1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
|
// SPDX-License-Identifier: MPL-2.0
//! A collection of gadgets.
use crate::fft::{discrete_fourier_transform, discrete_fourier_transform_inv_finish};
use crate::field::FieldElement;
use crate::flp::{gadget_poly_len, wire_poly_len, FlpError, Gadget};
use crate::polynomial::{poly_deg, poly_eval, poly_mul};
#[cfg(feature = "multithreaded")]
use rayon::prelude::*;
use std::any::Any;
use std::convert::TryFrom;
use std::fmt::Debug;
use std::marker::PhantomData;
/// For input polynomials larger than or equal to this threshold, gadgets will use FFT for
/// polynomial multiplication. Otherwise, the gadget uses direct multiplication.
const FFT_THRESHOLD: usize = 60;
/// An arity-2 gadget that multiples its inputs.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Mul<F: FieldElement> {
/// Size of buffer for FFT operations.
n: usize,
/// Inverse of `n` in `F`.
n_inv: F,
/// The number of times this gadget will be called.
num_calls: usize,
}
impl<F: FieldElement> Mul<F> {
/// Return a new multiplier gadget. `num_calls` is the number of times this gadget will be
/// called by the validity circuit.
pub fn new(num_calls: usize) -> Self {
let n = gadget_poly_fft_mem_len(2, num_calls);
let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv();
Self {
n,
n_inv,
num_calls,
}
}
// Multiply input polynomials directly.
pub(crate) fn call_poly_direct(
&mut self,
outp: &mut [F],
inp: &[Vec<F>],
) -> Result<(), FlpError> {
let v = poly_mul(&inp[0], &inp[1]);
outp[..v.len()].clone_from_slice(&v);
Ok(())
}
// Multiply input polynomials using FFT.
pub(crate) fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
let n = self.n;
let mut buf = vec![F::zero(); n];
discrete_fourier_transform(&mut buf, &inp[0], n)?;
discrete_fourier_transform(outp, &inp[1], n)?;
for i in 0..n {
buf[i] *= outp[i];
}
discrete_fourier_transform(outp, &buf, n)?;
discrete_fourier_transform_inv_finish(outp, n, self.n_inv);
Ok(())
}
}
impl<F: FieldElement> Gadget<F> for Mul<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
gadget_call_check(self, inp.len())?;
Ok(inp[0] * inp[1])
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
gadget_call_poly_check(self, outp, inp)?;
if inp[0].len() >= FFT_THRESHOLD {
self.call_poly_fft(outp, inp)
} else {
self.call_poly_direct(outp, inp)
}
}
fn arity(&self) -> usize {
2
}
fn degree(&self) -> usize {
2
}
fn calls(&self) -> usize {
self.num_calls
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// An arity-1 gadget that evaluates its input on some polynomial.
//
// TODO Make `poly` an array of length determined by a const generic.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct PolyEval<F: FieldElement> {
poly: Vec<F>,
/// Size of buffer for FFT operations.
n: usize,
/// Inverse of `n` in `F`.
n_inv: F,
/// The number of times this gadget will be called.
num_calls: usize,
}
impl<F: FieldElement> PolyEval<F> {
/// Returns a gadget that evaluates its input on `poly`. `num_calls` is the number of times
/// this gadget is called by the validity circuit.
pub fn new(poly: Vec<F>, num_calls: usize) -> Self {
let n = gadget_poly_fft_mem_len(poly_deg(&poly), num_calls);
let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv();
Self {
poly,
n,
n_inv,
num_calls,
}
}
}
impl<F: FieldElement> PolyEval<F> {
// Multiply input polynomials directly.
fn call_poly_direct(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
outp[0] = self.poly[0];
let mut x = inp[0].to_vec();
for i in 1..self.poly.len() {
for j in 0..x.len() {
outp[j] += self.poly[i] * x[j];
}
if i < self.poly.len() - 1 {
x = poly_mul(&x, &inp[0]);
}
}
Ok(())
}
// Multiply input polynomials using FFT.
fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
let n = self.n;
let inp = &inp[0];
let mut inp_vals = vec![F::zero(); n];
discrete_fourier_transform(&mut inp_vals, inp, n)?;
let mut x_vals = inp_vals.clone();
let mut x = vec![F::zero(); n];
x[..inp.len()].clone_from_slice(inp);
outp[0] = self.poly[0];
for i in 1..self.poly.len() {
for j in 0..n {
outp[j] += self.poly[i] * x[j];
}
if i < self.poly.len() - 1 {
for j in 0..n {
x_vals[j] *= inp_vals[j];
}
discrete_fourier_transform(&mut x, &x_vals, n)?;
discrete_fourier_transform_inv_finish(&mut x, n, self.n_inv);
}
}
Ok(())
}
}
impl<F: FieldElement> Gadget<F> for PolyEval<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
gadget_call_check(self, inp.len())?;
Ok(poly_eval(&self.poly, inp[0]))
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
gadget_call_poly_check(self, outp, inp)?;
for item in outp.iter_mut() {
*item = F::zero();
}
if inp[0].len() >= FFT_THRESHOLD {
self.call_poly_fft(outp, inp)
} else {
self.call_poly_direct(outp, inp)
}
}
fn arity(&self) -> usize {
1
}
fn degree(&self) -> usize {
poly_deg(&self.poly)
}
fn calls(&self) -> usize {
self.num_calls
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// An arity-2 gadget that returns `poly(in[0]) * in[1]` for some polynomial `poly`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct BlindPolyEval<F: FieldElement> {
poly: Vec<F>,
/// Size of buffer for the outer FFT multiplication.
n: usize,
/// Inverse of `n` in `F`.
n_inv: F,
/// The number of times this gadget will be called.
num_calls: usize,
}
impl<F: FieldElement> BlindPolyEval<F> {
/// Returns a `BlindPolyEval` gadget for polynomial `poly`.
pub fn new(poly: Vec<F>, num_calls: usize) -> Self {
let n = gadget_poly_fft_mem_len(poly_deg(&poly) + 1, num_calls);
let n_inv = F::from(F::Integer::try_from(n).unwrap()).inv();
Self {
poly,
n,
n_inv,
num_calls,
}
}
fn call_poly_direct(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
let x = &inp[0];
let y = &inp[1];
let mut z = y.to_vec();
for i in 0..self.poly.len() {
for j in 0..z.len() {
outp[j] += self.poly[i] * z[j];
}
if i < self.poly.len() - 1 {
z = poly_mul(&z, x);
}
}
Ok(())
}
fn call_poly_fft(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
let n = self.n;
let x = &inp[0];
let y = &inp[1];
let mut x_vals = vec![F::zero(); n];
discrete_fourier_transform(&mut x_vals, x, n)?;
let mut z_vals = vec![F::zero(); n];
discrete_fourier_transform(&mut z_vals, y, n)?;
let mut z = vec![F::zero(); n];
let mut z_len = y.len();
z[..y.len()].clone_from_slice(y);
for i in 0..self.poly.len() {
for j in 0..z_len {
outp[j] += self.poly[i] * z[j];
}
if i < self.poly.len() - 1 {
for j in 0..n {
z_vals[j] *= x_vals[j];
}
discrete_fourier_transform(&mut z, &z_vals, n)?;
discrete_fourier_transform_inv_finish(&mut z, n, self.n_inv);
z_len += x.len();
}
}
Ok(())
}
}
impl<F: FieldElement> Gadget<F> for BlindPolyEval<F> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
gadget_call_check(self, inp.len())?;
Ok(inp[1] * poly_eval(&self.poly, inp[0]))
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
gadget_call_poly_check(self, outp, inp)?;
for x in outp.iter_mut() {
*x = F::zero();
}
if inp[0].len() >= FFT_THRESHOLD {
self.call_poly_fft(outp, inp)
} else {
self.call_poly_direct(outp, inp)
}
}
fn arity(&self) -> usize {
2
}
fn degree(&self) -> usize {
poly_deg(&self.poly) + 1
}
fn calls(&self) -> usize {
self.num_calls
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// Marker trait for abstracting over [`ParallelSum`].
pub trait ParallelSumGadget<F: FieldElement, G>: Gadget<F> + Debug {
/// Wraps `inner` into a sum gadget with `chunks` chunks
fn new(inner: G, chunks: usize) -> Self;
}
/// A wrapper gadget that applies the inner gadget to chunks of input and returns the sum of the
/// outputs. The arity is equal to the arity of the inner gadget times the number of chunks.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ParallelSum<F: FieldElement, G: Gadget<F>> {
inner: G,
chunks: usize,
phantom: PhantomData<F>,
}
impl<F: FieldElement, G: 'static + Gadget<F>> ParallelSumGadget<F, G> for ParallelSum<F, G> {
fn new(inner: G, chunks: usize) -> Self {
Self {
inner,
chunks,
phantom: PhantomData,
}
}
}
impl<F: FieldElement, G: 'static + Gadget<F>> Gadget<F> for ParallelSum<F, G> {
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
gadget_call_check(self, inp.len())?;
let mut outp = F::zero();
for chunk in inp.chunks(self.inner.arity()) {
outp += self.inner.call(chunk)?;
}
Ok(outp)
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
gadget_call_poly_check(self, outp, inp)?;
for x in outp.iter_mut() {
*x = F::zero();
}
let mut partial_outp = vec![F::zero(); outp.len()];
for chunk in inp.chunks(self.inner.arity()) {
self.inner.call_poly(&mut partial_outp, chunk)?;
for i in 0..outp.len() {
outp[i] += partial_outp[i]
}
}
Ok(())
}
fn arity(&self) -> usize {
self.chunks * self.inner.arity()
}
fn degree(&self) -> usize {
self.inner.degree()
}
fn calls(&self) -> usize {
self.inner.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
/// A wrapper gadget that applies the inner gadget to chunks of input and returns the sum of the
/// outputs. The arity is equal to the arity of the inner gadget times the number of chunks. The sum
/// evaluation is multithreaded.
#[cfg(feature = "multithreaded")]
#[cfg_attr(docsrs, doc(cfg(feature = "multithreaded")))]
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ParallelSumMultithreaded<F: FieldElement, G: Gadget<F>> {
serial_sum: ParallelSum<F, G>,
}
#[cfg(feature = "multithreaded")]
impl<F, G> ParallelSumGadget<F, G> for ParallelSumMultithreaded<F, G>
where
F: FieldElement + Sync + Send,
G: 'static + Gadget<F> + Clone + Sync + Send,
{
fn new(inner: G, chunks: usize) -> Self {
Self {
serial_sum: ParallelSum::new(inner, chunks),
}
}
}
/// Data structures passed between fold operations in [`ParallelSumMultithreaded`].
#[cfg(feature = "multithreaded")]
struct ParallelSumFoldState<F, G> {
/// Inner gadget.
inner: G,
/// Output buffer for `call_poly()`.
partial_output: Vec<F>,
/// Sum accumulator.
partial_sum: Vec<F>,
}
#[cfg(feature = "multithreaded")]
impl<F, G> ParallelSumFoldState<F, G> {
fn new(gadget: &G, length: usize) -> ParallelSumFoldState<F, G>
where
G: Clone,
F: FieldElement,
{
ParallelSumFoldState {
inner: gadget.clone(),
partial_output: vec![F::zero(); length],
partial_sum: vec![F::zero(); length],
}
}
}
#[cfg(feature = "multithreaded")]
impl<F, G> Gadget<F> for ParallelSumMultithreaded<F, G>
where
F: FieldElement + Sync + Send,
G: 'static + Gadget<F> + Clone + Sync + Send,
{
fn call(&mut self, inp: &[F]) -> Result<F, FlpError> {
self.serial_sum.call(inp)
}
fn call_poly(&mut self, outp: &mut [F], inp: &[Vec<F>]) -> Result<(), FlpError> {
gadget_call_poly_check(self, outp, inp)?;
// Create a copy of the inner gadget and two working buffers on each thread. Evaluate the
// gadget on each input polynomial, using the first temporary buffer as an output buffer.
// Then accumulate that result into the second temporary buffer, which acts as a running
// sum. Then, discard everything but the partial sums, add them, and finally copy the sum
// to the output parameter. This is equivalent to the single threaded calculation in
// ParallelSum, since we only rearrange additions, and field addition is associative.
let res = inp
.par_chunks(self.serial_sum.inner.arity())
.fold(
|| ParallelSumFoldState::new(&self.serial_sum.inner, outp.len()),
|mut state, chunk| {
state
.inner
.call_poly(&mut state.partial_output, chunk)
.unwrap();
for (sum_elem, output_elem) in state
.partial_sum
.iter_mut()
.zip(state.partial_output.iter())
{
*sum_elem += *output_elem;
}
state
},
)
.map(|state| state.partial_sum)
.reduce(
|| vec![F::zero(); outp.len()],
|mut x, y| {
for (xi, yi) in x.iter_mut().zip(y.iter()) {
*xi += *yi;
}
x
},
);
outp.copy_from_slice(&res[..]);
Ok(())
}
fn arity(&self) -> usize {
self.serial_sum.arity()
}
fn degree(&self) -> usize {
self.serial_sum.degree()
}
fn calls(&self) -> usize {
self.serial_sum.calls()
}
fn as_any(&mut self) -> &mut dyn Any {
self
}
}
// Check that the input parameters of g.call() are well-formed.
fn gadget_call_check<F: FieldElement, G: Gadget<F>>(
gadget: &G,
in_len: usize,
) -> Result<(), FlpError> {
if in_len != gadget.arity() {
return Err(FlpError::Gadget(format!(
"unexpected number of inputs: got {}; want {}",
in_len,
gadget.arity()
)));
}
if in_len == 0 {
return Err(FlpError::Gadget("can't call an arity-0 gadget".to_string()));
}
Ok(())
}
// Check that the input parameters of g.call_poly() are well-formed.
fn gadget_call_poly_check<F: FieldElement, G: Gadget<F>>(
gadget: &G,
outp: &[F],
inp: &[Vec<F>],
) -> Result<(), FlpError>
where
G: Gadget<F>,
{
gadget_call_check(gadget, inp.len())?;
for i in 1..inp.len() {
if inp[i].len() != inp[0].len() {
return Err(FlpError::Gadget(
"gadget called on wire polynomials with different lengths".to_string(),
));
}
}
let expected = gadget_poly_len(gadget.degree(), inp[0].len()).next_power_of_two();
if outp.len() != expected {
return Err(FlpError::Gadget(format!(
"incorrect output length: got {}; want {}",
outp.len(),
expected
)));
}
Ok(())
}
#[inline]
fn gadget_poly_fft_mem_len(degree: usize, num_calls: usize) -> usize {
gadget_poly_len(degree, wire_poly_len(num_calls)).next_power_of_two()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::{random_vector, Field96 as TestField};
use crate::prng::Prng;
#[test]
fn test_mul() {
// Test the gadget with input polynomials shorter than `FFT_THRESHOLD`. This exercises the
// naive multiplication code path.
let num_calls = FFT_THRESHOLD / 2;
let mut g: Mul<TestField> = Mul::new(num_calls);
gadget_test(&mut g, num_calls);
// Test the gadget with input polynomials longer than `FFT_THRESHOLD`. This exercises
// FFT-based polynomial multiplication.
let num_calls = FFT_THRESHOLD;
let mut g: Mul<TestField> = Mul::new(num_calls);
gadget_test(&mut g, num_calls);
}
#[test]
fn test_poly_eval() {
let poly: Vec<TestField> = random_vector(10).unwrap();
let num_calls = FFT_THRESHOLD / 2;
let mut g: PolyEval<TestField> = PolyEval::new(poly.clone(), num_calls);
gadget_test(&mut g, num_calls);
let num_calls = FFT_THRESHOLD;
let mut g: PolyEval<TestField> = PolyEval::new(poly, num_calls);
gadget_test(&mut g, num_calls);
}
#[test]
fn test_blind_poly_eval() {
let poly: Vec<TestField> = random_vector(10).unwrap();
let num_calls = FFT_THRESHOLD / 2;
let mut g: BlindPolyEval<TestField> = BlindPolyEval::new(poly.clone(), num_calls);
gadget_test(&mut g, num_calls);
let num_calls = FFT_THRESHOLD;
let mut g: BlindPolyEval<TestField> = BlindPolyEval::new(poly, num_calls);
gadget_test(&mut g, num_calls);
}
#[test]
fn test_parallel_sum() {
let poly: Vec<TestField> = random_vector(10).unwrap();
let num_calls = 10;
let chunks = 23;
let mut g = ParallelSum::new(BlindPolyEval::new(poly, num_calls), chunks);
gadget_test(&mut g, num_calls);
}
#[test]
#[cfg(feature = "multithreaded")]
fn test_parallel_sum_multithreaded() {
use std::iter;
for num_calls in [1, 10, 100] {
let poly: Vec<TestField> = random_vector(10).unwrap();
let chunks = 23;
let mut g =
ParallelSumMultithreaded::new(BlindPolyEval::new(poly.clone(), num_calls), chunks);
gadget_test(&mut g, num_calls);
// Test that the multithreaded version has the same output as the normal version.
let mut g_serial = ParallelSum::new(BlindPolyEval::new(poly, num_calls), chunks);
assert_eq!(g.arity(), g_serial.arity());
assert_eq!(g.degree(), g_serial.degree());
assert_eq!(g.calls(), g_serial.calls());
let arity = g.arity();
let degree = g.degree();
// Test that both gadgets evaluate to the same value when run on scalar inputs.
let inp: Vec<TestField> = random_vector(arity).unwrap();
let result = g.call(&inp).unwrap();
let result_serial = g_serial.call(&inp).unwrap();
assert_eq!(result, result_serial);
// Test that both gadgets evaluate to the same value when run on polynomial inputs.
let mut poly_outp =
vec![TestField::zero(); (degree * num_calls + 1).next_power_of_two()];
let mut poly_outp_serial =
vec![TestField::zero(); (degree * num_calls + 1).next_power_of_two()];
let mut prng: Prng<TestField, _> = Prng::new().unwrap();
let poly_inp: Vec<_> = iter::repeat_with(|| {
iter::repeat_with(|| prng.get())
.take(1 + num_calls)
.collect::<Vec<_>>()
})
.take(arity)
.collect();
g.call_poly(&mut poly_outp, &poly_inp).unwrap();
g_serial
.call_poly(&mut poly_outp_serial, &poly_inp)
.unwrap();
assert_eq!(poly_outp, poly_outp_serial);
}
}
// Test that calling g.call_poly() and evaluating the output at a given point is equivalent
// to evaluating each of the inputs at the same point and applying g.call() on the results.
fn gadget_test<F: FieldElement, G: Gadget<F>>(g: &mut G, num_calls: usize) {
let wire_poly_len = (1 + num_calls).next_power_of_two();
let mut prng = Prng::new().unwrap();
let mut inp = vec![F::zero(); g.arity()];
let mut gadget_poly = vec![F::zero(); gadget_poly_fft_mem_len(g.degree(), num_calls)];
let mut wire_polys = vec![vec![F::zero(); wire_poly_len]; g.arity()];
let r = prng.get();
for i in 0..g.arity() {
for j in 0..wire_poly_len {
wire_polys[i][j] = prng.get();
}
inp[i] = poly_eval(&wire_polys[i], r);
}
g.call_poly(&mut gadget_poly, &wire_polys).unwrap();
let got = poly_eval(&gadget_poly, r);
let want = g.call(&inp).unwrap();
assert_eq!(got, want);
// Repeat the call to make sure that the gadget's memory is reset properly between calls.
g.call_poly(&mut gadget_poly, &wire_polys).unwrap();
let got = poly_eval(&gadget_poly, r);
assert_eq!(got, want);
}
}
|