1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
//! Parallel merge sort.
//!
//! This implementation is copied verbatim from `std::slice::sort` and then parallelized.
//! The only difference from the original is that the sequential `mergesort` returns
//! `MergesortResult` and leaves descending arrays intact.
use crate::iter::*;
use crate::slice::ParallelSliceMut;
use crate::SendPtr;
use std::mem;
use std::mem::size_of;
use std::ptr;
use std::slice;
unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
let old = *ptr;
*ptr = ptr.offset(1);
old
}
unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
*ptr = ptr.offset(-1);
*ptr
}
/// When dropped, copies from `src` into `dest` a sequence of length `len`.
struct CopyOnDrop<T> {
src: *const T,
dest: *mut T,
len: usize,
}
impl<T> Drop for CopyOnDrop<T> {
fn drop(&mut self) {
unsafe {
ptr::copy_nonoverlapping(self.src, self.dest, self.len);
}
}
}
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
fn insert_head<T, F>(v: &mut [T], is_less: &F)
where
F: Fn(&T, &T) -> bool,
{
if v.len() >= 2 && is_less(&v[1], &v[0]) {
unsafe {
// There are three ways to implement insertion here:
//
// 1. Swap adjacent elements until the first one gets to its final destination.
// However, this way we copy data around more than is necessary. If elements are big
// structures (costly to copy), this method will be slow.
//
// 2. Iterate until the right place for the first element is found. Then shift the
// elements succeeding it to make room for it and finally place it into the
// remaining hole. This is a good method.
//
// 3. Copy the first element into a temporary variable. Iterate until the right place
// for it is found. As we go along, copy every traversed element into the slot
// preceding it. Finally, copy data from the temporary variable into the remaining
// hole. This method is very good. Benchmarks demonstrated slightly better
// performance than with the 2nd method.
//
// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
// Intermediate state of the insertion process is always tracked by `hole`, which
// serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` in the end.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and
// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
// initially held exactly once.
let mut hole = InsertionHole {
src: &*tmp,
dest: &mut v[1],
};
ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
for i in 2..v.len() {
if !is_less(&v[i], &*tmp) {
break;
}
ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
hole.dest = &mut v[i];
}
// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
}
}
// When dropped, copies from `src` into `dest`.
struct InsertionHole<T> {
src: *const T,
dest: *mut T,
}
impl<T> Drop for InsertionHole<T> {
fn drop(&mut self) {
unsafe {
ptr::copy_nonoverlapping(self.src, self.dest, 1);
}
}
}
}
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &F)
where
F: Fn(&T, &T) -> bool,
{
let len = v.len();
let v = v.as_mut_ptr();
let v_mid = v.add(mid);
let v_end = v.add(len);
// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
// copying the lesser (or greater) one into `v`.
//
// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
// consumed first, then we must copy whatever is left of the shorter run into the remaining
// hole in `v`.
//
// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
// object it initially held exactly once.
let mut hole;
if mid <= len - mid {
// The left run is shorter.
ptr::copy_nonoverlapping(v, buf, mid);
hole = MergeHole {
start: buf,
end: buf.add(mid),
dest: v,
};
// Initially, these pointers point to the beginnings of their arrays.
let left = &mut hole.start;
let mut right = v_mid;
let out = &mut hole.dest;
while *left < hole.end && right < v_end {
// Consume the lesser side.
// If equal, prefer the left run to maintain stability.
let to_copy = if is_less(&*right, &**left) {
get_and_increment(&mut right)
} else {
get_and_increment(left)
};
ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
}
} else {
// The right run is shorter.
ptr::copy_nonoverlapping(v_mid, buf, len - mid);
hole = MergeHole {
start: buf,
end: buf.add(len - mid),
dest: v_mid,
};
// Initially, these pointers point past the ends of their arrays.
let left = &mut hole.dest;
let right = &mut hole.end;
let mut out = v_end;
while v < *left && buf < *right {
// Consume the greater side.
// If equal, prefer the right run to maintain stability.
let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
decrement_and_get(left)
} else {
decrement_and_get(right)
};
ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
}
}
// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
// it will now be copied into the hole in `v`.
// When dropped, copies the range `start..end` into `dest..`.
struct MergeHole<T> {
start: *mut T,
end: *mut T,
dest: *mut T,
}
impl<T> Drop for MergeHole<T> {
fn drop(&mut self) {
// `T` is not a zero-sized type, so it's okay to divide by its size.
unsafe {
let len = self.end.offset_from(self.start) as usize;
ptr::copy_nonoverlapping(self.start, self.dest, len);
}
}
}
}
/// The result of merge sort.
#[must_use]
#[derive(Clone, Copy, PartialEq, Eq)]
enum MergesortResult {
/// The slice has already been sorted.
NonDescending,
/// The slice has been descending and therefore it was left intact.
Descending,
/// The slice was sorted.
Sorted,
}
/// A sorted run that starts at index `start` and is of length `len`.
#[derive(Clone, Copy)]
struct Run {
start: usize,
len: usize,
}
/// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
/// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
/// algorithm should continue building a new run instead, `None` is returned.
///
/// TimSort is infamous for its buggy implementations, as described here:
/// http://envisage-project.eu/timsort-specification-and-verification/
///
/// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
/// Enforcing them on just top three is not sufficient to ensure that the invariants will still
/// hold for *all* runs in the stack.
///
/// This function correctly checks invariants for the top four runs. Additionally, if the top
/// run starts at index 0, it will always demand a merge operation until the stack is fully
/// collapsed, in order to complete the sort.
#[inline]
fn collapse(runs: &[Run]) -> Option<usize> {
let n = runs.len();
if n >= 2
&& (runs[n - 1].start == 0
|| runs[n - 2].len <= runs[n - 1].len
|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
{
if n >= 3 && runs[n - 3].len < runs[n - 1].len {
Some(n - 3)
} else {
Some(n - 2)
}
} else {
None
}
}
/// Sorts a slice using merge sort, unless it is already in descending order.
///
/// This function doesn't modify the slice if it is already non-descending or descending.
/// Otherwise, it sorts the slice into non-descending order.
///
/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
///
/// # Safety
///
/// The argument `buf` is used as a temporary buffer and must be at least as long as `v`.
unsafe fn mergesort<T, F>(v: &mut [T], buf: *mut T, is_less: &F) -> MergesortResult
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Very short runs are extended using insertion sort to span at least this many elements.
const MIN_RUN: usize = 10;
let len = v.len();
// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
// strange decision, but consider the fact that merges more often go in the opposite direction
// (forwards). According to benchmarks, merging forwards is slightly faster than merging
// backwards. To conclude, identifying runs by traversing backwards improves performance.
let mut runs = vec![];
let mut end = len;
while end > 0 {
// Find the next natural run, and reverse it if it's strictly descending.
let mut start = end - 1;
if start > 0 {
start -= 1;
if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
start -= 1;
}
// If this descending run covers the whole slice, return immediately.
if start == 0 && end == len {
return MergesortResult::Descending;
} else {
v[start..end].reverse();
}
} else {
while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
start -= 1;
}
// If this non-descending run covers the whole slice, return immediately.
if end - start == len {
return MergesortResult::NonDescending;
}
}
}
// Insert some more elements into the run if it's too short. Insertion sort is faster than
// merge sort on short sequences, so this significantly improves performance.
while start > 0 && end - start < MIN_RUN {
start -= 1;
insert_head(&mut v[start..end], &is_less);
}
// Push this run onto the stack.
runs.push(Run {
start,
len: end - start,
});
end = start;
// Merge some pairs of adjacent runs to satisfy the invariants.
while let Some(r) = collapse(&runs) {
let left = runs[r + 1];
let right = runs[r];
merge(
&mut v[left.start..right.start + right.len],
left.len,
buf,
&is_less,
);
runs[r] = Run {
start: left.start,
len: left.len + right.len,
};
runs.remove(r + 1);
}
}
// Finally, exactly one run must remain in the stack.
debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
// The original order of the slice was neither non-descending nor descending.
MergesortResult::Sorted
}
////////////////////////////////////////////////////////////////////////////
// Everything above this line is copied from `std::slice::sort` (with very minor tweaks).
// Everything below this line is parallelization.
////////////////////////////////////////////////////////////////////////////
/// Splits two sorted slices so that they can be merged in parallel.
///
/// Returns two indices `(a, b)` so that slices `left[..a]` and `right[..b]` come before
/// `left[a..]` and `right[b..]`.
fn split_for_merge<T, F>(left: &[T], right: &[T], is_less: &F) -> (usize, usize)
where
F: Fn(&T, &T) -> bool,
{
let left_len = left.len();
let right_len = right.len();
if left_len >= right_len {
let left_mid = left_len / 2;
// Find the first element in `right` that is greater than or equal to `left[left_mid]`.
let mut a = 0;
let mut b = right_len;
while a < b {
let m = a + (b - a) / 2;
if is_less(&right[m], &left[left_mid]) {
a = m + 1;
} else {
b = m;
}
}
(left_mid, a)
} else {
let right_mid = right_len / 2;
// Find the first element in `left` that is greater than `right[right_mid]`.
let mut a = 0;
let mut b = left_len;
while a < b {
let m = a + (b - a) / 2;
if is_less(&right[right_mid], &left[m]) {
b = m;
} else {
a = m + 1;
}
}
(a, right_mid)
}
}
/// Merges slices `left` and `right` in parallel and stores the result into `dest`.
///
/// # Safety
///
/// The `dest` pointer must have enough space to store the result.
///
/// Even if `is_less` panics at any point during the merge process, this function will fully copy
/// all elements from `left` and `right` into `dest` (not necessarily in sorted order).
unsafe fn par_merge<T, F>(left: &mut [T], right: &mut [T], dest: *mut T, is_less: &F)
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Slices whose lengths sum up to this value are merged sequentially. This number is slightly
// larger than `CHUNK_LENGTH`, and the reason is that merging is faster than merge sorting, so
// merging needs a bit coarser granularity in order to hide the overhead of Rayon's task
// scheduling.
const MAX_SEQUENTIAL: usize = 5000;
let left_len = left.len();
let right_len = right.len();
// Intermediate state of the merge process, which serves two purposes:
// 1. Protects integrity of `dest` from panics in `is_less`.
// 2. Copies the remaining elements as soon as one of the two sides is exhausted.
//
// Panic safety:
//
// If `is_less` panics at any point during the merge process, `s` will get dropped and copy the
// remaining parts of `left` and `right` into `dest`.
let mut s = State {
left_start: left.as_mut_ptr(),
left_end: left.as_mut_ptr().add(left_len),
right_start: right.as_mut_ptr(),
right_end: right.as_mut_ptr().add(right_len),
dest,
};
if left_len == 0 || right_len == 0 || left_len + right_len < MAX_SEQUENTIAL {
while s.left_start < s.left_end && s.right_start < s.right_end {
// Consume the lesser side.
// If equal, prefer the left run to maintain stability.
let to_copy = if is_less(&*s.right_start, &*s.left_start) {
get_and_increment(&mut s.right_start)
} else {
get_and_increment(&mut s.left_start)
};
ptr::copy_nonoverlapping(to_copy, get_and_increment(&mut s.dest), 1);
}
} else {
// Function `split_for_merge` might panic. If that happens, `s` will get destructed and copy
// the whole `left` and `right` into `dest`.
let (left_mid, right_mid) = split_for_merge(left, right, is_less);
let (left_l, left_r) = left.split_at_mut(left_mid);
let (right_l, right_r) = right.split_at_mut(right_mid);
// Prevent the destructor of `s` from running. Rayon will ensure that both calls to
// `par_merge` happen. If one of the two calls panics, they will ensure that elements still
// get copied into `dest_left` and `dest_right``.
mem::forget(s);
// Wrap pointers in SendPtr so that they can be sent to another thread
// See the documentation of SendPtr for a full explanation
let dest_l = SendPtr(dest);
let dest_r = SendPtr(dest.add(left_l.len() + right_l.len()));
rayon_core::join(
move || par_merge(left_l, right_l, dest_l.get(), is_less),
move || par_merge(left_r, right_r, dest_r.get(), is_less),
);
}
// Finally, `s` gets dropped if we used sequential merge, thus copying the remaining elements
// all at once.
// When dropped, copies arrays `left_start..left_end` and `right_start..right_end` into `dest`,
// in that order.
struct State<T> {
left_start: *mut T,
left_end: *mut T,
right_start: *mut T,
right_end: *mut T,
dest: *mut T,
}
impl<T> Drop for State<T> {
fn drop(&mut self) {
let size = size_of::<T>();
let left_len = (self.left_end as usize - self.left_start as usize) / size;
let right_len = (self.right_end as usize - self.right_start as usize) / size;
// Copy array `left`, followed by `right`.
unsafe {
ptr::copy_nonoverlapping(self.left_start, self.dest, left_len);
self.dest = self.dest.add(left_len);
ptr::copy_nonoverlapping(self.right_start, self.dest, right_len);
}
}
}
}
/// Recursively merges pre-sorted chunks inside `v`.
///
/// Chunks of `v` are stored in `chunks` as intervals (inclusive left and exclusive right bound).
/// Argument `buf` is an auxiliary buffer that will be used during the procedure.
/// If `into_buf` is true, the result will be stored into `buf`, otherwise it will be in `v`.
///
/// # Safety
///
/// The number of chunks must be positive and they must be adjacent: the right bound of each chunk
/// must equal the left bound of the following chunk.
///
/// The buffer must be at least as long as `v`.
unsafe fn recurse<T, F>(
v: *mut T,
buf: *mut T,
chunks: &[(usize, usize)],
into_buf: bool,
is_less: &F,
) where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
let len = chunks.len();
debug_assert!(len > 0);
// Base case of the algorithm.
// If only one chunk is remaining, there's no more work to split and merge.
if len == 1 {
if into_buf {
// Copy the chunk from `v` into `buf`.
let (start, end) = chunks[0];
let src = v.add(start);
let dest = buf.add(start);
ptr::copy_nonoverlapping(src, dest, end - start);
}
return;
}
// Split the chunks into two halves.
let (start, _) = chunks[0];
let (mid, _) = chunks[len / 2];
let (_, end) = chunks[len - 1];
let (left, right) = chunks.split_at(len / 2);
// After recursive calls finish we'll have to merge chunks `(start, mid)` and `(mid, end)` from
// `src` into `dest`. If the current invocation has to store the result into `buf`, we'll
// merge chunks from `v` into `buf`, and vice versa.
//
// Recursive calls flip `into_buf` at each level of recursion. More concretely, `par_merge`
// merges chunks from `buf` into `v` at the first level, from `v` into `buf` at the second
// level etc.
let (src, dest) = if into_buf { (v, buf) } else { (buf, v) };
// Panic safety:
//
// If `is_less` panics at any point during the recursive calls, the destructor of `guard` will
// be executed, thus copying everything from `src` into `dest`. This way we ensure that all
// chunks are in fact copied into `dest`, even if the merge process doesn't finish.
let guard = CopyOnDrop {
src: src.add(start),
dest: dest.add(start),
len: end - start,
};
// Wrap pointers in SendPtr so that they can be sent to another thread
// See the documentation of SendPtr for a full explanation
let v = SendPtr(v);
let buf = SendPtr(buf);
rayon_core::join(
move || recurse(v.get(), buf.get(), left, !into_buf, is_less),
move || recurse(v.get(), buf.get(), right, !into_buf, is_less),
);
// Everything went all right - recursive calls didn't panic.
// Forget the guard in order to prevent its destructor from running.
mem::forget(guard);
// Merge chunks `(start, mid)` and `(mid, end)` from `src` into `dest`.
let src_left = slice::from_raw_parts_mut(src.add(start), mid - start);
let src_right = slice::from_raw_parts_mut(src.add(mid), end - mid);
par_merge(src_left, src_right, dest.add(start), is_less);
}
/// Sorts `v` using merge sort in parallel.
///
/// The algorithm is stable, allocates memory, and `O(n log n)` worst-case.
/// The allocated temporary buffer is of the same length as is `v`.
pub(super) fn par_mergesort<T, F>(v: &mut [T], is_less: F)
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Slices of up to this length get sorted using insertion sort in order to avoid the cost of
// buffer allocation.
const MAX_INSERTION: usize = 20;
// The length of initial chunks. This number is as small as possible but so that the overhead
// of Rayon's task scheduling is still negligible.
const CHUNK_LENGTH: usize = 2000;
// Sorting has no meaningful behavior on zero-sized types.
if size_of::<T>() == 0 {
return;
}
let len = v.len();
// Short slices get sorted in-place via insertion sort to avoid allocations.
if len <= MAX_INSERTION {
if len >= 2 {
for i in (0..len - 1).rev() {
insert_head(&mut v[i..], &is_less);
}
}
return;
}
// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
// shallow copies of the contents of `v` without risking the dtors running on copies if
// `is_less` panics.
let mut buf = Vec::<T>::with_capacity(len);
let buf = buf.as_mut_ptr();
// If the slice is not longer than one chunk would be, do sequential merge sort and return.
if len <= CHUNK_LENGTH {
let res = unsafe { mergesort(v, buf, &is_less) };
if res == MergesortResult::Descending {
v.reverse();
}
return;
}
// Split the slice into chunks and merge sort them in parallel.
// However, descending chunks will not be sorted - they will be simply left intact.
let mut iter = {
// Wrap pointer in SendPtr so that it can be sent to another thread
// See the documentation of SendPtr for a full explanation
let buf = SendPtr(buf);
let is_less = &is_less;
v.par_chunks_mut(CHUNK_LENGTH)
.with_max_len(1)
.enumerate()
.map(move |(i, chunk)| {
let l = CHUNK_LENGTH * i;
let r = l + chunk.len();
unsafe {
let buf = buf.get().add(l);
(l, r, mergesort(chunk, buf, is_less))
}
})
.collect::<Vec<_>>()
.into_iter()
.peekable()
};
// Now attempt to concatenate adjacent chunks that were left intact.
let mut chunks = Vec::with_capacity(iter.len());
while let Some((a, mut b, res)) = iter.next() {
// If this chunk was not modified by the sort procedure...
if res != MergesortResult::Sorted {
while let Some(&(x, y, r)) = iter.peek() {
// If the following chunk is of the same type and can be concatenated...
if r == res && (r == MergesortResult::Descending) == is_less(&v[x], &v[x - 1]) {
// Concatenate them.
b = y;
iter.next();
} else {
break;
}
}
}
// Descending chunks must be reversed.
if res == MergesortResult::Descending {
v[a..b].reverse();
}
chunks.push((a, b));
}
// All chunks are properly sorted.
// Now we just have to merge them together.
unsafe {
recurse(v.as_mut_ptr(), buf, &chunks, false, &is_less);
}
}
#[cfg(test)]
mod tests {
use super::split_for_merge;
use rand::distributions::Uniform;
use rand::{thread_rng, Rng};
#[test]
fn test_split_for_merge() {
fn check(left: &[u32], right: &[u32]) {
let (l, r) = split_for_merge(left, right, &|&a, &b| a < b);
assert!(left[..l]
.iter()
.all(|&x| right[r..].iter().all(|&y| x <= y)));
assert!(right[..r].iter().all(|&x| left[l..].iter().all(|&y| x < y)));
}
check(&[1, 2, 2, 2, 2, 3], &[1, 2, 2, 2, 2, 3]);
check(&[1, 2, 2, 2, 2, 3], &[]);
check(&[], &[1, 2, 2, 2, 2, 3]);
let rng = &mut thread_rng();
for _ in 0..100 {
let limit: u32 = rng.gen_range(1..21);
let left_len: usize = rng.gen_range(0..20);
let right_len: usize = rng.gen_range(0..20);
let mut left = rng
.sample_iter(&Uniform::new(0, limit))
.take(left_len)
.collect::<Vec<_>>();
let mut right = rng
.sample_iter(&Uniform::new(0, limit))
.take(right_len)
.collect::<Vec<_>>();
left.sort();
right.sort();
check(&left, &right);
}
}
}
|