionary. The dictionary values are stored
/// first. These are followed by a `DictionaryKeys` event and then the keys themselves. e.g.
///
/// Collection(ty: Dictionary, len: 2, skip_len: 6)
/// Value
/// Collection(ty: Array, len: 1, skip_len: 1)
/// Value
/// DictionaryKeys(2)
/// Value (Key)
/// Value (Key)
///
/// This arrangement simplifies writing dictionaries as they must be written in the order
/// (key, key, value, value) instead of (key, value, key, value) as they are passed to the writer.
/// Unclosed dictionaries have their keys stored in `dictionary_key_events` and these are only
/// moved to the end of the `BinaryWriter::events` array once the dictionary is closed in
/// `write_end_collection`.
enum Event {
Collection(Collection),
/// Index of the value in the `values` map.
Value(usize),
/// The number of dictionary keys following this event.
DictionaryKeys(usize),
}
struct Collection {
ty: CollectionType,
/// The number of elements in an array or (key, value) pairs in a dictionary.
/// Unclosed dictionaries have a `len` equal to the number of keys plus the number of values
/// written so far. This is fixed up in `write_end_collection`.
len: usize,
/// The number of events to skip to get to the next element after the collection.
skip: usize,
object_ref: Option<ObjectRef>,
}
#[derive(Eq, PartialEq)]
enum CollectionType {
Array,
Dictionary,
}
#[derive(Eq, Hash, PartialEq)]
enum Value<'a> {
Boolean(bool),
Data(Cow<'a, [u8]>),
Date(Date),
Integer(Integer),
/// Floats are deduplicated based on their bitwise value.
Real(u64),
String(Cow<'a, str>),
Uid(Uid),
}
enum ValueState {
/// The value has not been assigned an object reference.
Unassigned,
/// The value has been assigned an object reference but has not yet been written.
Unwritten(ObjectRef),
/// The value has been written with the given object reference.
Written(ObjectRef),
}
impl<W: Write> BinaryWriter<W> {
pub fn new(writer: W) -> BinaryWriter<W> {
BinaryWriter {
writer: PosWriter { writer, pos: 0 },
events: Vec::new(),
dictionary_key_events: Vec::new(),
values: IndexMap::new(),
collection_stack: Vec::new(),
num_objects: 0,
}
}
fn write_start_collection(&mut self, ty: CollectionType) -> Result<(), Error> {
if self.expecting_dictionary_key() {
let ty_event_kind = match ty {
CollectionType::Array => EventKind::StartArray,
CollectionType::Dictionary => EventKind::StartDictionary,
};
return Err(ErrorKind::UnexpectedEventType {
expected: EventKind::DictionaryKeyOrEndCollection,
found: ty_event_kind,
}
.without_position());
}
self.increment_current_collection_len();
self.collection_stack.push(self.events.len());
self.events.push(Event::Collection(Collection {
ty,
len: 0,
skip: 0,
object_ref: None,
}));
self.num_objects += 1;
Ok(())
}
fn write_end_collection(&mut self) -> Result<(), Error> {
let collection_event_index = self.collection_stack.pop().ok_or_else(|| {
ErrorKind::UnexpectedEventType {
expected: EventKind::ValueOrStartCollection,
found: EventKind::EndCollection,
}
.without_position()
})?;
let current_event_index = self.events.len() - 1;
let c = if let Event::Collection(c) = &mut self.events[collection_event_index] {
c
} else {
unreachable!("items in `collection_stack` always point to a collection event");
};
c.skip = current_event_index - collection_event_index;
if let CollectionType::Dictionary = c.ty {
// Ensure that every dictionary key is paired with a value.
if !is_even(c.len) {
return Err(ErrorKind::UnexpectedEventType {
expected: EventKind::DictionaryKeyOrEndCollection,
found: EventKind::EndCollection,
}
.without_position());
}
// Fix up the dictionary length. It should contain the number of key-value pairs,
// not the number of keys and values.
c.len /= 2;
// To skip past a dictionary we also need to skip the `DictionaryKeys` event and the
// keys that follow it.
c.skip += 1 + c.len;
let len = c.len;
self.events.push(Event::DictionaryKeys(len));
// Move the cached dictionary keys to the end of the events array.
let keys_start_index = self.dictionary_key_events.len() - len;
self.events.extend(
self.dictionary_key_events
.drain(keys_start_index..)
.map(Event::Value),
);
}
if self.collection_stack.is_empty() {
self.write_plist()?;
}
Ok(())
}
fn write_value(&mut self, value: Value) -> Result<(), Error> {
let expecting_dictionary_key = self.expecting_dictionary_key();
// Ensure that all dictionary keys are strings.
match (&value, expecting_dictionary_key) {
(Value::String(_), true) | (_, false) => (),
(_, true) => {
return Err(ErrorKind::UnexpectedEventType {
expected: EventKind::DictionaryKeyOrEndCollection,
found: value.event_kind(),
}
.without_position())
}
}
// Deduplicate `value`. There is one entry in `values` for each unqiue `Value` in the
// plist.
let value_index = if let Some((value_index, _, _)) = self.values.get_full(&value) {
value_index
} else {
self.num_objects += 1;
let value = value.into_owned();
let (value_index, _) = self.values.insert_full(value, ValueState::Unassigned);
value_index
};
// Dictionary keys are buffered in `dictionary_key_events` until the dictionary is closed
// in `write_end_collection` when they are moved to the end of the `events` array.
if expecting_dictionary_key {
self.dictionary_key_events.push(value_index);
} else {
self.events.push(Event::Value(value_index));
}
self.increment_current_collection_len();
if self.collection_stack.is_empty() {
self.write_plist()?;
}
Ok(())
}
fn expecting_dictionary_key(&self) -> bool {
if let Some(&event_index) = self.collection_stack.last() {
if let Event::Collection(c) = &self.events[event_index] {
c.ty == CollectionType::Dictionary && is_even(c.len)
} else {
unreachable!("items in `collection_stack` always point to a collection event");
}
} else {
false
}
}
fn increment_current_collection_len(&mut self) {
if let Some(&event_index) = self.collection_stack.last() {
if let Event::Collection(c) = &mut self.events[event_index] {
c.len += 1;
} else {
unreachable!("items in `collection_stack` always point to a collection event");
}
}
}
fn write_plist(&mut self) -> Result<(), Error> {
assert!(self.collection_stack.is_empty());
// Write header
self.writer.write_exact(b"bplist00")?;
// Write objects
let mut events_vec = mem::replace(&mut self.events, Vec::new());
let mut events = &mut events_vec[..];
let ref_size = plist_ref_size(self.num_objects - 1);
let mut offset_table = vec![0; self.num_objects];
// Assign the first (root) event an object reference of zero.
let mut next_object_ref = ObjectRef::zero();
match &mut events[0] {
Event::Value(value_index) => {
let (_, value_state) = value_mut(&mut self.values, *value_index);
*value_state = ValueState::Unwritten(next_object_ref.clone_and_increment_self());
}
Event::Collection(c) => {
c.object_ref = Some(next_object_ref.clone_and_increment_self());
}
Event::DictionaryKeys(_) => {
unreachable!("`events` starts with a value or collection event")
}
}
while let Some((event, rest)) = events.split_first_mut() {
events = rest;
match event {
Event::Collection(c) => {
let collection_events = &mut events[..c.skip];
self.write_plist_collection(
c,
collection_events,
ref_size,
&mut next_object_ref,
&mut offset_table,
)?;
}
Event::Value(value_index) => {
self.write_plist_value(*value_index, &mut offset_table)?;
}
// Dictionary keys will have already been written in `write_plist_collection` so we
// skip over them here.
Event::DictionaryKeys(len) => {
events = &mut events[*len..];
}
}
}
// Write object offset table
let offset_table_offset = self.writer.pos;
let offset_size = plist_ref_size(offset_table_offset);
for &offset in &offset_table {
write_plist_ref(&mut self.writer, offset_size, offset)?;
}
// Write trailer
// 6 zero bytes padding
// 1 byte offset size
// 1 byte object ref size
// 8 bytes number of objects
// 8 bytes root object ref (always zero)
// 8 bytes file offset of the object offset table
let mut trailer = [0; 32];
trailer[6] = offset_size;
trailer[7] = ref_size;
trailer[8..16].copy_from_slice(&(self.num_objects as u64).to_be_bytes());
trailer[24..32].copy_from_slice(&(offset_table_offset as u64).to_be_bytes());
self.writer.write_exact(&trailer)?;
self.writer
.flush()
.map_err(error::from_io_without_position)?;
// Reset plist writer
self.writer.pos = 0;
events_vec.clear();
self.events = events_vec;
self.values.clear();
self.num_objects = 0;
Ok(())
}
fn write_plist_collection(
&mut self,
collection: &Collection,
events: &mut [Event],
ref_size: u8,
next_object_ref: &mut ObjectRef,
offset_table: &mut Vec<usize>,
) -> Result<(), Error> {
if let Some(object_ref) = &collection.object_ref {
offset_table[object_ref.value()] = self.writer.pos;
} else {
unreachable!("collection object refs are assigned before this function is called");
}
// Split the events in the current collection into keys and values (arrays contain only
// values). This is required as dictionary keys appear after values in the `events array
// but all keys must be written before any values.
let (keys, values, ty) = match collection.ty {
CollectionType::Array => (&mut [][..], events, 0xa0),
CollectionType::Dictionary => {
let keys_start_offset = events.len() - collection.len - 1;
let (values, keys) = events.split_at_mut(keys_start_offset);
(&mut keys[1..], values, 0xd0)
}
};
let mut collection_events = keys.iter_mut().chain(values);
// Collections are written as a length prefixed array of object references. For an array
// the length is the number of elements. For a dictionary it is the number of (key, value)
// pairs.
write_plist_value_ty_and_size(&mut self.writer, ty, collection.len)?;
while let Some(event) = collection_events.next() {
let object_ref = match event {
Event::Collection(c) => {
// We only want to write references to top level elements in the collection so
// we skip over the contents of any sub-collections.
if c.skip > 0 {
let _ = collection_events.nth(c.skip - 1);
}
// Collections are not deduplicated so they must be assigned an object
// reference here.
assert!(c.object_ref.is_none());
let object_ref = next_object_ref.clone_and_increment_self();
c.object_ref = Some(object_ref.clone());
object_ref
}
Event::Value(value_index) => {
// Values are deduplicated so we only assign an object reference if we have not
// already done so previously.
let (_, value_state) = value_mut(&mut self.values, *value_index);
match value_state {
ValueState::Unassigned => {
let object_ref = next_object_ref.clone_and_increment_self();
*value_state = ValueState::Unwritten(object_ref.clone());
object_ref
}
ValueState::Unwritten(object_ref) | ValueState::Written(object_ref) => {
object_ref.clone()
}
}
}
Event::DictionaryKeys(_) => unreachable!(
"`DictionaryKeys` events are specifically excluded from the iterator"
),
};
write_plist_ref(&mut self.writer, ref_size, object_ref.value())?;
}
// We write dictionary keys here as they appear after values in the `events` array but
// should come before values in the plist stream to reduce seeking on read.
for key in keys {
if let Event::Value(value_index) = key {
self.write_plist_value(*value_index, offset_table)?;
} else {
unreachable!("dictionary keys are assigned as values in `write_end_collection`");
}
}
Ok(())
}
fn write_plist_value(
&mut self,
value_index: usize,
offset_table: &mut Vec<usize>,
) -> Result<(), Error> {
let (value, value_state) = value_mut(&mut self.values, value_index);
let object_ref = match value_state {
ValueState::Unassigned => {
unreachable!("value object refs are assigned before this function is called");
}
ValueState::Unwritten(object_ref) => object_ref.clone(),
ValueState::Written(_) => return Ok(()),
};
offset_table[object_ref.value()] = self.writer.pos;
*value_state = ValueState::Written(object_ref);
match value {
Value::Boolean(true) => {
self.writer.write_exact(&[0x09])?;
}
Value::Boolean(false) => {
self.writer.write_exact(&[0x08])?;
}
Value::Data(v) => {
write_plist_value_ty_and_size(&mut self.writer, 0x40, v.len())?;
self.writer.write_exact(&v[..])?;
}
Value::Date(v) => {
let secs = v.to_seconds_since_plist_epoch();
let mut buf: [_; 9] = [0x33, 0, 0, 0, 0, 0, 0, 0, 0];
buf[1..].copy_from_slice(&secs.to_bits().to_be_bytes());
self.writer.write_exact(&buf)?;
}
Value::Integer(v) => {
if let Some(v) = v.as_signed() {
if v >= 0 && v <= i64::from(u8::max_value()) {
self.writer.write_exact(&[0x10, v as u8])?;
} else if v >= 0 && v <= i64::from(u16::max_value()) {
let mut buf: [_; 3] = [0x11, 0, 0];
buf[1..].copy_from_slice(&(v as u16).to_be_bytes());
self.writer.write_exact(&buf)?;
} else if v >= 0 && v <= i64::from(u32::max_value()) {
let mut buf: [_; 5] = [0x12, 0, 0, 0, 0];
buf[1..].copy_from_slice(&(v as u32).to_be_bytes());
self.writer.write_exact(&buf)?;
} else {
let mut buf: [_; 9] = [0x13, 0, 0, 0, 0, 0, 0, 0, 0];
buf[1..].copy_from_slice(&v.to_be_bytes());
self.writer.write_exact(&buf)?;
}
} else if let Some(v) = v.as_unsigned() {
// `u64`s larger than `i64::max_value()` are stored as signed 128 bit
// integers.
let mut buf: [_; 17] = [0x14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
buf[1..].copy_from_slice(&i128::from(v).to_be_bytes());
self.writer.write_exact(&buf)?;
} else {
unreachable!("an integer can be represented as either an i64 or u64");
}
}
Value::Real(v) => {
let mut buf: [_; 9] = [0x23, 0, 0, 0, 0, 0, 0, 0, 0];
buf[1..].copy_from_slice(&v.to_be_bytes());
self.writer.write_exact(&buf)?;
}
Value::String(v) if v.is_ascii() => {
let ascii = v.as_bytes();
write_plist_value_ty_and_size(&mut self.writer, 0x50, ascii.len())?;
self.writer.write_exact(ascii)?;
}
Value::String(v) => {
let utf16_len = v.encode_utf16().count();
write_plist_value_ty_and_size(&mut self.writer, 0x60, utf16_len)?;
for c in v.encode_utf16() {
self.writer.write_exact(&c.to_be_bytes())?;
}
}
Value::Uid(v) => {
let v = v.get();
if v <= u64::from(u8::max_value()) {
self.writer.write_exact(&[0x80, v as u8])?;
} else if v <= u64::from(u16::max_value()) {
let mut buf: [_; 3] = [0x81, 0, 0];
buf[1..].copy_from_slice(&(v as u16).to_be_bytes());
self.writer.write_exact(&buf)?;
} else if v <= u64::from(u32::max_value()) {
let mut buf: [_; 5] = [0x83, 0, 0, 0, 0];
buf[1..].copy_from_slice(&(v as u32).to_be_bytes());
self.writer.write_exact(&buf)?;
} else {
let mut buf: [_; 9] = [0x87, 0, 0, 0, 0, 0, 0, 0, 0];
buf[1..].copy_from_slice(&(v as u64).to_be_bytes());
self.writer.write_exact(&buf)?;
}
}
}
Ok(())
}
}
impl<W: Write> Writer for BinaryWriter<W> {
fn write_start_array(&mut self, _len: Option<u64>) -> Result<(), Error> {
self.write_start_collection(CollectionType::Array)
}
fn write_start_dictionary(&mut self, _len: Option<u64>) -> Result<(), Error> {
self.write_start_collection(CollectionType::Dictionary)
}
fn write_end_collection(&mut self) -> Result<(), Error> {
self.write_end_collection()
}
fn write_boolean(&mut self, value: bool) -> Result<(), Error> {
self.write_value(Value::Boolean(value))
}
fn write_data(&mut self, value: &[u8]) -> Result<(), Error> {
self.write_value(Value::Data(Cow::Borrowed(value)))
}
fn write_date(&mut self, value: Date) -> Result<(), Error> {
self.write_value(Value::Date(value))
}
fn write_integer(&mut self, value: Integer) -> Result<(), Error> {
self.write_value(Value::Integer(value))
}
fn write_real(&mut self, value: f64) -> Result<(), Error> {
self.write_value(Value::Real(value.to_bits()))
}
fn write_string(&mut self, value: &str) -> Result<(), Error> {
self.write_value(Value::String(Cow::Borrowed(value)))
}
fn write_uid(&mut self, value: Uid) -> Result<(), Error> {
self.write_value(Value::Uid(value))
}
}
fn is_even(value: usize) -> bool {
value & 1 == 0
}
fn value_mut<'a>(
values: &'a mut IndexMap<Value<'static>, ValueState>,
value_index: usize,
) -> (&'a mut Value<'static>, &'a mut ValueState) {
values
.get_index_mut(value_index)
.expect("internal consistency error")
}
fn write_plist_value_ty_and_size(
writer: &mut PosWriter<impl Write>,
token: u8,
size: usize,
) -> Result<(), Error> {
if size < 0x0f {
writer.write_exact(&[token | (size as u8)])?;
} else if size <= u8::max_value() as usize {
writer.write_exact(&[token | 0x0f, 0x10, size as u8])?;
} else if size <= u16::max_value() as usize {
let mut buf: [_; 4] = [token | 0x0f, 0x11, 0, 0];
buf[2..].copy_from_slice(&(size as u16).to_be_bytes());
writer.write_exact(&buf)?;
} else if size <= u32::max_value() as usize {
let mut buf: [_; 6] = [token | 0x0f, 0x12, 0, 0, 0, 0];
buf[2..].copy_from_slice(&(size as u32).to_be_bytes());
writer.write_exact(&buf)?;
} else {
let mut buf: [_; 10] = [token | 0x0f, 0x13, 0, 0, 0, 0, 0, 0, 0, 0];
buf[2..].copy_from_slice(&(size as u64).to_be_bytes());
writer.write_exact(&buf)?;
}
Ok(())
}
fn plist_ref_size(max_value: usize) -> u8 {
let significant_bits = 64 - (max_value as u64).leading_zeros() as u8;
// Convert to number of bytes
let significant_bytes = (significant_bits + 7) / 8;
// Round up to the next integer byte size which must be power of two.
significant_bytes.next_power_of_two()
}
fn write_plist_ref(
writer: &mut PosWriter<impl Write>,
ref_size: u8,
value: usize,
) -> Result<(), Error> {
match ref_size {
1 => writer.write_exact(&[value as u8]),
2 => writer.write_exact(&(value as u16).to_be_bytes()),
4 => writer.write_exact(&(value as u32).to_be_bytes()),
8 => writer.write_exact(&(value as u64).to_be_bytes()),
_ => unreachable!("`ref_size` is a power of two less than or equal to 8"),
}
}
impl<W: Write> PosWriter<W> {
fn write_exact(&mut self, buf: &[u8]) -> Result<(), Error> {
self.write_all(buf)
.map_err(error::from_io_without_position)?;
Ok(())
}
}
impl<W: Write> Write for PosWriter<W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
let count = self.writer.write(buf)?;
self.pos = self
.pos
.checked_add(count)
.expect("binary plist cannot be larger than `usize::max_value()` bytes");
Ok(count)
}
fn flush(&mut self) -> io::Result<()> {
self.writer.flush()
}
}
impl ObjectRef {
fn zero() -> ObjectRef {
ObjectRef(NonZeroUsize::new(1).unwrap())
}
fn clone_and_increment_self(&mut self) -> ObjectRef {
let current = self.0;
self.0 = NonZeroUsize::new(current.get() + 1).unwrap();
ObjectRef(current)
}
fn value(&self) -> usize {
self.0.get() - 1
}
}
impl<'a> Value<'a> {
fn into_owned(self) -> Value<'static> {
match self {
Value::Boolean(v) => Value::Boolean(v),
Value::Data(v) => Value::Data(Cow::Owned(v.into_owned())),
Value::Date(v) => Value::Date(v),
Value::Integer(v) => Value::Integer(v),
Value::Real(v) => Value::Real(v),
Value::String(v) => Value::String(Cow::Owned(v.into_owned())),
Value::Uid(v) => Value::Uid(v),
}
}
fn event_kind(&self) -> EventKind {
match self {
Value::Boolean(_) => EventKind::Boolean,
Value::Data(_) => EventKind::Data,
Value::Date(_) => EventKind::Date,
Value::Integer(_) => EventKind::Integer,
Value::Real(_) => EventKind::Real,
Value::String(_) => EventKind::String,
Value::Uid(_) => EventKind::Uid,
}
}
}
#[cfg(test)]
mod tests {
use std::{fs::File, io::Cursor, path::Path};
use crate::{stream::BinaryReader, Value};
fn test_roundtrip(path: &Path) {
let reader = File::open(path).unwrap();
let streaming_parser = BinaryReader::new(reader);
let value_to_encode = Value::from_events(streaming_parser).unwrap();
let mut buf = Cursor::new(Vec::new());
value_to_encode.to_writer_binary(&mut buf).unwrap();
let buf_inner = buf.into_inner();
let streaming_parser = BinaryReader::new(Cursor::new(buf_inner));
let events: Vec<Result<_, _>> = streaming_parser.collect();
let value_decoded_from_encode = Value::from_events(events.into_iter()).unwrap();
assert_eq!(value_to_encode, value_decoded_from_encode);
}
#[test]
fn bplist_roundtrip() {
test_roundtrip(&Path::new("./tests/data/binary.plist"))
}
#[test]
fn utf16_roundtrip() {
test_roundtrip(&Path::new("./tests/data/utf16_bplist.plist"))
}
#[test]
fn nskeyedarchiver_roundtrip() {
test_roundtrip(&Path::new("./tests/data/binary_NSKeyedArchiver.plist"))
}
}
|